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Abstract 
The human gut microbiome matures towards the adult composition during first years of life. The 
microbial community assembly is affected by several intrinsic and extrinsic factors, including 
host genetics, living environment and human contacts. Here, we integrate the early gut 
microbiome data collected in DIABIMMUNE study in Finland, Estonia and Russian Karelia. We 
show that the gut microbiome is associated with linear growth, household location and elder 
siblings. Our SNP haplotype and metagenomic assembly based strain tracking reveal large and 
highly dynamic microbial pangenomes, especially in genus Bacteroides. We describe specific 
subspecies clades related to human milk oligosaccharide utilization and CRISPR system. 
Finnish and Estonian, but not Russian, microbiomes experience transient bloom of oral bacteria 
during infancy, whereas Russians commonly harbored a probiotic Bifidobacterium bifidum strain 
during the same time. This longitudinal study extends the current view of gut microbial 
community assembly on the strain level. 

Introduction 
Mounting evidence shows that the gut microbiome, particularly during its early development 
immediately after birth, plays an important role in human health1,2. Early childhood immune-
mediated disorders including type 1 diabetes (T1D)3,4, asthma5,6, juvenile rheumatoid arthritis7, 
allergic disease8, and inflammatory bowel disease (IBD)9 are linked to aberrations in the gut 
microbiota. Maturation of the immune system is orchestrated by early microbial exposures10,11; 
the complex relationship between the microbiome and the innate12 and adaptive13 immune 
systems during the first few year of life appears to be critical to later life health outcomes, but 
has not yet been explored at the population scale. 
 
It has only recently become practical to investigate very detailed microbial exposures in early life 
at population scales. An increasing range of microbiome-linked health outcomes appear to be 
the consequence of individual strains of specific microbes14-17. These outcomes can result from 
structural variants in the gene products of individual strains18, the presence or absence of gene 
cassettes from strains19-21, or currently unexplained mechanisms. Until recently, most culture-
independent methods appropriate for large-scale human populations (e.g., 16S rRNA gene 
amplicon sequencing) were limited in their ability to resolve such fine-grained differences. Now, 
both the efficiency of metagenomic sequencing and the availability of culture-independent 
strain-level analysis methods make more detailed investigation of the early life microbiome 
possible22-24. 
 
Complicating such studies, however, is the dynamic nature of the early gut microbiome and its 
numerous interactions with various intrinsic and extrinsic factors. While microbial exposures in 
utero are possible1,25, the major colonization begins at birth when the neonate is either exposed 
to the vaginal microbiota during vaginal delivery26 or to skin and environmental microbes after 
Caesarean section27. Subsequently, colonization is largely shaped by oligosaccharides and 
microbial constituents of human milk, a frequent cornerstone of the diet in infancy28-30. The 



 

assembly of microbial communities is further influenced by the introduction of solid foods, use of 
antimicrobials, host genetics, geography, and numerous other environmental factors31. 
 
In T1D, several human cohort studies have reported alterations in the gut microbiota32-38 and 
increased intestinal permeability39 prior to diagnosis, but mechanisms connecting gut health to 
destruction of pancreatic beta cells remain unknown. One such cohort, DIABIMMUNE, aimed at 
identifying microbial factors implicated in T1D and preceding islet autoimmunity. DIABIMMUNE 
includes nearly 700 children, selected by their human leukocyte antigen (HLA) haplotypes 
conferring increased risk to autoimmune disorders, in three neighboring countries: Finland, 
Estonia, and Russian Karelia. These children were observed for three years from birth by 
monthly stool sampling, frequent questionnaires about common life events and circumstances, 
and periodic blood sampling to track different immune parameters.  
 
The DIABIMMUNE longitudinal cohort study enables in-depth characterization of the developing 
gut microbiome and various immune markers in the context of T1D. Within DIABIMMUNE, a 
case-control study of children with T1D or beta cell autoimmunity (n = 11 cases) found 
decreased microbial diversity and an increase in inflammation-favoring organisms preceding the 
diagnosis of clinical T1D40. Another investigation showed a decrease in microbial diversity and 
an increase in antibiotic resistance genes in connection with recurrent antibiotic treatments41. 
Two additional DIABIMMUNE studies underscored the importance of microbial 
lipopolysaccharide (LPS) exposures in utero42 and during the first years of life43. The latter study 
also correlated differences in LPS structure with immunogenicity, providing a mechanistic link 
between LPS subtypes and T1D43. Epidemiological investigations established recurrent early 
life infections as a risk factor for beta cell autoimmunity, T1D, and celiac disease44,45, and found 
an association between rural living environment (forest and agricultural land) and decreased 
atopic sensitization46. A study analyzing circulating cytokines in peripheral blood samples 
established a connection between upregulation of the IL-17 pathway and advanced beta cell 
autoimmunity47.  
 
Here, we set out to further characterize the early gut microbiome using an integrated and 
extended dataset from DIABIMMUNE consisting of 16S rRNA gene sequencing of 3,204 
samples and metagenomic sequencing of 1,154 samples, together spanning 289 subjects at an 
average of 11.4 (range 1-36) time points per subject. Using the 16S data, we demonstrate that 
multiple intrinsic and extrinsic factors, including household location (urban vs. rural), early 
growth, elder siblings, and multiple maternal factors are associated with features of the early gut 
microbiome. We conduct in-depth strain identification and characterization using both SNP 
haplotyping and metagenomic assembly. Applying these two methods to this longitudinal data 
set, we describe strain acquisition, diversity and interactions, and pangenome dynamics of 
common early gut species with specific examples from genera Bifidobacterium, Bacteroides, 
and others. Taken together, the integrated DIABIMMUNE microbiome data provide detailed, 
strain-level characterization of the developing gut microbiome. 



 

Results 
The DIABIMMUNE study followed children from Finland, Estonia, and Russia for three years 
starting from birth by collecting monthly stool samples, periodic serum samples, and frequent 
questionnaires on early life events. Here, we set out to integrate all published microbiome data 
that have been generated in multiple DIABIMMUNE studies using both 16S rRNA amplicon and 
metagenomic sequencing techniques40,41,43. After quality control, the data consisted of 3,204 
16S amplicon and 1,154 metagenomic sequencing profiles from 289 and 269 study subjects, 
respectively (Table 1, Fig S1). 
 

 Espoo, Finland Tartu, Estonia Petrozavodsk, Russia 

Study subjects 139 78 72 

16S sequencing samples  
(median per subject) 

2080 (9) 501 (6) 623 (7) 

Metagenomic sequencing samples 
(median per subject) 

616 (4) 221 (3) 317 (3) 

Males 77 39 40 

Females 62 39 32 

Caesarean sections 9 6 12 

Maternal age at birth, mean (sd) 31.1 (5.0) 29.3 (5.1) 27.8 (4.7) 

Born in rural household 10 (7.8 %) 18 (23.1 %) 0 

Median number of elder siblings (range) 1 (0-4) 1 (0-4) 0 (0-2) 

T1D AAB seropositive subjects 11 4 1 

Subjects with T1D diagnosis 5 1 1 



 

 
Table 1. DIABIMMUNE microbiome cohort statistics. Distribution of study subjects, stool samples with sequencing 
data and several other external variables across the study sites. Table shows number of study subjects (N) per 
category unless otherwise specified. T1D autoantibody and diagnosis information as of Nov 2016. 

Early life events are reflected in the gut microbiome 

External factors such as household location (city vs. countryside), daycare attendance, and 
elder siblings can affect microbial exposure, but less is known about the actual impact of these 
factors on gut microbial communities48,49. Additionally, maternal variables such as antibiotic 
courses during pregnancy and maternal age may directly affect the microbiome of the infant. To 
extend the understanding of early microbial development in connection with external variables, 
we first analyzed the more ample 16S data (n = 3,204 samples) using both omnibus and 
individual association tests. By cross-sectional Permutational analysis of variance 
(PERMANOVA), we found that in addition to well-known features affecting the early microbial 
composition (birth mode, geographic location, and breastfeeding status), maternal antibiotic 
course(s) during pregnancy (permutation test, q-value = 0.029), and maternal age at birth (q-
value = 0.16) were associated with microbial composition shifts in the earliest stool samples 
collected at 2 months of age (Table S1). While the effect of maternal antibiotics was seen only 
in the earliest cross-section, maternal age continued to show borderline significance at month 6 
(q-value = 0.14, Table S1). 
 
We next associated the gut microbial diversities (Chao1 richness, Shannon’s diversity index) 
with the above-mentioned external factors and observed associations with age of sample 
collection, breastfeeding, geography and antibiotics consistent with previous studies (Table 
S2)41,50,51. Additionally, height at age three (linear mixed effects model, q-value = 0.097) and 
growth rate (average increase in height per year) during the first three years (q-value = 0.10) 
were associated with microbial diversity; taller and faster growing children had higher diversity 
trajectories throughout the three year follow-up (Fig. 1A), suggesting a link between the gut 
microbiome and growth in early childhood. Children living outside cities harbored more rich 
microbiomes compared to children in urban households throughout the first three years of life 
(q-value = 0.025, Fig 1B), confirming that microbial exposures from rural environments are 
directly reflected in the gut. On a taxonomic level, the weight at the age of three (q-value = 
0.0047) and weight gain during first three years (q-value = 0.00080) were positively correlated 
with the relative abundance of genus Dialister (Fig. S1C). Finally, Finnish and Estonian subjects 
with elder siblings tended to have more Bifidobacterium spp. in their early samples (q-value = 
0.15, Fig S1B, Table S3), possibly due to lateral transfer from elder siblings. The findings of our 
association analyses, summarized in Table S1, S2 and S3, contribute to the understanding of 
early microbial colonization and community assembly in the human gut. 



 

 
Figure 1. Associations between early gut microbiota and intrinsic and extrinsic factors. A Children’s height at 
the age of three is correlated with gut microbial diversity (q-value = 0.14). Weight categories were defined as follows; 
above average: weight z-score > 1, average: -1 < weight z-score ≤ 1, below average: weight z-score ≤ -1,B Children 
born in rural households harbor more diverse gut microbiota (q-value = 0.068).  

Strain diversity and ecology in the early gut 

To expand the analysis beyond the typical for 16S data genus level, we leveraged shotgun 
metagenomic data to perform  in-depth strain-level analysis in terms of both single nucleotide 
polymorphisms (SNPs) or gene content. Strain analysis has the potential to delineate novel 
microbial sub-populations52,53 and to identify potential functional adaptations in the gut 
microbiome54,55. Particularly, de novo strain identification is important for microbial species with 
a limited number of isolated strains, and the gut microbiome has many such understudied 
species despite large cultivation efforts56,57. We first profiled our metagenomic sequencing data 
(n = 1,154 samples) by strain haplotyping on species-specific conserved and unique marker 
genes23, which identified the dominant strain for the most abundant species in every sample. 
We then compared the resulting SNP haplotypes by sequence similarity and stratified them in 
intra- and inter-subject comparisons (Fig. 2A, Table S4). Longitudinal, intra-subject 
comparisons showed more similar strains compared to inter-subject comparisons, consistent 
with previous observations52,58,59. Overall, we found a wide range of strain diversities among 
investigated bacterial species (Fig. 2A, Table S4). For example, Haemophilus parainfluenzae 
and Faecalibacterium prausnitzii were among the most diverse species, with strains that had 
less than 95 % sequence similarity in SNP haplotype comparison. On the contrary, all 
investigated members of genus Bacteroides had very low sequence variability, accentuated by 
virtually identical SNP haplotypes in intra-subject comparisons (mean sequence similarity 99.96 
%) and accompanied by, on average, greater than 99.6 % sequence similarity in inter-subject 
comparisons. All other species analyzed had an average inter-subject similarity of 98.9 %. 
  
The observed high level of sequence identity in Bacteroides spp. contradicted existing evidence 
of their genome diversity in terms of gene content60. This led us to speculate that the SNP-
based evaluation we performed did not reflect all facets of genetic diversity of the gut microbes, 
whose evolution is shaped by lateral gene transfer (LGT)61, large effective population size (Ne)62 
and niche adaptation63,64. To investigate one Bacteroides species in detail, we isolated and 
sequenced eight Bacteroides dorei strains - three from two DIABIMMUNE stool samples 



 

(including two different isolates from a single stool sample) and five from adult stool samples - 
using PacBio long read sequencing. This data enabled trivial assembly of high quality genomes, 
and when merged with seven existing NCBI isolate genomes, it expanded the pangenome (the 
collection of genes or gene families found in the genomes of a given species) of B. dorei by 
7,828 genes to almost 18,000 unique gene families (Table S5). Interestingly, each newly 
sequenced isolate genome harbored between 276 and 1,168 (median 750) unique accessory 
genes, which on average represented 13 % of the genes in each B. dorei strain (Table S5). For 
all 15 B. dorei isolates, this variability translated to 70 % inter-strain similarity on the gene 
content level, on average, which is considerably lower than the observed SNP based similarity 
(Fig. S2C). Each of the newly-sequenced strains encoded between 17 and 63 accessory gene 
islands (regions consisting of contiguous accessory genes) that were significantly longer 
compared to randomly permuted data (>15 genes, P < 0.01) (Fig. S2D). Five of these were 
encoded on contigs that could be circularized, suggesting an episomal entity (likely a plasmid) 
(Table S6). Anecdotally, the B. dorei strains isolated from the DIABIMMUNE samples were 
more similar to each other, having 91 % similarity between isolates from the same individual 
and 83-89 % similarity between isolates from different infants from different countries (Fig. 
S2C). In comparison, B. dorei isolates from adults in the PRISM cohort were on average 68 % 
genetically similar. This indicates that later in life the gut microbiome is inhabited by more 
genetically diverse B. dorei strains, likely reflecting more heterogeneous dietary regimes and 
lifestyle65. Whether that happens through evolution and/or adaptation of early colonizers or 
strain replacement remains unclear.  
 
To investigate accessory genes across all taxa, we turned to de novo metagenome assembly of 
the DIABIMMUNE metagenomic samples. This expanded the gene pool (number of observed 
gene families) to 6,328,944 non-redundant genes, compared to 1,932,010 gene families found 
using pangenomes constructed from the NCBI isolate genomes66. We binned the assembled 
metagenomes using a co-abundance technique67 into metagenomic species and constructed 
pangenomes for 22 species from these metagenomic assemblies (Fig. 2B-C). The de novo 
assembled pangenome of B. dorei consisted of roughly 28,000 genes and included 93 % of the 
genes identified in the isolate sequences from DIABIMMUNE samples and 82 % of genes 
identified in the remaining PRISM isolate sequences. The lower recall rate (sensitivity) of the 
latter reflects that PRISM metagenomes (or any other adult samples) were not included in the 
de novo assembly and suggests that the constructed pangenome of B. dorei was not fully 
saturated and will be extended by using additional metagenomes or isolates from different 
populations; we expect the same trend to be true for other species as well. Among all analyzed 
species, Bacteroides spp. and E. coli harbored the largest assembled pangenomes, each with 
more than 25,000 genes (Fig. 2C). This is concordant with high  genome plasticity observed in 
Bacteroides60, whereas E. coli is an omni-present species with more than 60,000 gene families 
in its NCBI isolate pangenome68. Consistent with the SNP haplotype analysis, the strains 
recovered from the same individual (intrasubject comparisons) were more similar to each other 
than the strains found in different individuals (intersubject comparisons, Fig. 2B, Table S4). In 
contrast, the magnitude of variability was much higher in terms of gene content compared to 
SNP haplotypes (Fig. 2A, B). These two measures were highly correlated in most species but 
showed low or no correlation in a minor subset of species, including F. prausnitzii and B. dorei 



 

(Fig. 2D). In B. dorei, the results from metagenomic assemblies and isolate genomes showed a 
similar trend suggesting that the lack of correlation between the SNP haplotypes and assembled 
genomes was not an artefact of the metagenomic assembly (Fig. 2E, orange points). Rather, it 
indicates more rapid (or slow but high in volume) diversification in the accessory gene content 
compared to the pace of acquisition of random point mutations in the core genome. In contrast, 
E. coli metagenome assemblies displayed a high correlation between gene content and SNP 
haplotype similarities (Fig. 2F) in agreement with established notions. 
 
We again used the longitudinal nature of our study to compare the difference between strains 
from the same or from different individuals in their gene content. On average, the metagenomic 
assemblies of B. dorei had 86 % gene content similarity in intrasubject comparisons and 
significantly lower (76 %) similarity in intersubject comparisons. Notably, these values fall into 
the same range as we observed in comparisons between B. dorei isolate genomes (Fig. S2C). 
H. parainfluenzae was an outlier with a very similar measure of within- and between-subject 
gene similarity at 66 % and 64 %, respectively. This may reflect transient gut colonization 
events and frequent replacement with new strains descending from the oral cavity where H. 
parainfluenzae is autochthonous, as we discuss in detail below. When comparing several 
species of Bifidobacterium, we observed a greater variability in gene content and SNPs in the 
intrasubject comparisons for B. longum, relative to B. bifidum or B. breve (Fig. 2A, B), leading 
us to explore the functional consequences of this strain-level variation in more detail in the 
following section. 



 

 

 
Figure 2. Strain diversity across species in early gut metagenomes. A SNP haplotype similarities per species 
based on all pairwise comparisons (dominant strain per species per sample) and stratified to intra-subject and inter-
subject comparisons. Species containing >10 comparisons in both strata are shown, and the order is given by 
increasing median similarity. The box shows the interquartile range (IQR), the vertical line shows the median and the 
whiskers show the range of the data (up to 1.5 times IQR). B Gene content similarities per species, evaluated on 
pangenomes generated by metagenomic assembly. Boxplots as in panel A. C The size of core and accessory 
genomes per species stratified by the functional annotation of genes using eggNOG #### and ordered as in panel A. 
D. Correlation between SNP based and gene content based similarity between strains. E. B. dorei strains’ similarity at 
SNP and gene content levels are uncorrelated (r=0.1). Comparisons between isolated genomes are shown in orange 
for reference. F. E. coli strains’ similarity at SNP and gene content (r=0.86). 

 

Strains in Bifidobacterium spp. reflect breastfeeding patterns and geography 



 

Bifidobacteria are widely-characterized beneficial gut commensals, commonly dominating the 
gut during breastfeeding and later dissipating throughout life. They possess immunomodulatory 
functions, produce beneficial metabolites (e.g., vitamins, extracellular polysaccharides, and 
short-chain fatty acids), and metabolize a wide range of diet-derived, nondigestible 
carbohydrates (e.g., oligosaccharides, polyols, and dietary fibers)69. Specifically, the subspecies 
found in the infant gut typically harbor a wide variety of genes that enable the use of human milk 
oligosaccharides (HMOs) as the sole energy source70. B.  longum subsp. infantis (B. infantis)71 
and some strains of B. longum subsp. longum72 are capable of membrane transport and 
intracellular degradation of intact HMOs, whereas other subspecies in the B. longum clade rely 
partially on extracellular enzymes for HMO utilization73. To identify different B. longum 
subspecies in the metagenomic data, we surveyed the metagenomes for the genes of a well-
characterized cluster responsible for HMO transport and degradation in B. infantis71. The 
presence of these genes was strikingly consistent with the SNP haplotype-based phylogeny of 
B. longum strains (Fig. 3A, B). Two B. infantis reference sequences (ATCC 15697) clustered 
with 70 strains harboring these genes (highlighted in Fig. 3A) observed in the metagenomes. 
We found evidence for the presence of this gene cluster in 14 additional samples. In these 
cases, it is possible that these communities harbored multiple B. longum strains, of which B. 
infantis is non-dominant, and that the SNP haplotype profile was not based on B. infantis. 
Comparing the communities with B. infantis (defined by presence of the HMO gene cluster) to 
communities with other B. longum strains revealed evidence of a competitive advantage that 
allows B. infantis to reach higher relative abundances on average than other B. longum strains 
(Fig. 3B, linear mixed effects model p = 0.00049), albeit with modest effect sizes. 
 
Commercial strains of different Bifidobacterium spp. are commonly used in probiotic 
supplements and foods. One such species, B. bifidum, showed contrasting relative abundances 
between the countries: unlike Finnish and Estonian samples, early Russian samples commonly 
contained more than 10 % of B. bifidum (Fig. 3C). Investigating the SNP haplotypes of B. 
bifidum revealed that 79 samples from 34 Russian, 3 Estonian, and 2 Finnish subjects harbored 
the same B. bifidum strain with greater than 99.9 % sequence similarity (Fig. 3D). This SNP 
haplotype was identical to the NCBI isolate genome B. bifidum 791, which was isolated from a 
healthy human gut in 1993 in Nizhny Novgorod, Russia and has been patented for medical use 
in Russia. B. bifidum relative abundance was greater than 10 % in 57/79 (75 %) samples 
containing this strain. Together with repeated detection of this strain from 17 subjects (with a 
maximum of seven observations from two Russian subjects), these observations suggest that B. 
bifidum 791 attained stable engraftment in these gut communities. 
 



 

 
Figure 3. Bifidobacterium strains in DIABIMMUNE children. A Phylogenetic tree of B. longum strains in 
DIABIMMUNE stool samples together with 18 NCBI B. longum isolate genomes based on SNP haplotypes. The 
heatmap illustrates strain-specific carriage of 21 genes in B. infantis HMO gene cluster, responsible for intracellular 
HMO degradation, evaluated using the metagenomic data. Highlighted strains include two reference sequences of B. 
infantis (ATCC 15697). B Boxplot of B. longum relative abundance stratified by country (facet) and B. longum strain; 
B. infantis (highlighted in panel A) vs. other B. longum strains. C Relative abundance of B. bifidum longitudinally 
stratified by the countries. Russians have more B. bifidum especially during the first year of life.  D Phylogenetic tree 
of B. bifidum strains in the DIABIMMUNE stool samples based on SNP haplotypes. Strains with >99.5% sequence 
similarity have been collapsed into a single tip. A known strain, B. bifidum 791, was found in 79 stool samples. 

Oral strains appear transiently in infant gut 

To more broadly contextualize the gut bacteria in DIABIMMUNE and to compare the developing 
gut microbiome with established adult microbiomes, we compared the strains in this study with 
the strains of healthy adults in the Human Microbiome Project (HMP) study52. In addition to the 
gut, HMP obtained metagenomic data from three other major body areas: skin, oral cavity, and 
vagina. We first stratified the species observed in the DIABIMMUNE gut samples into four 
categories by their typical habitat in HMP. Each bacterial species was assigned to one of four 



 

habitats (adult gut, skin, oral cavity, or vagina) by the highest mean relative abundance in HMP 
data (Fig. S3A, Table S7). By applying these strata to DIABIMMUNE samples, we saw an 
increasing abundance of adult gut bacteria with age at sample collection that reflected 
maturation of microbial composition (Fig. S3B). There was a reciprocal longitudinal dissipation 
of vaginal and skin bacteria (Fig. S3C,D), which were commonly seen in higher abundances 
during the first months of life. Notably, oral bacteria spiked during the first year of life in Finnish 
and Estonian infants (Fig. 4A). Bacteria in this strata included common opportunistic pathogens 
(pathobionts) such as members of genera Veillonella, Haemophilus, and Streptococcus (Table 
S7), many of which have also been isolated from the upper gastrointestinal tracts of elderly 
adults74. In Russian infants, the migration of these oral bacteria may be prevented by higher 
levels of Bifidobacterium spp. in the gut, which provide colonization resistance against such 
opportunistic bacteria75. This may also partly explain the differences in infant immune 
development between the countries in this study, as colonization of oral bacteria has been 
shown to drive Th1 cell induction and inflammation54. 
 
Some bacterial species, including the oral taxa Veillonella parvula and Haemophilus 
parainfluenzae that had the highest mean relative abundance in DIABIMMUNE subjects, consist 
of distinct, body site-specific subspecies clades52. To examine how these clades were related to 
the strains appearing in the infant guts, we integrated the metagenomic strain SNP haplotypes 
with the HMP data. V. parvula strains in infant guts were similar to oral strains found on buccal 
mucosa and dental plaque but distinct from a more diverse clade typical of tongue microbiome 
(Fig. 4B, S3E). Conversely, the variability of the infant gut strains of H. parainfluenzae spanned 
HMP tongue and buccal mucosa strains but tended to be distinct from adult dental plaque 
strains (Fig. 4C, S3F). In infants, genera Veillonella and Haemophilus have been associated 
with formula feeding and different human milk oligosaccharide structures76,77. These 
observations demonstrate strain level differences in oral bacteria  colonizing the infant gut in 
relation to the adult oral microbiome. 



 

 
 
Figure 4. Finnish and Estonian infant gut harbor oral bacteria. A Relative abundance of oral bacteria (defined by 
highest mean relative abundance in HMP oral samples, compared to other body areas) in DIABIMMUNE 
metagenomes. Oral bacteria bloom in Finnish and Estonian infants during the first year of life. B-C Ordinations of (B) 
Veillonella parvula and (C) Haemophilus parainfluenzae strains appearing in DIABIMMUNE infants’ guts together with 
the strains in HMP adults exhibiting body site specific subspecies clades. 

Ruminococcus gnavus clades differ by CRISPR genes 

Differences in CRISPR system carriage by human-associated microbes is important both due to 
their potential roles in speciation, and as a route to genetic intervention during controlled 
experiments78-80. Roughly half of known bacterial genomes harbor CRISPR system81 which led 
us to wonder whether there are any strain level differences in CRISPR system carriage within 
species. To this end, we first screened the metagenomic data for gene families involved in 
CRISPR system. We specifically focused on 50 most prevalent and abundant species in this 
data and calculated the prevalence of each CRISPR gene per species in samples where the 
relative abundance of the species in question was greater than 5 %. We further focused on 
genes with prevalence between 25 % and 75 % (indicating that only a limited subset of strains 
within species carried these genes) and found 123 gene families across 26 bacterial species 
(Table S8). These genes exemplify tentative speciation or niche adaptation in many gut 



 

commensals, such as Bacteroides species B. vulgatus and B. fragilis and Bifidobacterium 
breve. 
 
To further investigate such adaptation in detail, we focused on R. gnavus which tentatively 
harbored six contrasting CRISPR genes and showed a bimodal SNP haplotype similarity 
distribution, implicative of two distinct clades or subspecies (Fig. S2A). Phylogenetic analysis of 
the SNP haplotypes revealed two distinct subspecies clades as previously described in adult 
IBD patients (Fig. 5A)16. To survey any functional differences between these two R. gnavus 
clades, we compared the prevalence of genes in an extended R. gnavus pangenome16 between 
the clades (Table S9). Among the genes with differential prevalences between the clades we 
found seven genes involved in the CRISPR system and additional genes related to phage 
activity and drug resistance (Fig. 5B). These differences provide evidence for phage associated 
niche adaptation in formation of clade 1 (blue) harboring the CRISPR genes. Such adaptation 
might occur under conditions abundant with R. gnavus- targeting phages through gradual 
habitat filtering (strains with any resistance against phages have colonization advantage), while 
the other clade (clade 2, red) might lose (or not obtain) CRISPR genes in the absence of similar 
pressure. 
 
Within the DIABIMMUNE cohort, 39 non-IBD subjects harbored a strain belonging to clade 2, 
which has been previously found only in adults with IBD16. Anecdotally, clade 1 that was present 
in the majority (92/152) of the DIABIMMUNE samples was also found in 15 samples from four 
children with clinical T1D diagnosis, whereas clade 2 was present in only a single sample from 
one T1D-positive child who harbored clade 1 in a separate sample. 
 

 



 

Figure 5. Ruminococcus gnavus clades in DIABIMMUNE gut samples. A Phylogenetic tree of R. gnavus strains 
in DIABIMMUNE samples, with existing isolate genomes and samples from children diagnosed with T1D during 
follow-up annotated with circles: Xavier lab isolates were described in16. B Presence of selected genes with 
differential prevalences between the clades. See Table S7 for a complete list of genes and their prevalences per 
clade. 

Contributional diversity of microbial functions 

Finally, we turned from the species-centric to function-centric view of the microbiome. We 
binned species into functional ‘guilds’ based on the functional pathways they share to assess 
their contributional diversity, i.e. to assess how diverse set of species encode and have a 
potential to perform a given function per sample82. We assessed the contributional diversities for 
365 Gene Ontology (GO)83 biological process terms present in more than 100 metagenomes. 
Unsurprisingly, most GO terms displayed increasing within-sample functional diversity (Gini-
Simpson index) with increasing age that coincides with microbiome maturation and increasing 
diversity  (Fig. 6A, Table S9). Many widely distributed pathways such as sporulation 
(GO:0030435), glycolysis (GO:0006096), and riboflavin (vitamin B2) biosynthesis (GO:0009231) 
followed this pattern. In contrast, a few specific pathways did not display this increasing trend; 
aerobic electron transport chain (r = -0.16, q = 0.001, GO:0019646), viral release from host cell 
(r = -0.05, q = 1.0, GO:0019076), and siderophore biosynthetic process (r = -0.07, q = 1.0, 
GO:0015891) showed decreasing or stable trends in time (Fig 6A, Table S10). 
 
Between-sample contributional diversities (beta-diversity, Bray-Curtis dissimilarity) reflect the 
stability of functional contributions per pathway and can be assessed longitudinally within and 
between subjects. We observed a decreasing trend in contributional beta-diversities with 
increasing  age (Fig. 6B, Pearson r = -0.28, p < 2.2e-16), reflecting an overall maturation and 
stabilization of the microbiome. Microbial contributions to pathways were more stable within 
individuals (Student’s t-test p < 1e-20 in all time windows), as reflected by lower beta-diversities, 
and the gap between within- and between-subject comparisons tended to widen with time 
similar to the average beta-diversities of taxonomic profiles (Fig. 6B). This view provides 
another perspective of the early stabilization of gut microbial communities: as pathways in some 
cases reflect ecological niches (e.g., aerobic electron transport), the above trend may mirror 
convergence to specific ecological attractor states, which in turn results in a stable state after 
community adaptation and competition over the niche has resolved (Fig. 6B). 
 
Pathways related to bacterial acquisition of iron by siderophores highlighted in Fig. 6A provide 
an example of how to interpret contributional diversities. Bacteria secrete iron-binding 
siderophores to harvest iron, but extracellular siderophores are exploited by other bacteria. 
According to the black queen hypothesis, the ability to produce such costly but necessary 
molecules is under negative selection until the production is minimal but sufficient to support the 
microbial community84. Indeed, according to our data, siderophore biosynthesis is contributed 
by a single dominant species per community (i.e., low contributional alpha-diversity, Fig. 6A,C) 
whereas siderophore transport-related genes are more widely distributed across the community 
members (Fig. 6A,D).  
 



 

 
Figure 6. Contributional diversity of microbial pathways. A-B We applied alpha- (A) and beta-diversity (B) to the 
distribution of species contributing to functional categories, GO biological process terms, measuring their 
contributional diversities. The histograms show the mean alpha (A) and beta-diverities (B) per GO term stratified in 
time windows on y-axis. Colored points show (A) examples of pathways with different trends, and (B) mean intra- and 
intersubject beta-diversities of taxonomic profiles.  C-D Species contributing to (C) siderophore biosynthetic process 
and (D) siderophore transport. Colors displaying the contributions of individual species are linearly scaled within the 
log-scaled total bar height depicting the total abundance of the pathway. 

Discussion 
We reported a longitudinal, strain-level investigation of the developing gut microbiome utilizing 
the DIABIMMUNE cohort and its rich metadata of various life events. We found associations 
between microbial features and early linear growth, household location, maternal antibiotic 
courses and elder siblings. Our SNP haplotype and metagenomic assembly-based analyses 
revealed that many common gut commensals, such as Bacteroides spp., have large and 
dynamic pangenomes with tens of thousands of genes. We showed that B. infantis, which is 
highly specialized in human milk utilization, has a competitive advantage over other B. longum 
strains in early gut microbiota in this uncontrolled, prospective setting. A commercial strain of 
another common Bifidobacterium species, B. bifidum, was commonly dominating early Russian 
microbiomes. These analyses contribute to taxonomic and functional understanding of early gut 
communities. 
 
Our analyses revealed associations between microbial features and early linear growth. Height 
(but not weight nor body-mass-index, BMI) at age three and linear growth during first three 



 

years of life correlated positively with microbial diversity as well as relative abundance of the 
genus Dialister, among other taxa. An earlier study found that malnourished Bangladeshi 
children (with weight-for-height Z-scores below -3) harbored immature gut microbiota85. Another 
case-control comparison of Indian children with stunted vs. normal growth found differences in 
their gut microbiotas86. In Europe, a study found associations between the early gut microbiota 
at the age of three months and BMI at age 5-6 in children from Finland and the Netherlands. 
These differences were stronger among children with a history of antibiotic use87. Indeed, early 
antibiotic use has been associated with growth in livestock, animal models and humans, 
reviewed in88; an effect which is likely mediated, at least partially, through the gut microbiome89. 
Our results support the hypothesis that the early gut microbiome is an important factor in 
healthy growth in infancy and early childhood. 
 
The SNP and gene content profiling offer two complementary means of tracking microbial 
strains in metagenomic data. The SNP based methods usually operate within a small fraction of 
a genome that serves as a marker region for evaluating evolutionary distance within the 
population in question23,52,90. Evaluating the gene content of microbial strains offers more direct 
means for functional interpretation of any observed differences19,20. We found that in most 
species these two approaches provide highly concortand phylogenetic population structure, as 
evidenced by high correlation between SNP haplotype and gene content similarities. However, 
in some species, such as F. prausnitzii and B. dorei, these two measures did not correlate. F. 
prausnitzii is a phylogenetically diverse clade, consisting of distinct subspecies potentially 
confounding methodologies for tracking strains53. In the case of B. dorei, we isolated and 
sequenced 8 high quality genomes that confirmed this observation. For these and other similar 
species, such as  B. adolescentis and R. intestinalis, the observed lack of correlation may stem 
from the difference between the time-scales at which these two measures operate: rapid 
adaptation in gene content driven by promiscuous lateral gene transfer (LGT) and gene loss 
contrasted by a slower, long-term imprint at the SNP level may confound the connection 
between these two measures91,92. The consequence of most of these adaptations for the strain 
fitness or its symbiosis with the host early in the life, especially in the light of the known 
immunomodulatory effects that specific strains can have on the human system remains to be 
elucidated. 
 
The members of the genus Bacteroides are highly versatile carbohydrate-utilizers and as such 
typically represent a large proportion of healthy gut microbiome throughout life93. Our analysis 
revealed that members of this genus harbor some of the largest, highly strain-specific accessory 
genomes often with hundreds of unique genes per strain. This is mirrored by their ability to 
adapt the carbohydrate-active enzyme repertoire according to the available resources, modified 
by diet. Bacteroides targeting prophages are among the most common members of the yet-
largely-unexplored human gut virome, providing a plausible mechanism for extensive LGT and 
genomic plasticity in this genus94. Indeed, it has been demonstrated that phages enable LGT 
between Staphylococcus aureus strains95 and within Enterobacteriaceae family96. Supporting 
this line of thought, a previous investigation of viral contigs in a subset of the DIABIMMUNE 
stool samples found co-occurrence between multiple viral contigs and Bacteroides spp.97. 
Similarly, the most abundant members of the human gut virome, crAss-like phages, were 



 

recently associated with bacteria from the phylum Bacteroidetes, especially Bacteroides spp.98. 
Alternatively, highly conserved SNP haplotypes in this genus, implicating long highly-conserved 
genomic regions, provide another speculative mechanism for LGT: free-floating genetic 
elements sharing such conserved DNA regions with the recipient genome can be readily 
transformed in the recipient genome by spontaneous DNA recombination. 
 
This study also contributes several observations on another group of bacteria common in early 
childhood, Bifidobacterium. Within Bifidobacterium, there are important differences in HMO 
processing capabilities even within species making strain level identification of Bifidobacteria 
crucial. We showed that a B. longum subsp infantis can be detected in metagenomic data by 
both its HMO processing genes and SNP haplotype profiles. A probiotic trial using B. infantis as 
an additive in breast milk during the first weeks of life observed persistent B. infantis 
engraftment and beneficial alterations in intestinal fermentation99. Our data corroborates the 
notion that intracellular HMO utilization in B. infantis provides a competitive advantage over 
other HMO-consuming species, allowing B. infantis to dominate the infant gut during 
breastfeeding. 
 
We observed virtually identical B. bifidum strains in 79 mostly Russian stool samples. This 
analysis demonstrates that microbial strains can be shared on population level and such strain-
level trends can be detected from metagenomic data. The observed strain, B. bifidum 791, has 
been patented for medical use in Russia and local regulation allows adding such bacterial 
components to infant formulas. Indeed, our communication with locals confirmed that this strain 
is a common component in baby formulas and other infant food products. Therefore, it is 
plausible that these 34 Russians obtained this strain, which seem to achieve stable 
engraftment, as a probiotic supplement (in either infant formula or elsewhere). This observation 
supports the idea that early gut microbial assembly can be intervened by probiotic 
supplementation99, which in turn can have beneficial effects such as restoration of healthy 
growth85 and protection against immune-mediated diseases100 or adverse effects of antibiotic 
courses101. 
  



 

Methods 
The DIABIMMUNE cohort recruitment took place between September 2008 and July 2011 in 
Espoo / Finland, Tartu / Estonia and Petrozavodsk / Russia. Families with a newborn with HLA 
DR-DQ alleles conferring increased risk for autoimmunity, determined by a cord blood test, were 
invited to join the study. The parents and/or study subjects gave their written informed consent 
prior to sample collection. The study participants were monitored for infections, use of 
antibiotics, breastfeeding, introduction of complementary foods, and other life events on study 
visits at months 3, 6, 12, 18, 24, and 36 from birth. Maternal information and events during the 
pregnancy were collected using a questionnaire on these visits. Serum samples were collected 
from all subjects during visits to the clinic at the following time points: 0 (cord blood), 3, 6, 12, 
18, 24, and 36 months. Diabetes-associated autoantibodies were analyzed as previously 
described40. The DIABIMMUNE study was conducted according to the guidelines laid down in 
the Declaration of Helsinki, and all procedures involving human subjects were approved by the 
local ethical committees of the participating hospitals. More information about the cohort and 
data collection can be found in other DIABIMMUNE publications40,41,43 and online at 
http://www.diabimmune.org/ and https://pubs.broadinstitute.org/diabimmune/. 
 
For statistical association testing described below, the additional information (external variables) 
of subjects was preprocessed as follows. The external variables were categorized into two 
categories: generic and complex variables. Here, generic variables’ information was available 
for all subjects, i.e. contained no missing values (maternal age at delivery, gestational diabetes, 
gestational age days, mode of delivery, gender, country of birth, cohort, and HLA risk class). 
Complex variables, on the other hand, contained missing values and in many cases required 
pre-processing and exact defining beforehand (for e.g. antibiotics courses, maternal illnesses 
during pregnancy, family location when the child was born (urban/rural), daycare attendance, 
elder siblings, etc.). As breastfeeding information was not available for all the subjects and 
reduced the sample sizes significantly in cross-sectional analyses, it was not considered a 
generic variable. The full lists of generic and complex variables can be found in Table ###. 
While the associations between the generic variables and the gut microbial communities were 
modeled altogether in one analysis, the associations of complex variables were determined by 
modeling them one-by-one with all generic variables. 
 
16S rRNA gene sequencing was conducted essentially as previously described in102. Paired-
end sequencing reads were demultiplexed using ea-utils command line tools 
(https://code.google.com/p/ea-utils/), and clustered into operational taxonomic units (OTUs) 
using the UPARSE pipeline103. Reads were quality-filtered using the UPARSE quality-filtering 
threshold of Emax=1, at which the most probable number of base errors per read is zero for 
filtered reads104. Filtered reads were trimmed to a fixed length, singletons removed, and 
clustered de novo into OTUs, with simultaneous chimera filtering. Taxonomic classification of 
OTUs was performed against the Greengenes version 13.8 16S rDNA database105. The full 
OTU table was filtered by removing samples with less than 3,000 OTU counts, and by removing 
OTUs appearing in less than 5 % of samples (178 samples). This resulted in an OTU table 
consisting of 3,204 samples from 289 subjects and 920 OTUs. 

http://www.diabimmune.org/
https://pubs.broadinstitute.org/diabimmune/


 

 
PERMANOVA analysis between the external variables and gut microbiomes were performed on 
16S rRNA amplicon sequencing data of samples collected roughly at 2 (between 0 and 90 
days), 6 (170 and 260 days) and 18 months (510 to 600 days) of age using adonis function in 
vegan R package (default parameters). Per each subject, the sample closest to the exact cross-
section time under analysis was chosen, resulting in 140, 184 and 202 samples per time 
window, respectively. The order of external variables in PERMANOVA model formula was 
determined by first analyzing each variable individually and then ordering the variables based 
on the significance of their association (i.e. permuted p-value) from the most significant to the 
least. Statistical significance of PERMANOVA results was evaluated by permutation test with 
10,000 permutations. 
 
Individual associations between bacterial genera and external variables were tested using 
MaAsLin, which conducts outlier removal, feature selection and linear modeling106. Association 
analyses were performed in both cross-sectional and longitudinal manner. The cross-sectional 
analyses were conducted on the same samples from the time-windows chosen for the 
PERMANOVA analyses, where all variables of the analyses (only generic variables or generic 
and one added complex variable) were used as fixed effects. In the longitudinal analyses, 
subject IDs were used as a random effect and all the generic variables as well as breastfeeding 
information were used as fixed effects. In case a complex variable was added to the analysis, it 
was also used as a fixed effect. With these effect settings in longitudinal analyses, altogether 
2586 samples from 237 subjects were available, where the numbers varied according to the 
complex variable added to the analysis and the amount of missing values it introduced. For both 
the cross-sectional and longitudinal analyses, genus-level 16S rRNA microbiome data was used 
for identifying taxonomic level associations of the external variables.  
 
The metagenomic shotgun sequencing was conducted as previously described40,41,43. The 
quality control for the metagenomic shotgun sequencing data was conducted using kneadData 
v0.4.6.1 with additional automatic adapter detection and trimming at a minimum overlap of 5bp 
by Trim Galore!. Taxonomic profiles were generated using MetaPhlAn v2.6107 and functional 
profiling was done by HUMAnN2 v0.10.0 which provides gene family level (here 90 % similarity) 
quantifications of microbial genes which are further stratified by contributing organisms. The 
gene families were further mapped to Gene Ontology (GO) terms as previously described in43. 
Strain SNP haplotypes were generated using StrainPhlAn23 by requiring minimum coverage of 
10 bases for SNP calling (“--min_read_depth 10” command line parameter for 
sample2markers.py). 
 
Metagenomic reads were assembled into contigs using MegaHIT108 individually for each 
sample, followed by an open reading frame prediction using Prodigal109. Non-redundant gene 
catalogue was constructed in a fashion similar to earlier approaches110 by clustering genes 
based on sequence similarity at 95 % identity and 90 % coverage of the shorter sequence using 
CD-HIT111. Subsequently, the gene catalogue was merged with IGC gene catalogue112 using the 
same criteria to create a more comprehensive reference gene catalogue for the gut microbiome. 
Only genes detected in Diabimmune samples (~6M) were used in the downstream analysis. 



 

Gene abundance was estimated by mapping quality trimmed reads from each sample to the 
gene catalogue with BWA113 which served as an input to binning genes into metagenomic 
species using canopy clustering67. Pangenome for each metagenomic species with at least 400 
genes was created by recruiting accessory genes, i.e. genes co-assembled on the same contigs 
as core genes, i.e. genes binned into metagenomic species, as long as the abundance of the 
accessory genes was between 10th and 90th percentile of the abundance of core genes in a 
given sample. Assembled genes were annotated with COG, KEGG and GO terms using eggnog 
mapper114 and at species, genus and phylum levels with NCBI RefSeq (version July 2017) as 
described previously112. 
 
Phylogenetic trees (Fig. 3A,C, 5A, S3E,F) were generated based on StrainPhlAn SNP 
haplotypes using phangorn R package115. Briefly, similarities between strain haplotypes were 
computed using Jukes and Cantor (JC69) model, and an initial tree was constructed using 
UPGMA hierarchical clustering. The tree was optimized using maximum likelihood method, by 
iterative optimization of edge lengths, base frequencies and topology. Visualizations were 
generated using ggtree R package. For Bifidobacterium bifidum (Fig. 3C), strains with >99.5 % 
sequence similarity were collapsed to a single tip and represented by the strain with the lowest 
average distance to other strains prior to optimizing the phylogenetic tree. 
 
Bacteroides dorei colonies were isolated from serial dilutions of DIABIMMUNE and PRISM 
(Prospective Registry in IBD Study at Massachusetts General Hospital) stool samples plated on 
selective and non selective media after being incubated anaerobically at 37 °C for 72 hours. To 
isolate high molecular weight DNA for Pacific Biosciences (PacBio) Sequencing, the isolates 
were grown on brain heart infusion agar supplemented (sBHI) with 10 % fetal bovine serum 
(Hyclone), 1 % hemin/vitamin K solution (BD), 1 % trace vitamins (ATCC), 1 % trace minerals 
(ATCC), 0.5 g/L cysteine hydrochloride (Sigma), 1 g/L maltose, 1 g/L fructose (VWR), and 1 g/L 
cellubiose (Sigma) anaerobically at 37 °C for 72 hours. Colonies were transferred to 30 mL sBHI 
broth and grown anaerobically for 48 hours. Cells were centrifuged at 4,450 rpm for 10 minutes 
and supernatant was discarded. DNA was extracted using the Genomic-tip 500/G kit (Qiagen), 
according to the manufacturer's instruction. After isopropanol treatment, precipitated DNA was 
spooled and transferred to 70 % ethanol 1.2 mL tube and left to dry in a clean PCR hood for 4 
hours. Dried DNA was resuspended in elution buffer (Qiagen). DNA fragment size was 
measured with 4200 TapeStation (Agilent) using a Genomic DNA ScreenTape (Agilent) prior to 
sequencing using the PacBio sequencing platform. 
 
PacBio sequencing data of B. dorei isolates was assembled into genomes using Celera 
assembler and Quiver in SMRT Analysis software (PacBio). The assembled B. dorei genomes 
were analyzed using PanPhlAn24 (default settings) together with five existing isolate genomes in 
NCBI. The resulting non-redundant gene catalogue was annotated by translated DIAMOND 
search116 against the UniRef90 and UniRef50 databases, and by enforcing UniRef's clustering 
criteria. We primarily used UniRef90 annotations, if available, but applied UniRef50 annotation 
in absence of UniRef90 annotation. Ruminococcus gnavus pangenome analysis was conducted 
using an existing PanPhlAn-generated pangenome as previously described16, which was 
annotated using UniRef databases as described above for the B. dorei pangenome. 



 

 
B. longum HMO gene presence in the metagenomic samples (Fig. 3A) was determined as 
follows. We identified UniRef90 gene families corresponding to the protein sequences in B. 
infantis HMO gene cluster (protein sequences Blon_2331-Blon_236171 in NCBI protein 
sequence database) by translated BLAST search against B. longum pangenome in ChocoPhlAn 
pangenome collection66 utilized by HUMAnN2. Specifically, we required >=90 % alignment 
identify and >=80 % mutual coverage (corresponding to the definition of UniRef90 gene 
families) and accepted only the best hit per protein sequence. Combining this information with 
HUMAnN2 species-stratified UniRef90 gene family quantification enabled calling these genes 
present given that they had sufficient read coverage, here defined as log10(counts-per-million / 
B. longum relative abundance) > 1.  
 
Contributional diversities of the metagenomic functions were analyzed as previously described 
in [Franzosa et al., under review]. Briefly, stratified abundances of metagenomic functions were 
first renormalized after excluding any “unclassified” relative abundance. Contributional diversity 
for a given metagenomic function was then calculated by applying ecological similarity 
measures to the stratified abundance of that function; Gini-Simpson index was used for alpha-
diversity and Bray-Curtis dissimilarity was used for beta-diversity. 
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Supplementary Figures 

 
Figure S1. A Samples analyzed by 16S rRNA amplicon and metagenomic sequencing. Rows represent subjects. B 
Average relative abundance of Bifidobacterium spp. in 16S sequencing profiles longitudinally stratified by country and 
presence of elder siblings. The curves show locally weighted scatterplot smoothing (LOESS) for the relative 
abundances and shaded area shows 95 % confidence interval for each fit, as implemented in geom_smooth() 
function in ggplot2 R package. C Mean relative abundance of Dialister spp. In 16S sequencing profiles longitudinally 
stratified by subjects’ height at age three. Weight categories were defined as follows; above average: weight z-score 
> 1, average: -1 < weight z-score ≤ 1, below average: weight z-score ≤ -1. 
 



 

 



 

Figure S2. A Density plots of the SNP haplotype similarities per species based on all pairwise comparisons 
(dominant strain per species per sample) and stratified to intra-subject and inter-subject comparisons; data in Fig. 2A 
represented as a density plot. B Gene content similarities per species, evaluated on HUMAnN2 gene family profiles. 
Briefly, HUMAnN2 quantifies gene family abundances per species based on pangenomes that were constructed 
using the NCBI isolate genomes.  C D 
 
  



 

 
 
Figure S3. Relations between the adult gut microbiome in HMP and the gut microbiome in DIABIMMUNE. A 
Boxplot of total relative abundances of bacteria typical of different body areas in HMP data. Each bacterial species in 
HMP was assigned to one of the four strata by the body area with the highest mean relative abundance of the given 
species. Color shows the bacterial strata and x-axis shows their total relative abundances in different body areas. 
See also Table S6. B-D Total relative abundance of bacterial species classified as (B) gut, (C)  vaginal and  (D) skin 
species in DIABIMMUNE samples longitudinally. The color shows the country of origin and the curves show LOESS 
fit as detailed in caption for Fig S1. E-F Phylogenetic tree of (E) Veillonella parvula and (F) Haemophilus 
parainfluenzae strains in HMP and DIABIMMUNE samples.  
  



 

Supplementary Table captions 
Table S1. PERMANOVA results. Multiple extrinsic and intrinsic factors were analyzed for 
connections with microbial composition using PERMANOVA. See PERMANOVA Descriptions 
sheet for details. 
 
Table S2. Microbial alpha-diversity. Multiple extrinsic and intrinsic factors were analyzed for 
connections with microbial alpha-diversity using mixed effects linear modeling. See Alpha div. 
Tests Descriptions sheet for details. 
 
Table S3. Taxonomic associations. Multiple extrinsic and intrinsic factors were analyzed for 
connections with microbial taxa using MaAsLin linear modeling framework. See MaAsLin 
Descriptions sheet for details. 
 
Table S4. Strain diversity of gut microbial species. Diversity of strains within microbial 
species were analyzed by SNP haplotyping and gene content on metagenomic assemblies. The 
table supplements Fig. 2A-C with additional statistics. MSA = multiple sequence alignment, 
MSA length gives the effective length of the SNP haplotypes per species. 
 
Table S5. Extended B. dorei pangenome. Gene families on extended B. dorei pangenome 
constructed using seven NCBI isolate genomes and eight additional isolates sequenced in this 
study. Gene families were annotated using UniRef gene family annotations and presence (1) / 
absence (0) on each isolate is shown. 
 
Table S6. 
 
Table S7. Bacterial species by body site. Mean relative abundance of bacterial species in 
HMP data in four body sites in HMP (adult gut, skin, oral cavity, or vagina) and in DIABIMMUNE 
gut communities. Each species was assigned to a body site given by the highest mean relative 
abundance in HMP data. 
 
Table S8. CRISPR system genes in DIABIMMUNE metagenomes. The metagenomes were 
analyzed for CRISPR system genes indicate of speciation; the table lists species specific 
CRISPR genes with within-species prevalence between 25 % and 75 %, i.e., these genes were 
carried only a subset of strains in a given species. To obtain confident gene presence calls and 
avoid false positive hits, only samples where the species in question had relative abundance > 
5% were included in the analysis; frequency of such samples is given in column D.  
 
Table S9. R. gnavus genes distinguishing subspecies clades. Thousand R. gnavus genes 
with largest difference in prevalence between the subspecies clades 1 and 2 identified by 
phylogenetic analysis. Annotations are given by translated DIAMOND search against UniRef 
databases. 
 



 

Table S10. Contributional diversities of Biological process GO terms. We applied 
ecological similarity indices (alpha- and beta-diversity) to contributional breakdown 
(compositional profiles of the species specific contributions to the GO term in question) of 365 
biological process GO terms. The tables gives mean and median alpha- and beta-diversities per 
GO term. For beta-diversities, these measures were further stratified into inter- and intra-subject 
comparisons. For alpha diversities, we measured Pearson correlation with age and corrected 
the statistical significance for multiple testing using Benjamini-Hochberg technique. 
 


