This is a pre-copyedited, author-produced version of an article accepted for publication in
Bioinformatics following peer review. The version of record Sean Robinson, Michael J Courtney;
Spatial quantification of the synaptic activity phenotype across large populations of neurons with
Markov random fields, Bioinformatics, , bty322, is available online at https://doi.org/10.1093/
bioinformatics/bty322

DIOMTOTITIENCS

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

Spatial quantification of the synaptic activity
phenotype across large populations of neurons
with Markov random fields

Sean Robinson 2*, and Michael J. Courtney 3:4°*

! Department of Mathematics and Statistics, University of Turku, Turku, Finland 2Université Grenoble Alpes, CEA, INSERM, Biology of
Cancer and Infection UMR S 1036, F-38000 Grenoble, France 3Neuronal Signalling Lab, Turku Centre for Biotechnology, University of
Turku, Turku, Finland 4Screening Unit, University of Turku, Turku, Finland 5Turku Brain and Mind Center, Turku, Finland

*To whom correspondence should be addressed.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The collective and coordinated synaptic activity of large neuronal populations is relevant to
neuronal development as well as a range of neurological diseases. Quantification of synaptically-mediated
neuronal signalling permits further downstream analysis as well as potential application in target validation
and in vitro screening assays. Our aim is to develop a phenotypic quantification for neuronal activity imaging
data of large populations of neurons, in particular relating to the spatial component of the activity.
Results: We extend the use of Markov random field (MRF) models to achieve this aim. In particular, we
consider Bayesian posterior densities of model parameters in Gaussian MRFs to directly model changes
in calcium fluorescence intensity rather than using spike trains. The basis of our model is defining neuron
‘neighbours’ by the relative spatial positions of the neuronal somata as obtained from the image data
whereas previously this has been limited to defining an artificial square grid across the field of view and
- Thisbotheplicithrincorporatesaspatialeompenentwithinthe-modetand-allowsforfeasib
inferenee- We demonstrate that our spatial phenotypic quantification is applicable for both in vitro and in
vivo data consisting of thousands of neurons over hundreds of time points. We show how our approach
provides insight beyond that attained by conventional spike counting and discuss how it could be used to
facilitate screening assays for modifiers of disease-associated defects of communication between cells.
Availability: We supply the MATLAB code and data to obtain all of the results in the paper.

Contact: sean.j.robinson@utu.fi and michael.courtney@utu.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction limb pain [Blumberg and Dooley, 2017]. The use of ex vivo culture systems
as models for neuronal development and disease provides numerous
benefits such as the potential to assist in the discovery of underlying
regulatory mechanisms. Neurons isolated from immature cerebral cortex

Synaptic neurotransmission and neuronal activity are essential for the
development and refinement of the mature nervous system [Blanquie ez al.,

2017, Sigler et al., 2017]. Perturbations in synaptic neurotransmission
are able to develop functional synaptic connectivity in culture. They exhibit

spontaneous wave-like propagations of calcium spiking (Supplementary
Movie 1) that have pharmacological sensitivity indicating the involvement

and plasticity are known contributors to diseases such as epilepsy,
neuropathic pain and depression [Doucet et al., 2012, Jacobs et al., 2000,

Zhuo, 2008]. Spontaneous neuronal activity has been found to play a o A ) 8
of action potentials and neurotransmitter receptors [Dravid and Murray,

2004]. These properties suggest that such cultures may have the capacity
to model aspects of development and disease related to synaptic function

particularly important role in the establishment of brain circuits during
development [Kutsarova et al., 2017, Pratt et al., 2016, Leighton and

Lohmann, 2016] and may also contribute to disorders such as phantom
and could therefore be utilised in screens to identify molecules altering

synaptic behaviour.
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It is well understood that the contribution of neural activity to brain
function lies within the coordinated activity of large populations of neurons
rather than the independent activity of individual neurons [Tkacik et al.,
2014]. We therefore do not propose to analyse the behaviour of individual
neurons but instead seek a representation of neuronal communication
throughout larger populations. We aim to quantify this synaptically-driven
activity, in particular relating to the spatial structure of the activity, as the
phenotype of interest within a screen or experimental setup. This requires
an aggregate analysis of up to thousands of neurons over hundreds of time
points.

A general first step in the analysis of large, neuronal time-course data
is dimensionality reduction applied either to the time series [Cunningham
and Byron, 2014, Breakspear, 2017] or to low-level features such as
cell morphology [Sharma et al, 2012]. This approach has directly
led to applications in decoding (classification), for example classifying
images/videos of natural scenes using the corresponding induced activity
of neurons in the retina [Ahmadian et al., 2011, Onken et al., 2016].
Other general analytical techniques include pairwise or population cross-
correlation studies of the time series [Smith and Hausser, 2010, Okun
et al., 2015], or the use of hidden Markov models to infer underlying
states of activity [Mazzucato et al., 2016]. Non-spatial analysis of spike
trains (binary time series of neuron spikes) makes use of ‘spike counting’

statistics such as the mean firing rate and interspike interval, or averaging
over the data in some other way, for example by using time histograms [Hill
etal., 2015].

A particular exception to non-spatial analysis of neuronal activity data
is the use of Markov random field (MRF) models [Makarenko et al.,
1997, Francois et al., 2000, Abdallahi et al., 2003]. However, up until

this point such analysis has been limited to spike train data which requires
a spike binning scheme in time. Ising models are a specific type of MRF
which have also been used in spike train analysis [Schneidman et al., 2006,
Shlens et al., 2006, Nirenberg and Victor, 2007, Roudi et al., 2009] but
where pairwise interactions have been considered for every possible pair
of neurons, or in other words, all neurons are considered equally adjacent
in space. An explicitly spatial component can be achieved using an MRF
model by defining a square grid across the field of view and where each
region only interacts with its four immediate neighbours [Makarenko et al.,
1997, Francois et al., 2000, Abdallahi et al., 2003]. This sparse interaction
setup means that much more data can be feasibly analysed than in the
previous use of Ising models (only ~10 cells), however the definition of
such a grid requires a spike binning scheme in space as well.

Here we use a Gaussian MRF model [Rue and Held, 2005] with
pairwise interactions and where neuronal connectivity is modelled based
on the relative spatial locations of the neuron somata. Hence we do not
consider a square grid but rather a triangulation actually corresponding
to individual neurons yet which also results in a sparse adjacency matrix
(Supplementary Figure 1). We directly analyse the neuronal activity as
extracted from image data, that is, the fluorescent dye-based measurements
of calcium levels as opposed to spike trains. Furthermore, rather than point
estimation of model parameters as has been previously achieved, we will
consider posterior densities of the relevant model parameters in a fully
Bayesian framework. Hence we quantify the spatial component of the
neuronal activity through our model, which is based on a novel use of
Gaussian MRFs to directly model the process of interest.

Recent advances in high-resolution imaging of large populations of
neurons across multiple brain areas [Sofroniew et al., 2016] as well as
potential large-field in vitro screening applications (~5000 individual
cells; ~6000 time points) has provided the opportunity to specifically
leverage the spatial component of synaptic activity data. We consider
data from simulation experiments, data acquired from cultures of ex
vivo neurons specifically for this study and freely available data from
in vivo studies published in the literature [Li e al., 2015b, Chen et al.,
2016, Sofroniew et al., 2016]. We show that our approach can achieve
insights beyond conventional spike counting, as well as conforming to
and complementing previously attained results. We also discuss how our
approach could be used to facilitate screening assays. through-the-analysis

2 Materials and Methods
2.1 Neuronal culture preparation

Rat cortical neuron cultures were prepared as previously described [Li
et al., 2013], in Neurobasal A medium supplemented with 1.5 to 2% B27
(Life Technologies-Thermo). Half of the medium was replaced with fresh
medium every three days. Cells were plated in Cellstar 96 well microclear
plates (Greiner, 0.19mm bottom) for large-field imaging or Cellstar 96 well
plates (Greiner, Imm bottom) for medium-field imaging. At 9 (large-field
experiment) or 16 (medium-field experiment) days in vitro, the medium
on the cortical cultures was replaced with wash-free calcium reporter dye
loading medium (with final concentrations of 2 uM Fluo4AM, 0.01%
pluronic acid, 0.1% BSA and Hoechst 33342 DNA dye in SGG-based
solution (NaCl 137.5 mM, KCl 5.3 mM, CaClz 2 mM, MgCly 1 mM,
HEPES 10mM, Glucose 30 mM, Glycine 1 mM; [Bading et al., 1993])
supplemented with 0.5 mM sodium pyruvate, 2.5mM additional NaHCO3
and 10% minimal essential medium (MEM Gibco-Thermo cat #11700077
for imaging under ambient conditions) and incubated for 1 hour to allow
uptake of the dye.
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2.2 Image data acquisition

For large-field imaging, images were taken through a 4Xx objective
(NA 0.16, Olympus) using a customized IX70 microscope as previously
described [Li et al., 2015a]. The field was illuminated with a 460nm LED
source (XLEDI1, LDGI). Emission light was collected through 510nm
long-pass filter. The Hamamatsu Flash 4.0 camera was run using HCimage
sofware (Hamamatsu) with binning 2x2 to generate 1024 x 1024 pixel
images at 16 bit depth with an integration time of 0.300 seconds. The
field (size 3.2 mm X 3.2 mm) contained up to 10 cells and was imaged
every ~0.375 seconds for a total of 418 frames (total time ~156.75
seconds). The data corresponding to this setup is hereafter referred to
as the large-field (LF) data.

To acquire images of cells before, during and after addition of
pharmacological inhibitors, an automated imager equipped with a cell-
imaging chamber (set at 5% CO2, 37°C) containing a pipetting gantry was
used (BD Pathway 855 High Content Analyzer). Cell culture medium was
first manually removed and replaced with MEM (64 p/well) supplemented
with 5 M final picrotoxin, an inhibitor of the GABA-A receptor, to
promote a reproducible level of spontaneous activity in the cultures. Each
of 30 cultures in wells was sequentially loaded (at 45 second intervals)
with calcium dye by on-stage addition of 6 pl of 10x wash-free calcium
reporter dye loading medium in MEM, using the single-channel pipettor
of the automated imager.

Cells were treated during the third imaging cycle with either 0.1 uM
tetrodotoxin (Ascent Scientific) to fully block action potentials, or MK-
801 (Tocris) 0.2 uM to partially reduce NMDA receptor-gated calcium
responses, in 10 replicate wells for each condition. Additions were made
from 10x stocks in MEM using the on stage-pipettor. Control samples
were left untouched after the loading dye addition. This system uses a less
sensitive camera (Hamamatsu Orca-ER CCD, 1344 x 1024 pixels, used at
binning of 2 x2), necessitating the use of higher magnification and higher
numerical aperture objectives, leading to reduced number of cells per
field (~300). Images were acquired through a long-working distance 10x
objective (NA 0.3, Olympus) for 45 frames per acquisition window (~35
seconds within a single acquisition window, allowing ~10 seconds for the
objective to move to the next well and refocus, resulting in ~20 minutes
between acquisition cycles). There were 2 windows of measurements pre-
treatment, 1 during treatment and 4 windows post-treatment. The data
corresponding to this setup is hereafter referred to as the medium-field
(MF) data.

2.3 Voronoi tessellations and triangulations

A tessellation is defined as a partition of 2D space into a set of regions called
tiles. When the set of tiles is in one-to-one correspondence with a set of
seed points in space such that any point lying within a tile is closest to that
tile’s corresponding seed point, this is known as a Voronoi tessellation. We
can then construct a corresponding graph by considering the seed points
as vertices and that there is an edge between any two vertices that have
adjacent corresponding tiles within the field of view. Hence we end up
with a triangulation, although note that this is not a Delaunay triangulation
since the adjacency of the Voronoi tiles is constrained to exist only within
a specified field of view.

An example Voronoi tessellation obtained from neuronal culture
image data is given in Figure 1. We have the standard deviation
projection of the time series image data (Figure 1(a)), which is then
used for the segmentation mask for the neuronal cells (Figure 1(b)). The
centres of the segmented regions are the seed points used to define the
Voronoi tessellation using Euclidean distance (Figure 1(c)). Finally, the
triangulation is found resulting in a graph where each vertex corresponds
to a neuronal cell and each edge corresponds to neuronal cell ‘neighbours’
as seen in the Voronoi tessellation (Figure 1(d)). Hence neurons are only

(a)  Standard deviation projection (b)

100-pm

Segmentation mask

Fig. 1. Obtaining the Voronoi tessellation and graph. (a) The standard deviation
projection (in time) for an example field of view of cultured neurons. (b) The segmentation
mask of the neuronal cells. (c) The Voronoi tessellation where the seed points are the
centres of each of the segmented cells. (d) The corresponding triangulation graph. That is,
neurons represented as vertices have neighbours represented through edges corresponding

to adjacent Voronoi tiles, not all other neurons (see Supplementary Figure 1).

‘neighbours’ corresponding to adjacent Voronoi tiles, not with all other
neurons (see Supplementary Figure 1).

Supplementary Figure 2(a) shows an example of the same fluorescence
image data, F: presented as a ‘film strip’. The first difference images,
AF; = Fy — F;_ are also given as a ‘film strip’ (Supplementary
Figure 2(b)), which are then overlaid with the corresponding segmentation
mask and Voronoi tessellation (Supplementary Figure 2(c)). Then the
extracted neuron activity time series data, the median fluorescence
intensity value of each cell at each time point, is visualised on the Voronoi
tessellation by colouring each tile based on the value of the time series
(Supplementary Figure 2(d)). The same data is presented in Supplementary
Movie 2. Note that the sizes of the Voronoi tiles do not have any meaning
in our analysis but the tessellation is a useful visualisation of the time series
data that maintains the spatial adjacency information.

2.4 Spatial model for neuronal activity

Consider that we have a collection of neurons with an associated graph
G = {V,€} and that X; for ¢ € V are the random variables of
the measured neuron activity. For convenience in the following we will
consider that the index ¢ corresponds to individual neuronal cells while the
considerations for time are addressed below. We write X = {X; | €
V} (all the measurements) and Xy, = {X; | j € V\i} (all the
measurements except the ith). Let the edge set £ = {e;; € {0,1} | e;; =
eji, forall 4,5 € V} be the set of all edges between every pair of neurons
where neurons 7 and j are neighbours if and only if e;; = 1. Let the degree
of vertex 7 be 9; = Zjev e;; with ez; = O forall ¢ € V.

Conditional autoregressive (CAR) models are Gaussian MRFs defined
by the series of full conditional distributions

€ij o2
XilXps ~ N(9 > 22X, o

jev\i ¢

for all ¢ € V. That is, each variable X; has a conditional Gaussian
distribution with mean, the ¢-scaled average of its neighbouring values and
variance o2 scaled by the number of its neighbours. The joint distribution
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of X exists and is unique [Rue and Held, 2005], written
X ~ N(0,06*(D(I — ¢W))™1)

where D is a diagonal matrix with entries D;; = 9; foralli € V, I is
the identity matrix and W is known as the adjacency matrix with entries
Wij = ey for all 4,5 € V. For the covariance matrix to be positive
definite, ¢ € (—1,1) and o2 > 0 [Gelfand and Vounatsou, 2003]. If
¢ = 0 then X has a diagonal covariance matrix and hence each of the
univariate marginal distributons are independent. A value of ¢ > 0 results
in spatial autocorrelation between neighbouring variables (easiest to see
in the full conditional distributions), while ¢ < 0 results in spatial anti-
autocorrelation. Hence ¢ is known as the spatial autocorrelation parameter.

Likelihood based methods [Cressie et al., 2005] as well as approximate
algorithmic methods [Banerjee et al., 2014] exist for inference of the
spatial autocorrelation parameter ¢ and the precision 7 = 712 Although
CAR models are often utilised as one component within larger hierarchical
models [Banerjee et al., 2014], unlike disease mapping with covariates,
there is no need here and we can find an explicit expression for the posterior
density of the spatial autocorrelation parameter ¢ within a Bayesian
framework [Bell and Broemeling, 2000, De Oliveira, 2012, Ren and Sun,
2013]. We set priors 7(¢) o constant and 7(7) o 71, and we assume a
priori that ¢ and T are independent, that is 7(¢, 7) = m(¢)7(7) = 77 1.

Now the likelihood is

(X = z|¢, ) o [DI—pW)|Z7F exp {7%XT(D(17¢>W))X}.

Hence the joint posterior distribution is
(¢, 7|X = z) o 7(X = [, T)m(¢, T)

= |D(I - gW)|27E "1 exp{ - %XT(D(I - ¢W))X}.
For fixed ¢ it can been seen that 7 has a Gamma distribution,
n 1_rp
¢, X =z} ~T 3 5X (DI — W)X |.

In order to find the posterior density of ¢ we integrate 7(¢, 7| X = x)
with respect to 7 by using the properties of the Gamma distribution to
obtain

w(61X = ) oc [D(I - oW)[} (X7 (D1 — oW))X) .

Hence we are able to sample from 7(¢|X = x). That is, for a given set
of measurements of neuron activity X = x, we are able to sample from
the posterior distribution of ¢ under a CAR model in order to assess the
amount of spatial autocorrelation present in the data as measured by ¢.

In the above presentation the index of the random variables X does
not explicitly correspond to either space or time. The spatial adjacency
matrix can correspond to any graph, for example the one given in
Figure 1(d). In order to model through time, identical graphs can be
considered for each time point and extra edges added between those graphs
to represent temporal adjacency between each neuron in time. Then the
autocorrelation parameter can be decomposed into a spatial and temporal
component, pW = ¢spaceWspace ~+ Ptime Wiime Where Wspace and Wiime
are the adjacency matrices corresponding to spatial and temporal adjacency
respectively. Although the adjacency matrix W can take any form in
principle, in practice W is generally a sparse matrix, which is what
allows for the model inference to be feasibly achieved. Sparseness results
automatically from having the adjacency matrix correspond to adjacent
tiles in a Voronoi tessellation in our model.
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Fig. 2. Simulations from a MRF based on the Voronoi tessellation of 1000 uniformly
distributed data points in space. The Voronoi tiles are coloured in an analogous way as
in Supplementary Figure 2(d)). (a) True autocorrelation parameter ¢ = 0 and histogram
of a sample from the posterior density given below. (b) True autocorrelation parameter

¢ = 0.99 and histogram of a sample from the posterior density given below.

3 Results and Discussion

3.1 The MRF model obtains accurate estimates of the
autocorrelation parameter ¢ in simulated experiments

We first consider a simulation from an MRF model with known parameters.
One thousand points were uniformly distributed in the field of view and
the corresponding Voronoi tessellation and graph was obtained. Figure 2
shows realisations of the MRF model for both high and low values of the
spatial autocorrelation parameter ¢ (note we are just considering a single
time point so there is no need to consider ¢me and we set 7 = o2 =1
for all simulations). Below the simulated data in Figure 2 is the histogram
of a sample from the corresponding posterior density of ¢. We can see
that when the true value of ¢ = 0 (no spatial autocorrelation between
adjacent cells), the posterior density is centred around 0 and when the true
value of ¢ = 0.99 (high spatial autocorrelation between adjacent cells),
the posterior density is centred around 0.9.

Supplementary Figure 3 shows boxplots of samples from the posterior
density of ¢ for a range of true values of ¢ for each of 10, 100, 1000 and
10% simulated points in the field of view. We can see that for the most part
the posterior samples are centred around the true corresponding values of
¢, with greater accuracy and smaller variance as the number of data points
increases as expected. This plot suggests a lower limit of around 1000 data
points needed to obtain reasonable posterior distributions. When the true
value of ¢ = 0.99, the centres of the posterior samples for 1000 and 104
simulated points appear to be biased, sitting around 0.9. However, in this
case we are right at the edge of the domain of ¢ and so it is not completely
surprising that the centres of the posterior distributions are further away
from that edge.

The above simulations correspond to a single time point whereas in
practice we have time series data. As discussed above, incorporating
a time component into the model can be achieved by setting W =
Pspace Wipace + @time Wiime. Supplementary Figure 4 shows boxplots of
samples from the posterior densities of ¢space for a range of true values
of both @space and ¢rime. However in each case the posterior densities of
@space Were found when holding ¢iime = O fixed. That is, ¢ime appears
to be ancillary for the accurate inference of @space, at least in terms of the
centre of the posterior sample. Hence in all cases below we set ¢iime = 0
and write ¢ instead of ¢space. Since we are most interested in the spatial
autocorrelation of populations of neuronal cells, this makes the analysis
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much clearer and also means there is much less computational cost to
finding the posterior density.

In the case where we have less than 1000 cells in the field of view (for
example with the MF data) we may expect low accuracy and high variance
in our samples of the posterior density based on Supplementary Figure 3.
However, Supplementary Figure 4 also demonstrates that in cases where
we have time series data, the equivalent number of data points used to
calculate the posterior density is the number of cells in the field of view
multiplied by the number of time points. Hence even though there are
only ~200 cells per field of view for the MF data, we have 45 frames in
each acquisition window and hence the equivalent number of data points is
200 x 45 = 9000. Hence we are more generally able to expect posterior
samples with both low variance and high accuracy.

3.2 The MRF model can distinguish between purely spatial
differences in wave-like neuronal activity

We now consider a simulation experiment based on the LF data. This data
itself was generated as a test of the system and so only a single field of
view is considered with untreated cells exhibiting spontaneous network
activity and wave-like signal propagation (Supplementary Movie 1). The
propagation speed of the wave (<8 mm/s) is well below the reported action
potential propagation speeds in cortical and hippocampal neurons (~240-
470 mm/s [Gulledge and Stuart, 2003, Kress et al., 2008, Schmidt-Hieber
et al., 2008]). This, together with the elimination of spontaneous activity
by tetrodotoxin (see below; [Dravid and Murray, 2004] strongly argue
that the observed wave-like spread results from synaptic activation across
multiple local synapses in series, rather than the arrival of a single long
range input synapsing on multiple cells. In the latter case the maximal
delay in activation across the imaging field would be 10 ms, not 300 ms
as observed here.

There are a total of 5366 segmented cells in the field of view and the data
consists of 418 time frames (417 first difference frames). Supplementary
Figure 5 shows the degree distribution of the vertices in the corresponding
graph. We consider 2 different simulation schemes using the LF data by
permuting the time series either in space or in time. In the ‘permute space’
case, the observed time series are randomly permuted between the cells.
In the ‘permute time’ case, the time series are randomly shifted in time
for each cell (and wrapped around as necessary). The original data and
the two simulated cases can be seen in Supplementary Movie 3 while the
corresponding time series is given in Supplementary Figure 6.

Boxplots of the samples from the posterior densities of ¢ are given
for different time windows in Figure 3. We can see the spatial component
of the data is clearly apparent in the posterior samples of ¢. That is, the
wave-like propagation of activity that is visible in the original data and is
no longer visible after spatial permutation (Supplementary Movie 3). Note
that analyses such as spike counting would give the same output for both
the original data and the spatially permuted case as the spatial component
of the data is simply not taken into account. The spatial autocorrelation
is zero after temporal permutation since the spiking has been completely
desynchronised. If the time series were spike trains, statistics like the mean
firing rate would not change under either spatial or temporal permutation.

3.3 The MRF model can quantify suppression of cellular
communication induced by pharmacological
compounds

Our aim is to develop a phenotypic quantification of neuronal
communication that could be used for cell-based screens of reagents
with potential pharmacological activity. We therefore evaluated the use
of the spatial autocorrelation parameter to quantify the effects of specific
compounds on cellular communication. In the MF data, a control condition
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Fig. 3. Boxplots of samples from the posterior density of ¢ for the simulation scheme
based on the LF data for different time windows with the median value also provided.
When considering 10 time points the equivalent number of data points is ~5x 10 while
when considering all time points the equivalent number of data points ~2x 10 and hence
the sample variance is so low (compare to Supplementary Figure 3). The corresponding
neuron activity data is presented in Supplementary Movie 3.

was compared with 2 pharmacological treatments, tetrodotoxin (TTX) at
0.1 uM to abolish action potentials, and MK-801 at 0.2 uM to partially
limit calcium flux through NMDA receptor channels, each of which was
replicated in 10 wells. The distribution of vertex degrees (Supplementary
Figure 7) is very similar for each well with an average degree ~5 and
low spread (comparison with Supplementary Figure 5 demonstrates the
invariance of the size of the cellular neighbourhood when defined by a
Voronoi tessellation for different field sizes, suggesting the scalability of
our approach). The number of cells per well are also quite similar with a
total median of just under 200. There are 45 time frames per acquisition
window so for each well and each window we sample from the posterior
of ¢ where there are the equivalent of ~9000 data points.

For each well we consider the 2 pre-treatment and 4 post-
treatment acquisition windows. Figure 4 shows boxplots of the spatial
autocorrelation parameter where for each treatment and for each
acquisition window there is a boxplot for each of the 10 replicates. Example
time series for 3 wells are also given in Supplementary Figure 8. Recall that
cells were pre-treated with a low concentration of picrotoxin, an inhibitor
of the GABA-A receptor, to initially promote spontaneous activity of
the networks. .eps Therefore, in all pre-treatment imaging time-windows,
neurons are spiking in a highly synchronised way (¢ ~ 0.99).

Addition of TTX leads to a dramatic suppression of calcium spikes
as the treatment effectively eliminates the action potentials on which
intraneuronal communication depends (Figure 4). Thus the cells are not
expected to be exposed to synaptically released transmitter and network
activity is terminated. In the untreated condition used as a control, we can
see that the cells appear to gradually become less synchronised (Figure 4)
and exhibit increasing firing rates (Supplementary Figure 8). This likely
reflects adaptation of the network to the loss of inhibitory input resulting
from continued exposure of the network to picrotoxin, by synaptic scaling
or other homeostatic mechanism [Fernandes and Carvalho, 2016].

The NMDA receptor open-channel blocker MK-801 at 2 4M prevents
NMDA-evoked calcium responses [Li et al., 2013, Courtney et al., 1990]
and, in pilot experiments, eliminates all activity (data not shown) not unlike
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Fig. 4. Boxplots of samples from the posterior density of ¢ for the MF data. There
were 6 acquisition windows (2 pre-treatment, 4 post-treatment) with 10 replicates for each

condition.

treatment with TTX 0.1 M. For this reason, we used 0.2 uM MK-801 to
only partially reduce the NMDA-evoked calcium responses. This condition
only leads to a slight and very delayed drop in autocorrelation, compared
with the TTX addition. This is only seen during the final acquisition
window (Figure 4 and Supplementary Figure 8). This behaviour suggests
that the rate of adaptation of the network activity to picrotoxin, measured as
autocorrelation of calcium responses, itself depends on the calcium influx
through the NMDA receptors that leads to the autocorrelated calcium
activity. This is consistent with the adaptation of the network to the
source of the change of activity and with the known role of NMDA
receptor activity to synaptic scaling events occurring in the hours time
range [Fernandes and Carvalho, 2016, Pawlak et al., 2005].

It should be emphasised that the control sample did not receive a blank
addition but was untouched during the measurement period. That is, even
though the apparent adaptation to picrotoxin (added 1 hour before the
start of the first time-window) becomes visible, no treatment was applied.
addition-was-actually-made- Furthermore it is interesting to note that the
behaviour of the control MF data converges over time towards that of
the LF data (see the time series in Supplementary Figures 6 and 8 and
the spatial autocorrelation in Figures 3 and 4), which expressed baseline
spontaneous activity and received no picrotoxin supplementation. This
supports our proposal above that the low level picrotoxin-treated control
samples gradually adapt and start to recover a baseline state. It is clear
from the raw traces (Supplementary Figure 8) that not only do the calcium
spikes gradually disappear but a proportion of the cells also acquire a
heterogenous calcium state distinct from their initial inter-spike levels
(‘Prel’ panel) and inhibited levels in either TTX or MK treated cells.

We investigated potential phototoxicity in the MF data since
illumination was greater and over a longer time period in this experiment
compared with the LF setup. Toxicity was evaluated by lysis of cells during
the experiment which was measured as a notably reduced fluorescence
signal, that is if the cell exhibited a maximum intensity in the last
imaging window less than the minimum intensity in the first imaging
window acquired ~2 hours earlier. Toxicity might have resulted from the
loading procedure, the de-esterification of the acetoxymethyl-derivitised
dye, the inadequate humidification in the imaging chamber, phototoxicity,
continuous exposure to 5 M picrotoxin used to promote synaptic activity,
or a combination of these factors. In addition to these non-optimal

conditions common to all samples, some samples were in addition exposed
to inhibitors part way through the imaging. In spite of this, toxicity as
determined above was less than 1% during the 2 hour period for most
wells (18/20) in the control and MK-801 treated conditions. Hence overall
toxicity was minimal, suggesting phototoxicity was also not a major
problem during the course of this experiment. Interestingly, wells treated
with sufficient TTX to prevent calcium spikes showed greater average cell
loss (mean ~4%; maximum of ~8%), consistent with calcium spiking
rather than illumination being the main source of toxicity under our
conditions.

The data here was acquired as a proof of concept to evaluate the
application of the spatial autocorrelation parameter in distinguishing
varying neuronal activity induced by standard pharmacological
manipulations. In a screening scenario, thousands of data points per sample
would be necessary but this can be achieved from image data acquired
over multiple time points. Such a system has the potential to be applied
to cell-based models of disease and to identify compounds correcting
disease-associated defects of cell-to-cell communication.

3.4 The MRF model can be used for the analysis of in vivo
data and generates conclusions consistent with
previous analyses

We aimed to additionally evaluate the application of the MRF approach
to in vivo calcium imaging time course data. We considered image data
from two different in vivo experiments using mice expressing fluorescent
calcium sensor proteins in their neurons. In the first instance we consider
the 2-photon random access mesoscope (2pRAM) data, which consists
of high-resolution images of the activity of populations of neurons
simultaneously acquired from multiple brain areas [Sofroniew et al.,2016].
The authors of the original study selected 4 different regions within a
larger brain-wide image, with ~100 neurons per region and 6000 time
frames (their Figure 8). As an example of downstream analysis, the
Pearson correlation of the ‘average’ activity (computed by taking the
maximum values across the time series) in region 1 (corresponding to
the somatosensory cortex) against individual cells in the other regions was
analysed [Sofroniew et al., 2016]. As aresult, it was shown that the activity
of individual neurons in one part of the brain could be compared to the
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Fig. 5. Boxplots of samples from the posterior density of ¢ for the 2pRAM
data [Sofroniew ef al., 2016] (the 4 regions can be seen in their Figure 8) for different
time windows with the median value also provided. When considering all time points
the equivalent number of data points is ~6x 10°.

activity in other regions that had been simultaneously imaged [Sofroniew
etal., 2016].

We consider the same 4 regions of the 2pRAM data and investigate the
spatial autocorrelation parameter. In Figure 5 and we can see that there is
different spatial autocorrelation observed in each of the 4 regions within
different time windows. Interestingly, regions 1 (somatosensory cortex)
and 3 (retrosplenial cortex) exhibit quite different spatial autocorrelation
across the different time windows while regions 2 and 4, which both appear
to be in the primary somatomotor cortex, have more consistent spatial
autocorrelation. In all cases, as more and more time frames are considered
the autocorrelation parameter appears to converge and stabilise. Once
again, there is little variance in the samples since we have the equivalent
of up to ~6x10° data points (although this is a similar order as the LF
data, note that there are fewer cells and many more time points here).

These observed differences between regions were not identified by the
use of the Pearson correlation as originally described [Sofroniew et al.,
2016]. Supplementary Figure 9 gives boxplots of the Pearson correlation
calculated between every pair of neurons in each region for the same time
windows as Figure 5. The Pearson correlation is centred close to zero in
all cases and as with the original output [Sofroniew et al., 2016], it is
difficult to interpret. Our spatial autocorrelation parameter gives a model-
based quantification of the neuronal activity whereas with a more ad hoc
approach there are abundant possibilities with no clearly most appropriate
choice. For example, the Pearson correlation could be calculated between
every pair of neurons, or between each neuron and an average [Okun et al.,
2015] or maximum [Sofroniew et al., 2016] time series, not to mention
considering cross-correlation and lag.

Secondly, we considered image data taken from the left anterior motor
cortex (ALM) in mice performing a directed licking task for a study
aimed at localising the planning of motor activity [Li et al., 2015b]. Data
are available from four different mice licking either to the left or right
in response to a tactile cue [Chen et al., 2016]. Each imaging session
corresponds to a single mouse and defined depth within the left ALM.
There were 59 sessions in total, of which 53 were used (where the time
series didn’t contain either Inf or NaN). There were 20 sessions available
for mouse A19 and 11 sessions available for each other mouse. Multiple
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Fig. 6. Median values of samples from the posterior density of ¢ for each session (mice
A19, A22, A23 and A26 at different imaging depths) in the ALM data [Li et al., 2015b,
Chen et al., 2016]. The depth of the imaging is given in the colourbar (xm). There were
no labelled pyramidal tract (PT) neurons for sessions with depths < 450 pm (above layer
5) as well as for some sessions at greater depths.

replicates of both licking tasks were measured in a single session. The
median number of cells in a field of view is 88 and with 91 time points for
each session, the equivalent number of data points is ~8000.

We calculate the spatial autocorrelation of the neuronal activity
observed within the imaging field for each session for the left and right
licking tasks separately and plot the median values in Figure 6. For the most
part, we found that the neuron activity (which was only recorded in the left
ALM) appears to be more spatially autocorrelated for the ‘lick right’ cases
compared to the ‘lick left’. This is consistent with the original report on this
data that the imaged neurons (from the left ALM) responded more during
right lick trials [Li et al., 2015b]. Notably, this results was not originally
found from spike counts across the recorded population of neurons but from
additional optogenetic experimentation [Li et al., 2015b], suggesting that
the explicit spatial component of our approach may provide a significant
benefit for the analysis of activity-behaviour correlation in vivo.

The data in Figure 6 are also coloured by depth of measurement
highlighting that the largest differences in ¢» mostly correspond to imaging
sessions at lower depths. Imaging sessions without pyramidal tract (PT)
neurons are also identified and appear to similarly correspond to this
difference. Note that there are no PT neurons for sessions with depth
< 450 pm (that is, above layer 5) but there are some deeper sessions also
lacking identified PT neurons. Also note that in our analysis all neurons
were considered regardless of PT identification. Once again, we also
consider the Pearson correlation between every pair of neurons in each
session and can see that the median Pearson correlation is generally low
(Supplementary Figure 10). Although it is arguable that there is higher
Pearson correlation in the ‘lick right’ trials, this result is much clearer and
more interpretable with our model-based spatial autocorrelation parameter
in Figure 6.

3.5 Model fitting discussion

Kinetic large-field imaging of neural tissue and in vivo samples generally
doesn’t allow for the complete capture of all neurites, which can include
structures smaller than the resolving power of the microscopy methods
typically employed. Using a Voronoi tessellation as the basis for neuronal
connectivity in our model clearly does not represent the complete physical
and chemical interactions between neurons. Nevertheless it allows us
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to feasibly describe collective behaviour such as the motivating wave-
like synaptic activity (Supplementary Movie 1), without exhaustively
considering minute details, some of which may not even have been
captured in the original image data. The resultant model adjacency matrix
is sparse which is what allows for feasible inference. Additionally, using
a Voronoi tessellation results in graphs with very similar vertex degree
distributions regardless of the total number of neurons (Supplementary
Figures 5 and 7) indicated our method is inherently scalable for different
field sizes.

Within our setup the maximum clique size is 3 (triangulation), however
cliques of size 2 already create spatial structure and those of larger sizes
are rarely used, as they are considered to introduce complexity with
little benefit [Banerjee et al., 2014]. Hence we only considered pairs
of neurons (the cliques of size 2), which have been more generally
preferred [Tkacik et al., 2014, Nirenberg and Victor, 2007]. The analysis
could easily be extended to three-dimensional (3D) image data as there is
a 3D analogue to a Voronoi tessellation. The input to our approach is also
not necessarily image data but could in principle be spatially reconstructed
neuronal activity from electrophysiological data acquired with large-scale
multielectrode arrays for example [Hilgen ez al., 2017]. Other opportunities
for data integration include how the spatial autocorrelation parameter
relates to concurrent measurements, for example fMRI BOLD signals.

We considered pairwise interactions in our model based on the relative
spatial location of the neuronal somata. Although neurons are well known
for their capacity to transmit a signal over large distances, there are also
many local connections between neurons, which are particularly relevant
during neuronal development [Luhmann er al., 2016]. Furthermore,
pathological changes in local circuit properties are implicated in multiple
neurodevelopmental and psychiatric disorders [Tatti et al., 2017]. The
local wave-like spread of spontaneous activity within a single field
(Supplementary Movie 1), propagating at least 50X slower than an action
potential and involving trans-synaptic signalling (Section 3.2) prompted
us to consider the applicability of an approach prioritising the size of the
neuron population over long range connectivity.

In all of our applications we considered that the spatial autocorrelation
parameter ¢ was constant in space. This corresponds to an assumption that
this component of the neuron activity is the same across the entire field of
view. This assumption seems plausible for culture since in principle there
should be no distinct regions within the field of view nor orientation to
the culture. Generally this assumption will not be realistic for in vivo or
even ex vivo tissue imaging data. However, when the field of view is small
enough, as in the case of the ALM data (~88 cells), or the 4 regions of
the 2pRAM data (~100 cells), this still may be a reasonable assumption.
For larger field image data our method could be applied by windowing
across the field of view to obtain a series of local values of ¢, which was
essentially the case with the 4 regions from the larger 2pRAM image data.

An additional assumption in the model is that the spatial autocorrelation
parameter was constant in time, that is, it itself does not change in time.
The assumption of constant ¢ in time fitted nicely with the experimental
setup of the MF data as any change in ¢ is considered between acquisition
windows rather than within any one window. This is also not particularly
problematic for the ALM data since interest is in the comparison across
sessions with the same length time frames. More generally, the assumption
of constant ¢ in time could also be considered within the framework of
windowing statistics for time series analysis, as was presented for the LF
and 2pRAM data.

Another aspect relating to the model parameters is that we did not
consider ¢rme nor the precision parameter 7. The main issue here is
computational since setting ¢ime = O results in a (sparse) block diagonal
adjacency matrix W and so adding 100s of time points makes little
difference to the computation time. If we consider ¢¢me 7 O then the
adjacency matrix will be block tridiagonal and calculating the determinant

becomes computationally infeasible with a large number of time points.
However we showed that we can still obtain accurate estimates for ¢space
by simply holding ¢ime = O fixed. It was also the case that not considering
the precision parameter 7 simplifies the analysis and the interpretation of
¢ since the posterior density of 7 is conditional on ¢ anyway. Investigation
of both ¢me and 7 could be considered in further work.

3.6 Implementation in MATLAB and computational expense

The MRF model was implemented in MATLAB on a mid 2012 MacBook
Pro with a 2.6 GHz Intel Core i7 processor (quad-core) and 16 GB of
RAM. The LF data was the most computationally expensive with 5366
identified cells within a single field of view. In this case it took ~15
seconds to calculate the Voronoi tessellation and ~60 seconds to calculate
the posterior density of ¢ (using all 417 time frames). Calculation of the
posterior density for the 2pRAM data took only ~10 seconds using all
6000 time frames since there are only ~100 cells in the field of view for
each region. We supply the MATLAB code to obtain the results presented
in the paper.

4 Conclusion

We have shown the MRF model can quantify the spatial autocorrelation
in neuronal activity data and can be applied to data obtained from both in
vitro or in vivo experiments. We first analysed simulation experiments to
demonstrate the model before showing its use in identifying purely spatial
differences in neuron activity. We considered a proof of concept screening
setup where we quantified changes in neuronal activity in vitro in response
to distinct defined conditions. Finally, we showed that the MRF model
is applicable to data from in vivo experiments and generates conclusions
consistent with previous analysis. Moreover, we demonstrated how our
approach may provide inference from observational calcium data that was
not attainable from the analysis of spike counts, and nevertheless consistent
with independent, more invasive, optogenetic experimentation.

The aim of the phenotypic quantification matches the particular
features of the data we consider. That is, the analysis of the aggregate
activity of large populations of upwards of thousands of neurons, not the
specific activity of individual neurons. We make particular use of the spatial
aspects of the data where the neuron ‘neighbours’ in the model are based
on the relative spatial positions of the cells and a corresponding Voronoi
tessellation. Then the resulting sparse adjacency matrix and Markov
modelling assumption is what allows for feasible inference. Considering
all possible pairs of neurons as is done elsewhere, in particular with Ising
models, limits the analysis to only a handful of cells due to computational
cost. We considered data with up to 5366 neurons (LF data) and 6000 time
points (2pRAM data). We supply the data and MATLAB code to obtain
all of the results in the paper.
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