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Abstract: T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell
leukemia. Recent studies detected genomic aberrations affecting JAK and STAT genes in T-PLL.
Due to the limited number of primary patient samples available, genomic analyses of the JAK/STAT
pathway have been performed in rather small cohorts. Therefore, we conducted—via a primary-data
based pipeline—a meta-analysis that re-evaluated the genomic landscape of T-PLL. It included all
available data sets with sequence information on JAK or STAT gene loci in 275 T-PLL. We eliminated
overlapping cases and determined a cumulative rate of 62.1% of cases with mutated JAK or STAT genes.
Most frequently, JAK1 (6.3%), JAK3 (36.4%), and STAT5B (18.8%) carried somatic single-nucleotide
variants (SNVs), with missense mutations in the SH2 or pseudokinase domains as most prevalent.
Importantly, these lesions were predominantly subclonal. We did not detect any strong association
between mutations of a JAK or STAT gene with clinical characteristics. Irrespective of the presence
of gain-of-function (GOF) SNVs, basal phosphorylation of STAT5B was elevated in all analyzed
T-PLL. Fittingly, a significant proportion of genes encoding for potential negative regulators of
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STAT5B showed genomic losses (in 71.4% of T-PLL in total, in 68.4% of T-PLL without any JAK
or STAT mutations). They included DUSP4, CD45, TCPTP, SHP1, SOCS1, SOCS3, and HDAC9.
Overall, considering such losses of negative regulators and the GOF mutations in JAK and STAT genes,
a total of 89.8% of T-PLL revealed a genomic aberration potentially explaining enhanced STAT5B
activity. In essence, we present a comprehensive meta-analysis on the highly prevalent genomic
lesions that affect genes encoding JAK/STAT signaling components. This provides an overview of
possible modes of activation of this pathway in a large cohort of T-PLL. In light of new advances
in JAK/STAT inhibitor development, we also outline translational contexts for harnessing active
JAK/STAT signaling, which has emerged as a ‘secondary’ hallmark of T-PLL.

Keywords: JAK; STAT; T-PLL; T-cell leukemia; meta-analysis; STAT5B signaling

1. Introduction

T-cell prolymphocytic leukemia (T-PLL) is an aggressive malignancy characterized by an expansion
of mature T-lymphocytes [1]. Although with an incidence of <2.0/million/year in Western countries
infrequently encountered, T-PLL is the most common mature T-cell leukemia [2]. Patients suffering from
T-PLL typically present with exponentially rising white blood cell (WBC) counts accompanied by bone
marrow (BM) infiltration and splenomegaly, and at lower frequencies by various other manifestations
such as effusions or in skin [3]. Due to its chemotherapy-refractory behavior, T-PLL patients have a
dismal prognosis with a median overall survival (OS) of <3 years [4–6]. Clinicians treating T-PLL
face limited therapeutic options, mainly caused by a still incomplete mechanistic disease concept
and, therefore, a rudimentary understanding of targetable vulnerabilities in T-PLL. The most potent
single substance, the CD52-antibody alemtuzumab, leads to complete remissions in more than 80% of
patients, however, nearly all eventually relapse (at median already within 12 months) [3,4,7].

Due to the limited number of primary patient samples available, genomic analyses studying
the underlying disease mechanisms have been performed in rather small cohorts of T-PLL patients.
In these studies, the most common molecular features revealed were rearrangements that involve
chromosome 14 or X, resulting in juxtaposition of the T-cell leukemia/lymphoma 1A (TCL1A) or Mature
T-cell leukemia 1 (MTCP1) proto-oncogenes to TCRAD gene enhancer elements [8]. The second most
common lesions are genomic alterations of the tumor suppressor ataxia telangiectasia mutated (ATM),
found in >85% of cases [9]. In addition to these lesions, activating mutations targeting the Janus kinase
(JAK)/signal transducer and activator of transcription (STAT) pathway components were identified in
these series of genomic analyses [9–18].

The JAK/STAT pathway is a ubiquitous cytokine-mediated signaling cascade that regulates cell
proliferation, differentiation, migration, and apoptosis [19]. After recruitment of JAKs (JAK1, JAK2,
JAK3, TYK2) to cytokine receptors, they phosphorylate STAT proteins (STAT1, STAT2, STAT3,
STAT4, STAT5A, STAT5B, STAT6), which then bind DNA and regulate target gene transcription [20].
Dysregulation of the JAK/STAT axis has been described as a key event in the pathogenesis of various
hematologic malignancies [21]. Constitutively active JAK/STAT signaling induces T-cell tumors in
mice [22,23]. Using different sequencing approaches, activating mutations of JAK1, JAK3, and STAT5B
were identified as the most recurrent genomic aberrations affecting JAK/STAT genes in T-PLL [9–18].
However, prevalence of gene mutations, information on their allele frequencies, assessment of negative
regulators of JAK/STAT signaling, and the phosphorylation status of the most recurrently affected
JAK/STAT proteins vary considerably or are not reported in these studies [9–18].
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Therapeutic approaches blocking JAK/STAT signaling have so far improved patient outcomes
predominantly in autoimmune conditions and in graft-versus-host disease [24,25]. JAK inhibitors
are currently tested for a number of new indications [26]. T-PLL cells have shown a notable in vitro
sensitivity towards JAK inhibition, which was not directly linked to the JAK/STAT mutation status [15,16].
First reports present individual clinical activity of tofacitinib (pan JAK inhibitor) and ruxolitinib (JAK 1/2
inhibitor) in relapsed T-PLL [27,28].

Although many studies identified JAK and STAT genes to be commonly mutated in T-PLL,
these analyses have been performed in rather small cohorts not providing a sufficient dataset to
determine reliable mutation and variant allele frequencies (VAFs). In addition, the publication overlap
of these studies was unresolved and a systematic assessment for other potential genomic causes
(e.g., copy number alterations (CNAs)) has not been performed.

Here, we conducted a meta-analysis that was supplemented by new primary data, hence providing
the largest cohort to date that evaluated the genomic aberrations affecting JAK/STAT signaling in
T-PLL. In addition to summarizing information on the functional impact of the most recurrent lesions,
we propose a model of potential mechanisms leading to constitutive JAK/STAT signaling in T-PLL cells.

2. Results

2.1. Characteristics and Overlaps of Included Studies

The meta-analysis considered all available publications that have analyzed variants of any JAK or
STAT gene in cases of T-PLL, regardless of the sequencing approach used (Table S1). Redundantly
sequenced cases were identified to eliminate overlaps between these 10 studies (Figure 1A). The most
common sequencing approach was Sanger sequencing (Sanger seq., 7 studies), followed by targeted
amplicon sequencing (TAS, 5 studies), whole exome sequencing (WES, 4 studies), and whole genome
sequencing (WGS, 2 studies). JAK3 (n = 272 T-PLL patients), JAK1 (n = 246), and STAT5B (n = 209)
were predominantly sequenced due to the bias by the targeted approaches. Germline controls were
sequenced in 53 cases (19.3%). The number of analyzed patients varied from 3 to 71 patients across the
10 studies [9–18]. After subtracting all cases reported in more than one study, we identified 275 unique
T-PLL cases as the core cohort.

Notably, data that were acquired by WGS, WES, and SNP array analysis were re-analyzed as
primary data in cases, in which raw data were available (WES: 62.2%, n = 46/74 T-PLL patients; WGS:
50.0%, n = 4/8; SNP arrays: 100.0%, n = 71/71), while data gained through Sanger seq. or TAS were not
re-evaluated. By re-analyzing the WES and SNP array data through a uniform pipeline, homogeneity
of the resulting dataset was obtained. JAK1, JAK2, JAK3, TYK2, STAT1, STAT2, STAT3, STAT4, STAT5A,
STAT5B, and STAT6 are further referred to as ‘any JAK or STAT gene’.
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Figure 1. Meta-analyses of genomic profiling series in T-PLL underscore the high prevalence of
mutations affecting JAK and STAT genes. (A) T-PLL patients (n = 275) sequenced for any JAK or STAT
locus. Horizontal bar chart displays the total number of patients sequenced in each publication. Vertical
bar chart indicates the size of intersections between sets of patients analyzed in one or more publications.
Color-code of vertical bars indicates the number of studies reporting results of the same individual
case (black: 1; dark-orange: 2; medium-orange: 3; light-orange: 4; light grey: 5). Dot connecting
lines show the overlapping publications of each intersection. (B) Distribution of JAK/STAT mutations
(n = 87 T-PLL analyzed by whole genome sequencing (WGS)/whole exome sequencing (WES)): in
62.1% of these cases (n = 54) at least one mutation in a gene of the JAK/STAT family was found to be
mutated. (C) Relative frequencies of hotspot mutations of JAK1, JAK3, and STAT5B (as defined by
the genomic region containing more than 90% of the respective mutations; n = 275 cases analyzed
by WGS/WES/targeted amplicon sequencing (TAS)/Sanger sequencing). Every T-PLL case that was
sequenced for the respective hotspot region of JAK1 (Ex. 14–20), JAK3 (Ex. 11–19), and/or STAT5B
(Ex. 15–17), was included. (D) Box-whisker charted allele frequencies of missense mutations of JAK1,
JAK3, and STAT5B (n = 153 T-PLL analyzed by WGS/WES and/or TAS) illustrate a high heterogeneity
in variant allele fractions, with most lesions detected at lower frequencies (<50%).
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2.2. Mutations in JAK and STAT Genes are Predominantly Found at Subclonal Levels

We included T-PLL cases with available data from WGS or WES in order to calculate the frequency
of genomic variants in JAK and STAT genes. We identified a cumulative rate of 62.1% (n = 54/87,
Figure 1B) cases with variants in any JAK or STAT gene. The vast majority of them were somatic
single-nucleotide variants (SNVs) of missense type (96.0%, n = 72/75 of variants detected by WGS/WES).
The remaining three lesions (4.0%, n = 3/75) were small in-frame deletions in JAK1 or JAK3. In the
following these SNVs and small in-frame deletions are referred to as ‘mutations’. Somatic variants were
called and known single nucleotide polymorphisms were filtered out in those tumor samples for which
a matched germline sample was available. For T-PLL patients with a missing germline control (n = 38),
we included only those variants which were detected in the WES with matched germline samples. JAK3
(34.5%, n = 30/87), STAT5B (25.3%, n = 22/87), and JAK1 (9.2%; n = 8/87) were the most recurrently
mutated genes, while TYK2 (2.3%, n = 2/87), STAT4 (2.3%, n = 2/87), and STAT5A (1.1%, n = 1/87) were
mutated at lower frequencies. Nine of 87 cases (10.3%) presented with mutations affecting two genes
that encode for JAK or STAT proteins. Co-occuring (‘double’) JAK1 and JAK3 mutations were found in
1.1% of cases (n = 1/87), JAK3 and STAT4 in 1.1% (n = 1/87), and JAK1 and STAT4 mutations in 1.1%
(n = 1/87); JAK1 and STAT5B in 1.1% (n = 1/87), and JAK3 and STAT5B in 5.8% (n = 5/87). Co-occuring
JAK1, STAT5A, and STAT5B mutations (‘triple’) were detected in one case (1.1%).

Next, we calculated frequencies of missense mutations considering the hotspots of JAK1 (Ex. 14–20),
JAK3 (Ex. 11–19), and STAT5B (Ex. 15–17). Hotspot regions were defined as genomic regions containing
>90% of the respective mutations. By also including cases analyzed by TAS or Sanger seq. for the
respective hotspot region, we arrived at a larger cohort for these analyses. Based on this, the hotspot
of JAK1 showed a relative mutation frequency of 6.3% (n = 11/175). For the hotspot of JAK3 this was
36.4% (n = 75/206) and for the hotspot of STAT5B it was 18.8% (n = 38/202, Figure 1C).

As already described in smaller cohorts [9,16,18], most of these lesions presented as subclonal
events with low VAFs (medians: JAK1 6.0%, JAK3 28.5%, STAT5B 19.0%, Figure 1D); however,
we observed a high heterogeneity in VAFs. Notably, the N642H mutation of STAT5B was observed at a
VAF of >50% in four cases and the M511I mutation of JAK3 at VAFs >50% in five cases. Note that given
the data provided in the reports, the percentage of treatment-naïve samples was 72.7%; sequential
samples of individual T-PLL patients were not analyzed here.

2.3. Missense Mutations in JAK1, JAK3, and STAT5B Cluster Within the Conserved Pseudokinase and SH2 Domains

We further assessed the localization of the missense mutations of JAK1, JAK3, and STAT5B (Figure 2,
upper protein schemes) as well as the frequencies of hotspot SNVs in these genes (lower inset). To assess
the localization of the somatic SNVs of JAK1, JAK3, and STAT5B, we included all T-PLL cases which
have been sequenced for the whole coding genome by WES or WGS. All T-PLL cases which have
been sequenced for the respective lesion regardless of the sequencing approach were considered to
determine the frequencies of hotspot mutations. The pseudokinase domain (JH2 domain) of JAK1 was
predominantly affected (62.5% of all JAK1 mutations, n = 5/8) with V658F (3.7% of all analyzed cases, n
= 9/246, regardless of the sequencing approach) as the most prominent lesion (Figure 2A). In JAK3,
most somatic SNVs were found in the JH2-SH2-linker (69.7% of all JAK3 missense mutations, n = 23/33
detected missense mutations), followed by the JH2 domain (27.3%, n = 9/33, Figure 2B). The M511I
lesion was the most prevalent lesion in JAK3 (27.2% of all analyzed cases, n = 74/272, regardless of
the sequencing approach). Almost all missense mutations of STAT5B were found in the SH2 domain
(96.2% of all STAT5B missense mutations, n = 25/26 detected missense mutations; Figure 2C). N642H
(9.6% of all analyzed cases, n = 20/209, regardless of the sequencing approach), T628S (5.9%, n = 12/202),
and Y665F (3.3%, n = 7/209) were the most recurrent mutations affecting STAT5B. Remarkably, we did
not detect significant differences in the mutation frequencies with regard to the sequencing approach
(see bars of the lower inset of Figure 2).
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Figure 2. Missense mutations in JAK1/JAK3/STAT5B genes cluster within the conserved JH2
(pseudokinase) and SH2 domains. Upper protein scheme: gene-wide distribution of missense
mutations of JAK1 (A), JAK3 (B), and STAT5B (C); n = 87 T-PLL analyzed by WES/WGS, representing
the same cases as in Figure 1B. Lower inset for each sub-panel A–C: frequencies of hotspot mutations,
stratified for applied sequencing methods (n = 275 cases analyzed with WES/WGS/TAS/Sanger seq).
While JAK1 and JAK3 were predominately affected by lesions within the pseudokinase domains (JH2)
and the SH2-JH2 linker regions, STAT5B missense mutations were presented mostly in the SH2 domain.
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2.4. T-PLL Harboring any JAK or STAT Mutation Show Elevated TCL1A mRNA Level, but Present
Comparable Clinical Outcomes

When analyzing associations of JAK and STAT mutations with immunophenotypic and cytogenetic
data as well with the 18 most prevalent mutations found in T-PLL (as described by Schrader et al. [9]), we
detected a decreased proportion of T-PLL cells with CD40L expression (p = 0.05, Fisher’s exact test, Figure
S1A) and an increased proportion of T-PLL cells harboring NOTCH2 mutations (p = 0.03, Fisher’s exact
test, Figure S1B) in the JAK3 mutated cohort (overview of tested associations is provided in Table S2).
Notably, T-PLL with any JAK or STAT mutation showed elevated TCL1A mRNA levels as compared to
patients without any JAK or STAT mutation (fold change (Fc) = 4.1, p = 0.01, Student’s t-test, Figure 3A),
further underlined by an increased proportion of cases harboring an inversion 14 (q11q32) in the STAT5B
mutated cohort (p = 0.03, Fisher’s exact test, Figure S1C). TCL1A mRNA levels were also elevated by just
considering JAK3 mutated cases (Fc = 6.5, p = 0.002, Student’s t-test, Figure S1D) or STAT5B mutated cases
(Fc = 3.6, p = 0.02, Student’s t-test, Figure S1E) compared to T-PLL without either mutation, respectively.
To assess the functional role of variants in JAK or STAT genes in T-PLL patients, we screened for significant
associations between somatic JAK/STAT SNVs and clinical data, including outcome. For these analyses,
we merged clinical information from nine studies [9–16,18]. As not all considered publications reported
the same set of parameters, cohort sizes varied between the different analyses. When investigating an
association of the JAK/STAT mutation status with overall survival, we did not observe differences in
OS of T-PLL patients harboring any JAK or STAT mutation compared to patients without JAK or STAT
mutation (p = 0.42, log rank test, Figure 3B). In contrast to studies of smaller cohorts [12,16], we could not
observe a significantly shorter OS of JAK3 mutated T-PLL patients (p = 0.26, log rank test, Figure S2A).
Similarly, the JAK3 M511 mutation was not associated with a shorter OS (p = 0.39, log rank test, Figure
S2B). The OS of patients without any JAK or STAT mutations was comparable to those harboring a STAT5B
(p = 0.55, log rank test, Figure S2C), STAT5B N642H (p = 0.60, log rank test, Figure S2D), or JAK1 (p = 0.54,
log rank test, Figure S2E) mutation. Interestingly, the JAK1 L653F mutation status was associated with a
significantly shorter OS (p = 0.003, log rank test, Figure S2F). In addition, cases with a STAT5B Y665F
mutation also showed a shorter OS (p = 0.06, log rank test, Figure S2G). However, only two patients with
a JAK1 L653F mutation or five patients with a STAT5B Y665F mutation were included in the ‘mutated’
cohorts, so these results should be interpreted with caution. We did not detect any other association of
clinical characteristics of T-PLL patients with the presence of JAK or STAT mutations (Table S3).

Figure 3. JAK/STAT mutation status shows association with elevated TCL1A mRNA expression, but
not with patient outcomes. (A) TCL1A mRNA expression measured by array-based gene expression
profiling (GEP) of JAK/STAT mutated cases compared to cases without any JAK or STAT mutation
(fold change: 4.1; p = 0.01, Student’s t-test). (B) Overall survival (OS) of JAK/STAT mutated cases
(median OS: 21.0 months) compared to cases without any JAK or STAT mutation (median OS: 25.5
months, p = 0.42, log rank test). Significant associations between mutations affecting JAK3 or STAT5B
with immunophenotypic, mutational, and expression data are displayed in Figure S1. Associations of
mutations affecting JAK1, JAK3, or STAT5B with OS are presented in Figure S2.
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2.5. T-PLL Cells Show Basal STAT5B Phosphorylation, Regardless of Their JAK/STAT Mutation Status

Even though STAT5B was shown to be predominantly affected in T-PLL in previous series,
its phosphorylation, and therefore activation state, was often not aligned with the genomic profiling
data [9–11]. By analyzing primary samples of eight T-PLL cases, we observed noticeable basal STAT5B
phosphorylation in every case (Figure 4A, no exposure to any culturing). We discovered no obvious
association between STAT5B phosphorylation and the presence of any JAK or STAT mutation.

Samples without JAK or STAT mutation showed similar levels of high basal phospho-STAT5B to
those that harbored such lesions, as already previously shown in a series of 6 T-PLL cases [9].

We further correlated the immunoblot data with alterations involving key regulators of STAT5B
activity (either mutations or CNAs). For this, we pre-selected a set of 105 genes encoding for
proteins known to regulate JAK/STAT signaling based on available literature (Table S4). We next
identified of these 105 genes 7 which showed recurrent genomic lesions in the overall T-PLL cohort
and which were reported to have a regulatory effect on STAT5B signaling in vitro or in vivo (Table S5).
Overall, we identified recurrent mutations or genomic losses of seven negative regulators potentially
leading to constitutive STAT5B activity (DUSP4, CD45, TCPTP, SHP1, SOCS1, SOCS3, and HDAC9) in
71.4% of analyzed T-PLL cases (n = 35/49 cases analyzed with WES/WGS and SNP array, Figure 4B).
About 68.4% of T-PLL cases that did not reveal a mutation in any JAK or STAT gene showed such a
CNA of a STAT5B signaling regulator. This resulted in a total of 89.8% of T-PLL cases that harbor a
genomic lesion potentially explaining constitutive STAT5B signaling (either genomic losses of negative
regulators, and/or mutations of JAK or STAT genes). Gene expression signatures (array-based) of cases
that harbor a genomic loss or a mutation of a negative regulator of JAK/STAT signaling (and that
lack a JAK or STAT mutation) were comparable to those of cases with a mutation in any JAK or STAT
gene (principal component analysis in Figure S4A). Both cohorts showed similar activation (as per
upregulated gene expression) of STAT5B target genes. All T-PLL with a mutation in a JAK or STAT
gene and 90% of patients with a mutation or loss in a negative JAK/STAT regulator (and without any
mutation in a JAK or STAT gene) showed overexpression of at least one STAT5 target gene. In contrast,
the frequency of overexpressed STAT5 target genes was significantly lower in T-PLL without a genomic
lesion potentially activating JAK/STAT signaling (60%, Figure S4B). In detail, DUSP4, CD45, SOCS3,
SHP1, and HDAC9 showed the highest prevalences of genomic losses with a higher frequency in T-PLL
cases without any JAK or STAT mutation (Figure 4C). In addition, we identified genomic gains of
STAT2 (n = 1/49 T-PLL), STAT3, (n = 5/49 T-PLL), STAT5A (n = 5/49 T-PLL), and STAT5B (n = 5/49
T-PLL). These lesions were detected only in combination with mutations of a JAK or STAT gene or with
genomic losses of a negative regulator of STAT5B signaling (Figure 4D).

Overall, we propose a model of constitutive JAK/STAT signaling induced by mutations of a
predicted gain of function (GOF) in JAK1, JAK3, and STAT5B genes and by copy-number losses of
negative regulators of STAT5B activity.
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Figure 4. T-PLL cells show basal STAT5B phosphorylation, regardless of their JAK/STAT mutation status.
(A) Elevated basal STAT5B phosphorylation levels of T-PLL cells. Controls: CD3+ pan T-cells isolated
from healthy individuals. ‘Loss of neg. reg.’: key regulators which negatively affect STAT5B activation
(namely DUSP4, CD45, TCPTP, SHP1, SOCS1, SOCS3, and HDAC; see (D) for case-wise depiction) were
considered based on available literature and based on data of their copy number alterations (CNA) in
T-PLL. (B) Distribution of genomic lesions affecting any JAK or STAT gene and their regulators (n = 49
cases analyzed with WES/WGS and with SNP arrays). Inner pie chart: distribution of JAK/STAT mutations.
Outer pie chart: Prevalence of genomic lesions of regulators activating JAK/STAT (either genomic losses of
negative regulators or genomic gains of positive regulators). An overall proportion of 89.8% of T-PLL
cases carried a genomic lesion potentially explaining constitutive STAT5B activation (mutation or CNA
of JAK/STAT regulator). (C) Prevalence of the five most common genomic lesions affecting negative
regulators of the JAK/STAT pathway (n = 49 cases analyzed with WES/WGS and SNP array): T-PLL cases
without any mutation in a JAK or STAT gene showed a higher prevalence of genomic losses of DUSP4,
CD45, and HDAC9 as compared to JAK/STAT mutated cases. (D) Mapped genomic events involving JAK
and STAT genes and their regulators (n = 49 cases analyzed with WES/WGS and SNP array). An overview
of genomic lesions resulting in a suggested activation of the JAK/STAT pathway across all considered
T-PLL cases is given in Figure S3.
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3. Discussion

Here, we present a comprehensive meta-analysis of primary data from 275 T-PLL cases from 10
published studies that evaluated genomic lesions involving elements of JAK/STAT signaling. In this
large cohort, we identified genomic aberrations potentially leading to constitutive JAK/STAT signaling
in approximately 90% of cases, thus establishing this as a molecular hallmark of T-PLL. Our analysis
provides an overview on the genomic causes of JAK/STAT signaling activation including JAK/STAT
GOF mutations as well as CNAs of JAK/STAT genes or negative regulators of JAK/STAT signaling.

About 62% of T-PLL cases showed GOF mutations affecting any JAK or STAT gene, while previous
publications reported a mutation frequency varying between 36% and 76% [10,18]. In accordance with
these studies, we predominantly detected missense mutations in the SH2 or pseudokinase domains
of JAK1, JAK3, and STAT5B, mostly occurring at a subclonal level. Mutations of genes encoding
for components of the JAK/STAT pathway are frequently found in T-cell neoplasms (predominantly
mutations of JAK3, STAT3, and STAT5B). Their reported incidences range from 10% (e.g., for Sézary
syndrome [29]) to 70% (e.g., for intestinal T-cell lymphoma [30]). Compared to those, the cumulative
mutation frequency of JAK and STAT genes in T-PLL documented in this meta-analysis is high [31].

Another important finding was the high basal phosphorylation of STAT5B in all analyzed T-PLL
samples. In addition to a high proportion of T-PLL cases mutated in any JAK or STAT gene, we identified
seven negative regulators to be commonly lost in T-PLL, potentially explaining cytokine-independent
STAT5B activation. This affected 71.4% of all cases and 68.4% of those cases without a detectable
JAK/STAT SNV. Of these negative regulators, DUSP4, SOCS3, and CD45 were most frequently affected.
While genomic losses of DUSP4 and SOCS3 were already reported in primary T-PLL [9,17,18], losses of
CD45 have not been described previously. Compared to CD4+ T-cells isolated from healthy individuals,
DUSP4 and CD45 mRNA was observed to be strongly downregulated in T-PLL cells [16]. Furthermore,
the downregulation of CD45 transcripts was associated with an increased phosphorylation of STAT5,
implicating a functional relevance of this negative regulator [17].

T-PLL cells usually show a complex karyotype and a high frequency of somatic CNAs [9,32].
In detail, the loci of the negative regulators DUSP4 (chr.8p12) and of SOCS3 (chr.17q25.3) are known to
be highly affected by structural aberrations in T-PLL. Therefore, a secondary origin of the detected
CNAs due to background imbalances has to be considered. T-PLL cases already harboring an activating
mutation of a JAK or STAT gene or a genomic loss of a negative regulator showed in few cases (12.2%)
also genomic gains of JAK or STAT genes, however, the functional impact of these genomic gains
remains unclear.

Certainly, there is the possibility of other, yet-unknown regulators, which we did not include in
our analysis. Furthermore, our analysis did not assess for epigenetic regulations or post-translational
modifications of JAK and STAT genes or their regulators, as further causes of active JAK/STAT signaling.
Moreover, constitutive T-cell-receptor or cytokine input of the malignant T-cell may represent other
modes of (milieu-derived) JAK/STAT activation in T-PLL.

Another important result of the provided meta-analyses is the first description of elevated TCL1A
in JAK and STAT mutated T-PLL. TCL1A overexpression is known to be associated with elevated
levels of reactive oxygen species (ROS) [33]. In addition, an 8-oxoguanine DNA damage signature
is characteristic for T-PLL, likely resulting from ROS-mediated DNA insults [9]. In this context,
the initiating oncogene TCL1A is likely to contribute to the occurrence of new mutations, especially
when the guardian of genome-integrity ATM is deleted or mutated, potentially explaining a higher
prevalence of arising subclonal JAK and STAT mutations in T-PLL. Furthermore, a possible explanation
for the association of reduced CD40L expression with the presence of JAK3 mutations is a state of
less T-cell receptor and cytokine dependent activation of T-PLL cells in the context of an acquired
hyperactivating mutation of a signaling intermediate such as JAK3.

In line with our finding, that nearly every T-PLL case presents with a genomic aberration that
potentially causes activated JAK/STAT signaling, we could not observe any differential association
of the JAK/STAT mutation status with clinical characteristics, i.e., those indicating a more aggressive
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phenotype of T-PLL cells. Previous studies on small cohorts have shown a negative influence of the
presence of JAK3 mutations on OS [12,16]. However, as these studies used JAK3 wild type T-PLL as a
control group, they potentially included patients with mutations of other JAK or STAT genes, therefore
not representing a proper control.

Although functional validations of the herein described genomic aberrations is outside the scope
of this work, mechanistic analyses of many of the detected genomic aberrations and of their impact on
tumorigenesis have been performed in various other entities. Such functional findings of mutations of JAK1,
JAK3, and STAT5B are summarized in the following (an overview of literature is provided in Table S5).

JAK1, the third most frequently mutated JAK or STAT gene in this meta-analysis, showed a
cumulative hotspot mutation rate of 6.3% in our analysis, in line with the mutation rates calculated in
previous studies. V658F, the most prevalent lesion affecting JAK1 in T-PLL, was initially described in
the development of T-ALL [34]. The V658F lesion is homologous to the JAK2 V617F mutation and
was shown to lead to constitutive active JAK1 signaling in a cell line model [35]. Cells harboring
the respective lesion presented enhanced basal JAK1, STAT5, and ERK phosphorylation and showed
cytokine-independent growth [36]. S7031 and L653F, less frequently detected JAK1 mutations, were also
proven to act as GOF mutations [37,38]. While the S703I mutation was shown to mediate proliferative
effects in vitro and in vivo, the L653F mutation is predicted to soften the negative regulation of
JAK1 in a biophysical model. The JAK1 V617F, S703I, and L653F mutations potentially mediate
cytokine-independent phosphorylation of STAT5B in T-PLL.

JAK3 mutations were the most recurrent genomic aberration affecting JAK/STAT genes in this
meta-analysis with a hotspot mutation rate of 36.4% (literature: 21% [12]–71% [17]). The oncogenic
potential of the most frequent JAK3 mutation M511I as well as the less frequently occurring mutations
A573V and V674A was shown in various systems: M511I, A573V, as well as V674A mutant cell
lines demonstrated high phosphorylation of STAT5 and ERK, leading to cytokine independent
growth [39,40]. When transplanting mice with bone marrow progenitor cells harboring the M511I
or A573V mutation in JAK3, they develop a T-ALL-like disease, characterized by an expansion of
immature CD8+ T-cells. In contrast, mice transplanted with V674A mutant bone marrow progenitor
cells presented severe lymphadenopathy and splenomegaly without a significant increase of the WBC
count [41]. The mentioned JAK3 mutations were also described in T-ALL [42]. The Q507P mutation, the
third most frequent genomic aberration affecting JAK3 in T-PLL, was not discovered in other entities
and has so far not been investigated for its functional relevance.

In this analysis, 18.8% of T-PLL cases were mutated within the hotspot region of STAT5B,
while the mutation rate in the literature varied from 7% [16] to 36% [10]. The most frequently found
N642H mutation is a well described GOF mutation: STAT5B N642H transduced cell lines showed
prolonged phosphorylation and dimerization of STAT5B, resulting in an enhanced transcriptional
activity [43,44]. The N642H mutation leads to a sustained stability to the anti-parallel dimer as shown by
crystallization [45]. Transgenic mice harboring the STAT5B N642H lesion rapidly developed aggressive
CD8+ T-cell neoplasms [46]. The STAT5B Y665F mutation, which had a notable influence on OS of T-PLL
patients in our analysis, revealed highly phosphorylated STAT5B, an enhanced transcriptional activity
and increased proliferation in a cell culture model, comparable to the STAT5B N642H mutation. The
above-mentioned genomic aberrations, which have also been described in the mutational landscape of
T-LGL [47], may play an important role in the activation of JAK/STAT signaling in T-PLL. The functional
role of the second most detected STAT5B aberration, the T628S mutation, is much less established. This
genetic aberration is previously described in hepatosplenic T-cell lymphoma and associated with an
increased phosphorylation of STAT5 in a cell line model [48]. Notably, the three commonly affected
JAK/STAT genes (JAK1, JAK3, STAT5B) are crucial for IL-2 signaling, the cytokine secreted at highest
levels in T-PLL [49]. Targeted approaches in appropriate models have to address the chronological role
of such lesions as most of them were detected at subclonal levels.

Given that nearly every T-PLL case harbors a genomic aberration potentially activating JAK/STAT
signaling, JAK and STAT proteins are clinically relevant targets for T-PLL therapy [50]. Interestingly,
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in a large panel of blood cancers, primary T-PLL patient cells showed high sensitivity towards
JAK-targeting compounds. Moreover, JAK inhibitors were among the top 25 most effective drugs in an
ex vivo drug screen of 39 T-PLL patient samples exposed to 301 different substances [15,16]. Previous
case reports also showed the initial promising results of a combination therapy of the JAK inhibitors
ruxolitinib (JAK 1/2 inhibitor) and tofacitinib (pan JAK inhibitor) [27,28]. However, previous studies
have also argued that the JAK/STAT mutation status alone does not predict ex-vivo sensitivity towards
JAK inhibitors [16]. This is in line with the observation of multiple, potentially distinct mechanisms,
apart from missense mutations of JAK/STAT genes, that are required for activating this pathway.
In general, predicting sensitivity of kinase inhibitors often requires larger panels of biomarkers, some
of which may be outside of the target pathways or direct drivers of the disease. Therefore, therapeutic
targeting of JAK/STAT signaling has to be expanded on various levels, including the development
of novel STAT3/5 inhibitors and the extension of pre-clinical and clinical studies to large cohorts
of T-PLL and other T-cell lymphomas, all with well-characterized tumor material (e.g., JAK/STAT
activation state). Selective STAT5 inhibitors which bind to the SH2 domain of STAT5 are currently
under development [51].

4. Materials and Methods

4.1. Data Acquisition

Available literature was systematically screened for all genomic profiling studies that have
information on the mutational status of any JAK or STAT gene in T-PLL, regardless of the sequencing
technique. We identified a total of 10 publications meeting these criteria (Table S6). Raw data of these
publications was obtained from different sources, either publicly available or kindly provided by the
corresponding authors. Full descriptions of the composed data set and detailed information on the
sources of data are provided in Table S6. Considered T-PLL patients had provided written informed
consent and all the studies were originally approved by their institutional review boards.

4.2. Data Merging

Considering the rarity of T-PLL and the strong collaboration network in T-PLL research,
we assumed a pronounced exchange of patient samples between different centers and studies.
To determine all redundantly analyzed patients in our cohort, we requested basic patient information
to allow us to precisely identify potential overlaps while still ensuring anonymity of all the patients
(Figure 1A). In cases where genomic regions were sequenced by different methods, we included the
information provided by the widest type of analysis, ranking WGS > WES > TAS > Sanger sequencing.
In total, 275 distinct T-PLL patients were included in our analyses.

4.3. Raw Data Analysis

Data acquired through whole-exome sequencing and SNP-array analysis was re-analyzed for
those cases in which raw data was available, while data obtained through Sanger sequencing or
targeted amplicon sequencing was not re-analyzed. Studies where raw data was not available were
included by applying the already analyzed data. Detailed information on the data sources are listed
in Table S6 and on the applied tools with references in Table S7. The below subsections describe the
various genomic analyses performed for the meta-analysis.
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4.3.1. Whole-Exome Sequencing (WES)

The sequenced raw exome reads were trimmed of B blocks from the end using Trimmomatic
(RWTH Aachen, Aachen, Germany). The trimmed data were aligned to the human reference
genome (GRCh build 37) using Burrows Wheeler Aligner (bwa-0.7.12, Wellcome Trust Sanger
Institute, Cambridge, UK). After alignment the potential PCR duplicates were removed using Picard
(Broad Institute of Harvard and MIT, Cambridge, MA, USA), and BAM files were generated, sorted,
and indexed using SAMtools (Wellcome Trust Sanger Institute, Cambridge, UK). Exomic regions were
re-aligned and the base quality scores were re-calibrated according to the Genome Analysis Toolkit Best
Practices recommendations (GATK 4.1.3.0). VarScan2.2.3 (The Genome Institute, St. Louis, MO, USA)
was used to call somatic mutations with the following parameters: strand-filter 1, min-coverage-normal
8, min-coverage-tumor 6, somatic-p-value 0.01, min-var-freq 0.05. The putative somatic mutations
were annotated for functional consequences using SnpEff 4.03 (Institute of Environmental Health
Sciences, Detroit, MI, USA). Variants present in 1000 genome or dbSNP 2.0 Build were filtered out from
the analysis.

In order to call somatic single-nucleotide variants in 38 patients without matched germline
samples, MuTect v2 (Broad Institute of Harvard and MIT) was employed with default parameters.
Because we were mostly interested in identifying sequence variants that were likely to contribute to
T-PLL pathogenesis, we focused on those variations that were identified in our analysis of 22 patients
with matched healthy control samples. Only these filtered mutations have been reported for the
patients without matched germline samples.

4.3.2. Somatic Copy-Number Alterations (sCNAs)

Genotyping of Affymetrix GenomeWide SNP6 array (Thermo Fisher Scientific, Waltham, MA,
USA) was performed using Genotype Console Software 4 (GTC4, Thermo Fisher Scientific) with the
default parameters using Birdseed v2 algorithms (Broad Institute of Harvard and MIT). In order
to infer copy number variations in the T-PLL genome, we used the pooled controls as a reference
(non-tumor hematopoietic cell DNA as ‘germline’ from T-PLL patients, n = 13) created using the
GTC pipeline. The Canary algorithm was used to call CN state using the default settings in GTC.
We performed segmentation analysis on the basis of identified SNPs/CNVs using inbuilt algorithm.
Copy number values and segmentation were visually assessed in the Integrative Genomics Viewer
(Broad Institute, Cambridge, MA, USA). Since the segmentation algorithm only reports significantly
altered segments/regions, we mapped identified genomic regions to genes based on version 75 of the
Ensembl annotation using BiomaRt (version 2.38 and the GenomicRanges R package, version 1.34.0).

4.3.3. Gene Expression Profiling (GEP)

The processed normalized expression profiles generated with GenomeStudio were downloaded
from GEO. Data were merged and adjusted for batch effects using linear regression. A differential
expression analysis was performed using Student’s t-test on expression values of patients and healthy
controls (CD3+ pan T-cells from 10 healthy donors). The differentially expressed probes were mapped
to the respective genes by Illumina provided annotation files. Principal component analysis of the
whole gene expression set was performed with R.
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4.4. Clinical Data and Statistical Analyses

All publications were screened for accompanying clinical data and authors were contacted for
further information. In total, we obtained and merged clinical data from nine publications [9–16,18].
For patients who were reported in multiple studies, we included the most detailed clinical data set.
To assess possible correlations between mutational status and clinical phenotypes, we performed
a screening approach testing for a broad range of parameters (Table S3), where the patients were
stratified by overall mutational status, mutational status of specific genes, and by specific mutations.
As a control, we used clinical data from T-PLL patients, who were unmutated in all JAK/STAT genes
analyzed with WES/WGS.

All statistical analyses were performed using R software and R packages (Table S7). Analysis of
overall survival, as measured from day of diagnosis until day of event or censoring, was performed
and graphed with R survival and R survminer packages. Log rank statistics were calculated to
test for differences in survival distributions. Continuous clinical parameters were tested for normal
distribution with Shapiro–Wilk test and further assessed for their associations to JAK/STAT mutational
status with either Student’s t-test or Wilcoxon rank sum test, depending on the normality test. Fisher’s
exact test was used for testing differences in categorical data in patients with JAK/STAT mutations
compared to unmutated patients. A p < 0.05 was considered to be statistically significant.

4.5. Immunoblots

We performed Western blots of whole-cell lysates of primary T-PLL cells and CD3+ pan T-cell
isolated from age matched healthy controls by magnetic-bead based cell enrichment. Positive selection
of CD3+ pan T-cells of healthy controls was performed according to the manufactures instruction
(Biolegend). Following antibodies from Cell Signaling Technology were used in a 1:1000 dilution
according to the manufacturer’s instruction: phospho-STAT5TYR694 (clone C11C5, catalogue #9359),
STAT5 (polyclonal, #9363), and GAPDH (clone 14C10, #2118). As a secondary antibody we made use
of HRP-coupled anti-rabbit (Dianova) in a 1:5000 dilution. Immunoblots were done using Western
Bright ECL (Advansta, Menlo Park, CA, USA) and luminescence intensities were evaluated by
densitometry (ImageJ software, National Institute of Health, Bethesda, MD, USA). Uncropped images
of the immunoblots are displayed in Figure S5.

4.6. Data Accessibility

All genomic data analyzed in this study was gathered from published series. For detailed sources
of raw data and/or information on JAK/STAT mutations, see Table S6.

5. Conclusions

Overall, this meta-analysis provides an overview of the lesional landscape of JAK/STAT associated
genes in the largest cohort of T-PLL cases to date and summarizes the potential functional impact of the
most common genomic aberrations. Nearly every T-PLL case in our cohort had a genetic aberration,
which can be intuitively implicated in constitutively active JAK/STAT signaling. Besides GOF missense
mutations in JAK/STAT genes, genomic losses of negative regulators of the JAK-STAT signaling axis
are frequently found in T-PLL, linking the high basal phosphorylation of STAT5B to genomic causes.
We propose a model for these distinct mechanisms implicated in constitutive STAT5B signaling in
T-PLL (Figure 5). Our data provide a rational framework for strategies to inhibit JAK/STAT signaling in
T-PLL, even in patients whose leukemia does not carry mutations in a JAK or STAT gene. Development
of novel STAT inhibitors and their application, including with synergistic partners, in model systems
and in T-PLL patients, represent future tasks.
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Figure 5. Proposed model of recurrent genomic lesions leading to an enhanced activation of STAT5B in
T-PLL. Regulatory network summarizing detected genomic lesions (sCNAs, mutations) in JAK/STAT
genes and their direct regulators. Mutations of JAK and STAT genes and genomic losses of negative
STAT5B regulators being affected in more than 5% of T-PLL patients were included. Frequent missense
mutations occur in the JH2 and SH2-JH2 linker of JAK1 and JAK3, potentially leading to elevated
phosphorylation and dimerization of STAT5B. Activation of JAK1 and JAK3 is potentially enhanced
through genomic losses (DUSP4, SOCS1, SOCS3, CD45, SHP1, HDAC9, and TCPTP) and mutations
(HDAC9) of negative regulators. STAT5B activation might be further increased through GOF mutations
in its SH2 domain. Cytoplasmatic (SHP1, TCPTP) as well as nuclear (DUSP4, HDAC9) regulators are
commonly affected by genomic losses in T-PLL, leading to intensified STAT5B signaling. Constitutive
active STAT5B translocates into the nucleus and regulates transcription of many target genes relevant
for T-cell development, differentiation, proliferation, migration, and apoptosis [52].

Supplementary Materials: The following materials are available online at http://www.mdpi.com/2072-6694/11/
12/1833/s1, Figure S1: JAK/STAT mutation status shows association with the inversion 14 (q11q32) and elevated
TCL1A mRNA expression; Figure S2: JAK/STAT mutation status shows no association with outcome in T-PLL
patients; Figure S3: Overview of genomic lesions associated with an activation of the JAK/STAT pathway across
all considered T-PLL cases; Figure S4: T-PLL cases harboring any JAK or STAT mutation show similar gene
expression compared to T-PLL cases with a loss or mutation of a negative regulator potentially activating JAK/STAT
signaling; Figure S5: Uncropped images of immunoblots; Table S1: Overview of considered publications; Table
S2: Associations of JAK and STAT mutations with immunophenotypic, cytogenetic, and mutational data; Table
S3: Screening of clinical parameters; Table S4: List of genes encoding for proteins which potentially regulate
JAK/STAT signaling; Table S5: Overview of references; Table S6: Data sources; Table S7: Bioinformatic tools
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Oleś, M.; et al. Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and
mutation profiling. Leukemia 2017, 32, 774. [CrossRef]

http://dx.doi.org/10.1182/blood.2019000402
http://www.ncbi.nlm.nih.gov/pubmed/31292114
http://dx.doi.org/10.1182/blood-2004-01-0002
http://www.ncbi.nlm.nih.gov/pubmed/15044256
http://dx.doi.org/10.1182/blood-2012-01-380139
http://www.ncbi.nlm.nih.gov/pubmed/22649104
http://dx.doi.org/10.1002/cncr.27972
http://www.ncbi.nlm.nih.gov/pubmed/23512246
http://dx.doi.org/10.1182/blood-2007-07-101519
http://www.ncbi.nlm.nih.gov/pubmed/17890451
http://dx.doi.org/10.3816/CLM.2005.n.051
http://dx.doi.org/10.1182/blood-2011-08-372854
http://dx.doi.org/10.1016/S0969-2126(98)00017-3
http://dx.doi.org/10.1038/s41467-017-02688-6
http://dx.doi.org/10.1182/blood-2014-03-559542
http://dx.doi.org/10.1038/leu.2013.271
http://www.ncbi.nlm.nih.gov/pubmed/24048415
http://dx.doi.org/10.1002/gcc.22313
http://www.ncbi.nlm.nih.gov/pubmed/26493028
http://dx.doi.org/10.1111/bjh.13952
http://www.ncbi.nlm.nih.gov/pubmed/26917488
http://dx.doi.org/10.1158/0008-5472.CAN-17-3644
http://dx.doi.org/10.1172/JCI93801
http://dx.doi.org/10.1038/leu.2017.252


Cancers 2019, 11, 1833 17 of 18

17. Greenplate, A.; Wang, K.; Tripathi, R.M.; Palma, N.; Ali, S.M.; Stephens, P.J.; Miller, V.A.; Shyr, Y.; Guo, Y.;
Reddy, N.M.; et al. Genomic profiling of T-Cell neoplasms reveals frequent JAK1 and JAK3 mutations with
clonal evasion from targeted therapies. JCO Precis. Oncol. 2018. [CrossRef]

18. Johansson, P.; Klein-Hitpass, L.; Choidas, A.; Habenberger, P.; Mahboubi, B.; Kim, B.; Bergmann, A.;
Scholtysik, R.; Brauser, M.; Lollies, A.; et al. SAMHD1 is recurrently mutated in T-cell prolymphocytic
leukemia. Blood Cancer J. 2018, 8, 11. [CrossRef]

19. Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT signaling pathway. J. Cell Sci. 2004, 117, 1281–1283.
[CrossRef]

20. Villarino, A.V.; Kanno, Y.; O’Shea, J.J. Mechanisms and consequences of Jak-STAT signaling in the immune
system. Nat. Immunol. 2017, 18, 374–384. [CrossRef]

21. Furqan, M.; Mukhi, N.; Lee, B.; Liu, D. Dysregulation of JAK-STAT pathway in hematological malignancies
and JAK inhibitors for clinical application. Biomark. Res. 2013, 1, 5. [CrossRef] [PubMed]

22. Heinrich, T.; Rengstl, B.; Muik, A.; Petkova, M.; Schmid, F.; Wistinghausen, R.; Warner, K.; Crispatzu, G.;
Hansmann, M.-L.; Herling, M.; et al. Mature T-cell lymphomagenesis induced by retroviral insertional
activation of Janus kinase 1. Mol. Ther. 2013, 21, 1160–1168. [CrossRef] [PubMed]

23. Maurer, B.; Nivarthi, H.; Wingelhofer, B.; Pham, H.T.T.; Schlederer, M.; Suske, T.; Grausenburger, R.;
Schiefer, A.-I.; Prchal-Murphy, M.; Chen, D.; et al. High activation of STAT5A drives peripheral T-cell
lymphoma and leukemia. Haematologica 2019. [CrossRef] [PubMed]

24. Taylor, P.C. Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatology 2019, 58
(Suppl. 1), i17–i26. [CrossRef]

25. Mannina, D.; Kröger, N. Janus Kinase inhibition for graft-versus-host disease: Current status and future
prospects. Drugs 2019, 79, 1499–1509. [CrossRef]

26. Schwartz, D.M.; Bonelli, M.; Gadina, M.; O’Shea, J.J. Type I/II cytokines, JAKs, and new strategies for treating
autoimmune diseases. Nat. Rev. Rheumatol. 2016, 12, 25–36. [CrossRef]

27. Gomez-Arteaga, A.; Margolskee, E.; Wei, M.T.; van Besien, K.; Inghirami, G.; Horwitz, S. Combined use
of tofacitinib (pan-JAK inhibitor) and ruxolitinib (a JAK1/2 inhibitor) for refractory T-cell prolymphocytic
leukemia (T-PLL) with a JAK3 mutation. Leuk. Lymphoma 2019, 60, 1626–1631. [CrossRef]

28. Wei, M.; Koshy, N.; van Besien, K.; Inghirami, G.; Horwitz, S.M. Refractory T-cell prolymphocytic leukemia
with JAK3 mutation: In Vitro and clinical synergy of Tofacitinib and Ruxolitinib. Blood 2015, 126, 5486.
[CrossRef]

29. Kiel, M.J.; Sahasrabuddhe, A.A.; Rolland, D.C.M.; Velusamy, T.; Chung, F.; Schaller, M.; Bailey, N.G.; Betz, B.L.;
Miranda, R.N.; Porcu, P.; et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the
JAK–STAT pathway in Sézary syndrome. Nat. Commun. 2015, 6, 8470. [CrossRef]

30. Nicolae, A.; Xi, L.; Pham, T.H.; Pham, T.-A.; Navarro, W.; Meeker, H.G.; Pittaluga, S.; Jaffe, E.S.; Raffeld, M.
Mutations in the JAK/STAT and RAS signaling pathways are common in intestinal T-cell lymphomas. Leuemia
2016, 30, 2245. [CrossRef]

31. Lone, W.; Alkhiniji, A.; Manikkam Umakanthan, J.; Iqbal, J. Molecular Insights into pathogenesis of peripheral
T cell lymphoma: A review. Curr. Hematol. Malig. Rep. 2018, 13, 318–328. [CrossRef] [PubMed]

32. Maljaei, S.H.; Brito-Babapulle, V.; Hiorns, L.R.; Catovsky, D. Abnormalities of chromosomes 8, 11, 14, and
X in T-prolymphocytic leukemia studied by fluorescence in situ hybridization. Cancer Genet. Cytogenet.
1998, 103, 110–116. [CrossRef]

33. Prinz, C.; Vasyutina, E.; Lohmann, G.; Schrader, A.; Romanski, S.; Hirschhäuser, C.; Mayer, P.; Frias, C.;
Herling, C.D.; Hallek, M.; et al. Organometallic nucleosides induce non-classical leukemic cell death that
is mitochondrial-ROS dependent and facilitated by TCL1-oncogene burden. Mol. Cancer 2015, 14, 114.
[CrossRef] [PubMed]

34. Jeong, E.G.; Kim, M.S.; Nam, H.K.; Min, C.K.; Lee, S.; Chung, Y.J.; Yoo, N.J.; Lee, S.H. Somatic mutations of JAK1
and JAK3 in acute leukemias and solid cancers. Clin. Cancer Res. 2008, 14, 3716–3721. [CrossRef] [PubMed]

35. Gordon, G.M.; Lambert, Q.T.; Daniel, K.G.; Reuther, G.W. Transforming JAK1 mutations exhibit differential
signalling, FERM domain requirements and growth responses to interferon-γ. Biochem. J. 2010, 432, 255–265.
[CrossRef]

36. Hornakova, T.; Staerk, J.; Royer, Y.; Flex, E.; Tartaglia, M.; Constantinescu, S.N.; Knoops, L.; Renauld, J.-C.
Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via
interleukin-9 receptor alpha homodimers. J. Biol. Chem. 2009, 284, 6773–6781. [CrossRef] [PubMed]

http://dx.doi.org/10.1200/PO.17.00019
http://dx.doi.org/10.1038/s41408-017-0036-5
http://dx.doi.org/10.1242/jcs.00963
http://dx.doi.org/10.1038/ni.3691
http://dx.doi.org/10.1186/2050-7771-1-5
http://www.ncbi.nlm.nih.gov/pubmed/24252238
http://dx.doi.org/10.1038/mt.2013.67
http://www.ncbi.nlm.nih.gov/pubmed/23609016
http://dx.doi.org/10.3324/haematol.2019.216986
http://www.ncbi.nlm.nih.gov/pubmed/31123029
http://dx.doi.org/10.1093/rheumatology/key225
http://dx.doi.org/10.1007/s40265-019-01174-1
http://dx.doi.org/10.1038/nrrheum.2015.167
http://dx.doi.org/10.1080/10428194.2019.1594220
http://dx.doi.org/10.1182/blood.V126.23.5486.5486
http://dx.doi.org/10.1038/ncomms9470
http://dx.doi.org/10.1038/leu.2016.178
http://dx.doi.org/10.1007/s11899-018-0460-z
http://www.ncbi.nlm.nih.gov/pubmed/29951889
http://dx.doi.org/10.1016/S0165-4608(97)00410-X
http://dx.doi.org/10.1186/s12943-015-0378-1
http://www.ncbi.nlm.nih.gov/pubmed/26041471
http://dx.doi.org/10.1158/1078-0432.CCR-07-4839
http://www.ncbi.nlm.nih.gov/pubmed/18559588
http://dx.doi.org/10.1042/BJ20100774
http://dx.doi.org/10.1074/jbc.M807531200
http://www.ncbi.nlm.nih.gov/pubmed/19139102


Cancers 2019, 11, 1833 18 of 18

37. Flex, E.; Petrangeli, V.; Stella, L.; Chiaretti, S.; Hornakova, T.; Knoops, L.; Ariola, C.; Fodale, V.; Clappier, E.;
Paoloni, F.; et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J. Exp. Med.
2008, 205, 751–758. [CrossRef]

38. Yang, S.; Luo, C.; Gu, Q.; Xu, Q.; Wang, G.; Sun, H.; Qian, Z.; Tan, Y.; Qin, Y.; Shen, Y.; et al. Activating
JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma. Oncotarget
2016, 7, 5461–5469. [CrossRef]

39. Degryse, S.; de Bock, C.E.; Demeyer, S.; Govaerts, I.; Bornschein, S.; Verbeke, D.; Jacobs, K.; Binos, S.;
Skerrett-Byrne, D.A.; Murray, H.C.; et al. Mutant JAK3 phosphoproteomic profiling predicts synergism
between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia.
Leukemia 2018, 32, 788. [CrossRef]

40. Martinez, G.S.; Ross, J.A.; Kirken, R.A. Transforming mutations of Jak3 (A573V and M511I) show differential
sensitivity to selective JAK3 inhibitors. Clin. Cancer Drugs 2016, 3, 131–137. [CrossRef]

41. Degryse, S.; de Bock, C.E.; Cox, L.; Demeyer, S.; Gielen, O.; Mentens, N.; Jacobs, K.; Geerdens, E.; Gianfelici, V.;
Hulselmans, G.; et al. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell
acute lymphoblastic leukemia in a mouse model. Blood 2014, 124, 3092–3100. [CrossRef] [PubMed]

42. Vicente, C.; Schwab, C.; Broux, M.; Geerdens, E.; Degryse, S.; Demeyer, S.; Lahortiga, I.; Elliott, A.; Chilton, L.;
Starza, R.L.; et al. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic
modulators in T-cell acute lymphoblastic leukemia. Haematologica 2015, 100, 1301–1310. [CrossRef] [PubMed]

43. Rajala, H.L.M.; Eldfors, S.; Kuusanmäki, H.; van Adrichem, A.J.; Olson, T.; Lagström, S.; Andersson, E.I.;
Jerez, A.; Clemente, M.J.; Yan, Y.; et al. Discovery of somatic STAT5b mutations in large granular lymphocytic
leukemia. Blood 2013, 121, 4541–4550. [CrossRef] [PubMed]

44. Küçük, C.; Jiang, B.; Hu, X.; Zhang, W.; Chan, J.K.C.; Xiao, W.; Lack, N.; Alkan, C.; Williams, J.C.; Avery, K.N.;
et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat. Commun.
2015, 6, 6025. [CrossRef]

45. de Araujo, E.D.; Erdogan, F.; Neubauer, H.A.; Meneksedag-Erol, D.; Manaswiyoungkul, P.; Eram, M.S.;
Seo, H.S.; Qadree, A.K.; Israelian, J.; Orlova, A.; et al. Structural and functional consequences of the
STAT5BN642H driver mutation. Nat. Commun. 2019, 10, 2517. [CrossRef]

46. Pham, H.T.T.; Maurer, B.; Prchal-Murphy, M.; Grausenburger, R.; Grundschober, E.; Javaheri, T.; Nivarthi, H.;
Boersma, A.; Kolbe, T.; Elabd, M.; et al. STAT5BN642H is a driver mutation for T cell neoplasia. J. Clin.
Investig. 2018, 128, 387–401. [CrossRef]

47. Andersson, E.I.; Tanahashi, T.; Sekiguchi, N.; Gasparini, V.R.; Bortoluzzi, S.; Kawakami, T.; Matsuda, K.;
Mitsui, T.; Eldfors, S.; Bortoluzzi, S.; et al. High incidence of activating STAT5B mutations in CD4-positive
T-cell large granular lymphocyte leukemia. Blood 2016, 128, 2465–2468. [CrossRef]

48. McKinney, M.; Moffitt, A.B.; Gaulard, P.; Travert, M.; de Leval, L.; Raffeld, A.N.M.; Jaffe, E.S.; Pittaluga, S.;
Xi, L.; Heavican, T.; et al. The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov. 2017, 7, 369–379.
[CrossRef]

49. O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT pathway:
impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015, 66, 311–328. [CrossRef]

50. Schrader, A.; Braun, T.; Herling, M. The dawn of a new era in treating T-PLL. Oncotarget 2019, 10, 626–628.
[CrossRef]

51. Wingelhofer, B.; Maurer, B.; Heyes, E.C.; Cumaraswamy, A.A.; Berger-Becvar, A.; de Araujo, E.D.; Orlova, A.;
Freund, P.; Ruge, F.; Park, J.; et al. Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia
2018, 32, 1135–1146. [CrossRef] [PubMed]

52. Kanai, T.; Seki, S.; Jenks, J.A.; Kohli, A.; Kawli, T.; Martin, D.P.; Snyder, M.; Bacchetta, R.; Nadeau, K.C.
Identification of STAT5A and STAT5B target genes in human T cells. PLoS ONE 2014, 9, e86790. [CrossRef]
[PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1084/jem.20072182
http://dx.doi.org/10.18632/oncotarget.6684
http://dx.doi.org/10.1038/leu.2017.276
http://dx.doi.org/10.2174/2212697X03666160610085943
http://dx.doi.org/10.1182/blood-2014-04-566687
http://www.ncbi.nlm.nih.gov/pubmed/25193870
http://dx.doi.org/10.3324/haematol.2015.130179
http://www.ncbi.nlm.nih.gov/pubmed/26206799
http://dx.doi.org/10.1182/blood-2012-12-474577
http://www.ncbi.nlm.nih.gov/pubmed/23596048
http://dx.doi.org/10.1038/ncomms7025
http://dx.doi.org/10.1038/s41467-019-10422-7
http://dx.doi.org/10.1172/JCI94509
http://dx.doi.org/10.1182/blood-2016-06-724856
http://dx.doi.org/10.1158/2159-8290.CD-16-0330
http://dx.doi.org/10.1146/annurev-med-051113-024537
http://dx.doi.org/10.18632/oncotarget.26595
http://dx.doi.org/10.1038/s41375-017-0005-9
http://www.ncbi.nlm.nih.gov/pubmed/29472718
http://dx.doi.org/10.1371/journal.pone.0086790
http://www.ncbi.nlm.nih.gov/pubmed/24497979
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Characteristics and Overlaps of Included Studies 
	Mutations in JAK and STAT Genes are Predominantly Found at Subclonal Levels 
	Missense Mutations in JAK1, JAK3, and STAT5B Cluster Within the Conserved Pseudokinase and SH2 Domains 
	T-PLL Harboring any JAK or STAT Mutation Show Elevated TCL1A mRNA Level, but Present Comparable Clinical Outcomes 
	T-PLL Cells Show Basal STAT5B Phosphorylation, Regardless of Their JAK/STAT Mutation Status 

	Discussion 
	Materials and Methods 
	Data Acquisition 
	Data Merging 
	Raw Data Analysis 
	Whole-Exome Sequencing (WES) 
	Somatic Copy-Number Alterations (sCNAs) 
	Gene Expression Profiling (GEP) 

	Clinical Data and Statistical Analyses 
	Immunoblots 
	Data Accessibility 

	Conclusions 
	References

