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Abstract:
The principle of least privilege states that components in a system should only be allowed to perform

actions that are required for them to function. The wish to limit what programs can access has given rise to
a set of application-level sandboxing solutions. In this paper, we survey recent research on application-level
sandboxing. We discuss the properties of the major implementations and highlight the key differences be-
tween them. In addition, we highlight how recent features in mainline Linux kernel have altered the sandboxing
landscape.
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INTRODUCTION
Protecting operating system and user data from untrusted applications has been a ma-

jor issue in computer security. Even a non-technical user would have a hard time avoiding
hearing guidelines like “be careful of unknown email attachments”. The problem with un-
known email attachments is two-fold: in case of an executable attachment, the attached
application can typically do everything the users themselves can. However, even attach-
ments that appear to be safe, that is, those that do not usually contain executable code,
can cause problems if they manage to exploit a flaw in the program used to inspect the file.
Opening a malicious photo in a trusted but vulnerable image viewing application could result
in untrusted code being executed.

The reason why such guidelines are necessary is insufficient application isolation and
overly broad default capabilities of programs. Users are often able to download and run pro-
grams of unknown origin, which, in turn, have wide-ranging capabilities to inspect and share
user’s personal data. Because of the lack of restrictions, even programs that are nominally
safe can be turned malicious through code injection attacks. Why should the aforementioned
image viewer ever have access to, for example, user’s email? What is clearly needed is a
more fine-grained way to limit capabilities granted to applications.

This need for better management of what applications can and cannot do, has created
a whole field of different isolation solutions and technologies. The solutions range from tra-
ditional full-system virtualization to mechanisms relying on custom kernel-level components
to sandboxes that work entirely in user space.

In this paper, we survey the existing research on per-application sandboxing solutions
and discuss the mechanisms that are used for application containment. Our focus is in
implementations that provide what Li et al. [10] call one-way protection, that is, they protect
the operating system and user’s data from the contained application but do not try to protect
the application from the operating system.

BACKGROUND
Traditionally, Unix-like operating systems have granted applications with a wide set of

capabilities. For example, a typical Linux application is able to use any of the hundreds of
system calls supported by the operating system as well as access all the files available to
the user.
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The underlying adversary model is concerned about protecting the system from its
users: a malicious user cannot access files belonging to other users and is prevented from
performing operations that could have system-wide consequences. What is not protected,
however, are users from the applications they execute.

System calls play a large role in application sandboxing. System calls are the mecha-
nisms that enables applications to request services from the underlying operating system and
reach outside the tight confines of their own address space. As Goldberg et al. [7] stated: “An
application can do little harm if its access to the underlying operating system is appropriately
restricted.”

Considering their central role, looking at how applications can access system calls is a
natural starting point for those wishing to limit what applications can do.

System Call Interposition (SCI) based application containment solutions work by listen-
ing the contained application for any system call invocations. When a system call invocation
happens, the sandbox checks if the application is allowed to perform the call. If the call is
not allowed, the contained application can be terminated.

PREVIOUS RESEARCH
There has been a number of publications covering the application sandboxing land-

scape. Garfinkel [5] discussed the common problems that system call interposition based
software security solutions face. They based their analysis partly on the experiences gained
from implementing Janus [4, 7], SCI-based sandboxing system targeting Solaris.

Al Ameiri and Salah [1] surveyed available sandboxing implementations and provided
benchmarks of their effect on program execution times and memory, disk, and network per-
formance. However, their focus was mainly in implementations targeting Windows environ-
ment.

Shu et al. [16] presented a comprehensive survey of security isolation techniques. The
authors provided a hierarchical classification of different isolation techniques and considered
the different solutions in terms of the mechanisms used and the way policies are handled.

METHODOLOGY
For this survey, we reviewed literature that dealt with containing individual applications

and not, for example, whole systems. As an additional criteria for inclusion, we wanted the
sandboxes to be general in that they were not restricted to programs written in particular
language or against particular framework. However, even a generic sandbox might impose
some restrictions on the kinds of programs it can successfully run, in these cases, we erred on
the side of inclusion. More importantly, we only consider implementations targeting Unix-like
operating systems (Linux, Solaris, various BSD variants). Additionally, we left out solutions
specifically targeting mobile use.

Focusing our survey this way allows us to better highlight the similarities between dif-
ferent implementations and how the different solutions tackle the common challenges. By
leaving out software offering radically different solutions to program isolation, we are able to
highlight the differences between the included solutions that might otherwise look subtle if
viewed as a part of wider context of isolation mechanisms.

IMPLEMENTATIONS
Janus
Janus [4, 7] was one of the earliest system call interposition based sandboxing solu-

tions. While the early versions of the project were exclusive to Solaris due to its better support
for system call tracing, later versions of the project added support for Linux with a help of a
custom kernel module that extends the standard ptrace API.
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Policies deciding which system calls to allow are defined through configuration files.
Each configuration directive references a particular policy module implementing logic for de-
ciding whether or not any particular system call should be allowed. By default, all system
calls are denied. As an example, the pathmodule could be used to deny or allow certain file
IO related system calls based on file paths.

Based on the experiences gained from implementing the system, the authors have dis-
cussed [5] the challenges associated with implementing a system call interposition based
process sandboxes.

Ostia
Where most of the surveyed sandboxes are based on filtering system calls from the

sandboxed application, Ostia [6] introduces an architectural alternative based on system call
delegation. In delegating architecture, the sandboxed process itself does not perform the
system calls but instead, the system calls are performed by an outside agent and the results
are transferred back to the sandboxed application. According to the authors, this change of
design makes the system simpler and protects it from argument races since the arguments
are transferred to the agent.

Ostia is implemented as a small kernel module and a user space component. The
kernel module is responsible for preventing the sandboxed program from directly executing
any unsafe system calls. Instead, the kernel module invokes a callback placed within the
address space of the sandboxed process. The callback then transforms the system call
request into an IPC call to the agent. The agent, in turn, receives the system call requests
and, after deciding if the system call should be allowed, executes the request and passes
the results back over the IPC link. However, it is noteworthy that not all system calls have to
go through the delegation process: Some system calls can always be permitted while others
are always denied.

Consh
Consh [2] is a sandboxing project that re-uses components from Janus, but extends its

functionality with a virtualized file system. Consh targets Solaris and is implemented entirely
in user space and requires no superuser privileges.

The core of Consh is Catcher, its system call interposition pipeline. System calls per-
formed by the sandboxed process are handled by Catcher, which is able to sequentially
route them through a series of processing steps. Each step of the process is able to perform
arbitrary operations based on the call and its arguments and before passing the possibly
transformed call to the subsequent steps. One such step is the decision engine from Janus.
As a last step of the presented pipeline, Janus is able to deny any system call formulations
produced by the earlier steps.

What separates Consh from Janus is its ability to provide sandboxed processes with a
virtualized view of the file system. This is achieved through a pipeline step that transforms
file system related calls. On a conceptual level, this approach to providing virtualized file
system access places Consh closer to MBOX, a more recent sandbox implementation.

This ability to provide virtualized views of the file system is used to present applications
with initially empty file system and that can be selectively expanded by the user. In addition,
Consh provides access to network resources through the same file system abstraction. A
special directory can be used to access HTTP and FTP end points using regular file system
operations.
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Systrace
Systrace [13] provides application sandboxing and limited privilege elevation through

system call interposition. The system contains a custom kernel component that either con-
sults an in-kernel database for system calls that are known to be safe or, alternatively, asks a
user space for policy decision. The decision to make some of the choices in kernel is argued
to lessen the performance overhead associated with sandboxing.

The system solves the argument race problem by copying system call arguments to
the kernel memory before the user space is consulted for policy decision. This prevents a
competing thread from changing the arguments before the system call is executed. Addition-
ally, the system normalizes system call arguments to reduce the problem of indirect paths to
resources.

An interesting feature of the Systrace system is the ability to partially elevate the privi-
leges of a process by allowing individual system calls that would normally require super user
privileges to complete.

All sandboxes need policies to decide which system calls to allow. Systrace provides
users with the ability to interactively create policies as the application is running. When
a policy decision needs to be done the user can be prompted to allow or deny the call in
question. In addition to this interactive process, Systrace can learn applications’ regular
system call behaviors by recording their system call use and creating a policy based on the
results.

MiniBox
MiniBox [10] is two-way sandbox protecting both the operating system from the ap-

plication and the application from the operating system. In order to protect the underlying
operating system, MiniBox re-uses Software Fault Isolation (SFI) techniques from NaCl [20]
to prove that the confined program does not perform unsafe operations. To protect the appli-
cation from amalicious OS, MiniBox contains amodified version of TrustVisor [11] hypervisor.
This enables MiniBox to prevent memory access from OS to the sandboxed application.

In MiniBox, sandboxed applications are confined to a Mutually Isolated Execution En-
vironment (MIEE). The hypervisor represents the only channel of communication between
this isolated environment and the regular OS. When the confined application makes a sys-
tem call, it is first handled and checked by the hypervisor and then transmitted to the regular
operating system.

Additionally, MiniBox makes use of Trusted Platform Modules (TPM) to provide remote
attestation capabilities. The system is capable of proving the integrity of sandboxed applica-
tions by recording their hashes into the TPM.

MBOX
MBOX [9] is sandboxing solution making use of recent features of the Linux kernel,

namely seccomp/BPF-based system call filtering (BPF = Berkeley Packet Filter). It requires
no custom kernel components but is built entirely on existing APIs. It is also notable that the
program requires no superuser privileges.

While the traditional ptrace-based process tracing API was problematic for applica-
tion sandboxing [5] because of the lack of fine-grained control over the traced system calls,
Linux’s seccomp facility supports defining BPF-based programs for reacting to different sys-
tem calls. MBOX uses this feature to selectively invoke the monitoring process based on the
system call.

Race conditions related to system call arguments are a common pitfall that sandbox-
ing implementations have to solve. MBOX tackles this problem by allocating a read-only
page in the contained process and copying the arguments there. Since the application can-
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not change the access permissions on the write protected page without a system call, the
arguments stay safe from competing threads.

MBOX restricts changes the programs can enact on the file system by exposing them a
transparent layered file system with copy-on-write semantics. If a sandboxed program tries
to write to a file, the changes will be stored in a separate location and the user is able to later
decide if they want to commit the changes to the original files. It is interesting to note that the
implementation of this system does not depend on any “real” file system implementations, but
the copy-on-write semantics are provided entirely through the use of system call interposition
techniques.

Firejail
Like MBOX, Firejail [12] takes advantage of recent kernel features in order to sandbox

programs. However, where MBOX intercepted system calls and rewrote their arguments,
Firejail restricts applications access to file system through the use of mount namespaces,
a kernel feature allowing processes to have their own view of the file system. In the same
vein, namespaces are used to provide sandboxed application with their own view of running
processes and network devices. However, it is noteworthy that the use of these features
requires Firejail to contain a setuid helper binary that is able to create the required changes.

Sandboxing environment can be defined through a set of command line arguments, or
through profile definitions. By default, Firejail tries to find an appropriate profile based on ap-
plication name. Profiles define which resources should be made available to the application
and which system calls they can perform. In addition, profiles can inherit from other profiles
making creation of derived profiles simpler.

nsjail
nsjail [8] is another sandboxing solution primary utilizing namespaces and seccomp for

isolation. A distinctive feature of the system is its use of control groups for resource limits. For
example, nsjail allows the user to limit the amount of memory or CPU time that the sandboxed
program can consume.

nsroot
nsroot [14] is a minimalistic sandboxing tool making use of Linux namespaces to pro-

vide sandboxed applications with their own view of the file system and restricted access to
networks. In many respects, nsroot is similar to Firejail and nsjail in its functionality and
implementation if less limited in its apparent configurability. The authors note the similari-
ties and suggest that nsroot has the advantage of supporting similar usage patterns as the
traditional chroot command.

Flatpak
Previously known under the name xdg-app, Flatpak [3] aims to provide means for

portable application packaging and sandboxing solution for Linux. The sandboxing function-
ality of Flatpak was recently split into a separate tool, Bubblewrap. The sandbox provides
unprivileged users with the ability to confine applications using namespaces and Seccomp.

EVALUATION
Implementation Mechanisms
The more recent work on application sandboxing shows increased homogeneity in im-

plementation strategies as relevant functionality has found its way into the mainline Linux
kernel. Where earlier sandboxing solutions made use of custom kernel modules for reme-
dying limitations in the operating system APIs, newer solutions like MBOX [9], Firejail [12],
nsjail [8], and nsroot [14] increasingly make use of the features found in standard kernels
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Release∗ 1996 2004 1998 2003 2011 2013 2015 2014 2016 2014
Modified OS 7 7 7 7

Arguments† 7 7 7 7 7 7

Namespaces 7 7 7 7

Seccomp 7 7 7 7

Resource Limits 7

Table 1: Comparison of sandbox implementations.
∗: If the project has no associated publication, the time of the first commit is used. If the project has multiple
associated publications, the earliest one is used.
†: Does the sandbox modify system call arguments.

and do not require custom kernel-level changes.
Related to this, there appears to be an influx of recent process sandboxing projects as

Table 1 highlights. A possible explanation for this is the maturing of namespace technology
in the Linux kernel, which has enabled the recent implementations and arguably lowered the
bar for deployment. However, this reliance on mainline kernel features has arguably made
the different implementations very similar in terms of the provided feature sets.

Race Condition Prevention
Different types of race conditions are a challenge that sandbox implementers have to

solve. The problem was thoroughly described by Garfinkel [5]: Race conditions related to
handling of system call arguments can lead tomalicious system calls being allowed. Because
deciding if a particular system call should be allowed and actually executing the call is often
not an atomic operation, an attacker could manage to swap the arguments after the decision
has been made but before the call is actually executed. This is commonly referred as Time
of Check/Time of Use (TOCTOU) problem.

The surveyed implementations approached the problem with slightly different solutions.
Ostia follows a different architectural pattern. Potentially harmful system calls are not per-
formed in the sandboxed process, instead a separate agent process is used to decide whether
or not the call should be allowed and for subsequently performing the call. Because the ar-
guments are copied to the agent they are out of reach for attackers. In comparison, Systrace
copies system call arguments to the kernel memory before consulting the user space about
a policy decision. MBOX also employs copying but uses a separate page with read-only
access rights for storing the arguments. Firejail and nsjail both employ Seccomp/BPF for
preventing system calls that should always be denied. However, Seccomp only allows lim-
ited inspection into arguments of the calls.

Restricting File System Access
A file system is a shared resource and as such sandbox implementations have to control

access to it. Consh approached the problem of restricting file system access by having a
private virtualized file system available for sandboxed applications. This was achieved by
inspecting resource acquisition related system calls and rewriting all paths to referer inside
a particular directory inside the host system. Similar approach was later taken by MBOX,
which exposed host’s file system but transformed modification attempts to include copy-on-
write semantics.
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Recent sandbox implementations making use of Linux namespaces are able to control
how the process sees the file system without having to resort analyzing system call argu-
ments. Firejail, nsjail, and nsroot can all confine applications using mount namespaces.

It is also worth considering which files are exposed to the sandboxed application and
how the decisions are made. For example, a user trying to open a document from a sand-
boxed application expects that they are able to browse through their files and select the file
they wish to edit. Obviously for this to be possible, the process hosting the open file dialog
has to be able to access user’s files. As these dialogs have traditionally been part of the
program itself, implementing this becomes a challenge. Flatpak solves this problem by in-
troducing the concept of “portals”. A sandboxed application can invoke a file chooser portal
over an IPC mechanism. A portal provides the user with a familiar file selection dialog that
exists outside the confines of the sandbox. When the user selects a file it is selectively ex-
posed to the sandboxed application. Aside from file access, the portal facility is also used
to control access to various other shared resources including printing and screenshots. In
comparison, Firejail supports exposing files to a sandboxed program without requiring the
program to be restarted.

Graphical Interface Isolation
Traditionally, X-server [19] has been a common choice for graphical user interfaces in

Linux-based environments. Clients wishing to display graphics communicate with the server
using a Unix domain socket or a regular socket. By default, X places few restrictions on
clients’ ability to interact with other clients. For example, clients are able to inspect contents
of other windows or listen for all key press events. This is obviously problematic for those
wishing to sandbox graphical programs: one would like sandboxed programs to be limited
to interacting with windows belonging to them.

Wagner [17] noted this problem: access control in X is all-or-nothing. The authors
highlight the possibility of using a sanitizing X-proxy that would filter malicious X-requests.
However, for deploying Janus, they used a nested X-server, Xnest [18]. In this setup, the
sandboxed application has its own X-server which itself is just another client for the par-
ent X-server. This way, the sandboxed application is limited to only interacting with its own
windows. Firejail supports a similar approach.

However, it is worth noting that X has gained some abilities to restrict inter-client com-
munication through a Security extension [15]. The security extension makes it possible for
clients to be labeled as trusted or untrusted and communication between these is limited.

CONCLUSIONS
In this survey, we have looked at ten application sandboxing solutions and character-

ized their notable features and provided some points of comparison. We have highlighted the
division between older implementations and the recent trend of namespace oriented sand-
boxes.
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