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ABSTRACT
Today, various methods are applied to analyze the data collected 
through participatory mapping, including public participation GIS 
(PPGIS), participatory GIS (PGIS), and collecting volunteered geo-
graphic information (VGI). However, these methods lack an organized 
framework to describe and guide their systematic applications. 
Majority of the published articles on participatory mapping apply 
a specific subset of analyses that fails to situate the methods within 
a broader, more holistic context of research and practice. Based on 
the expert workshops and a literature review, we synthesized the 
existing analysis methods applied to the data collected through 
participatory mapping approaches. In this article, we present 
a framework of methods categorized into three phases: Explore, 
Explain, and Predict/Model. Identified analysis methods have been 
highlighted with empirical examples. The article particularly focuses 
on the increasing applications of online PPGIS and web-based map-
ping surveys for data collection. We aim to guide both novice and 
experienced practitioners in the field of participatory mapping. In 
addition to providing a holistic framework for understanding data 
analysis possibilities, we also discuss potential directions for future 
developments in analysis of participatory mapping data.
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1. Introduction

The last two decades of the Western and non-Western world have witnessed increasing 
interest in the participatory mapping approaches, applied in a variety of fields of 
research and practice (Brown et al. 2020). Various terms have been used to describe 
these approaches, the most prominent being public participation geographical infor-
mation systems (PPGIS), participatory GIS (PGIS), and volunteered geographic 
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information (VGI) (Verplanke et al. 2016). Today, participatory mapping approach has 
roused the interest of academics and a wide user community. This is evident from the 
increasing number of academic publications, conferences, workshops, and journal 
special issues pertaining to this field (see, e.g., Brown and Fagerholm 2015, Mukherjee 
2015, Brown and Kyttä 2018). Furthermore, participatory mapping now has an interna-
tional professional society, comprising scholars and practitioners, invested in its integ-
rity, accuracy, data collection, and the equitable distribution of knowledge 
(International Society for Participatory Mapping 2020).

As noted by Brown and Kyttä (2014), PPGIS, PGIS, and VGI are related spatial terms with 
sufficient differences to warrant nuanced descriptions. PPGIS approaches promote the 
use of GIS and modern communication technologies to engage the general public and 
stakeholders to carry out informed participatory planning and decision-making, particu-
larly in the context of urban and regional development (Sieber 2006). The term PGIS 
emphasizes empowerment and can be traced to the merger of Participatory Learning and 
Action methods with geographic information technologies in the Global South (Rambaldi 
et al. 2006). The term VGI, introduced by Goodchild (2007), describes a phenomenon 
where citizens voluntarily create, collect, validate, analyze, and disseminate geographic 
information. Collecting VGI is based more on contribution and communication of infor-
mation, than on participation (Verplanke et al. 2016). Collecting VGI conceptually resem-
bles PPGIS approaches owing to the use of typical online tools to harness spatial 
information (Hall et al. 2010). In this paper, we have adopted the use of the term PPGIS, 
although some of the empirical work we discuss could be described as PGIS or collect-
ing VGI.

PPGIS approaches seek to understand location-specific human values, perceptions, 
behavior, and preferences for future land use and development. Methods for analyzing 
spatially referenced data, collated using PPGIS, have been developed in diverse directions. 
Among others, these include analyzing sampling effects and response bias (e.g., Brown 
et al. 2014a, Brown 2017, Munro et al. 2017), representing diversity, abundance, or rarity of 
value points (Bryan et al. 2011); examining the level of overlap in values across different 
stakeholder groups (Muñoz et al. 2019), identifying the potential for value or preference 
conflicts (e.g., Brown and Raymond 2014, Kahila-Tani et al. 2016, Plieninger et al. 2018, 
Wolf et al. 2018); assessing environmental justice issues (Raymond et al. 2016); and 
bridging the divide between experts and the public (Whitehead et al. 2014, Zolkafli 
et al. 2017a). Despite the plethora of analysis methods available to explore, explain, and 
predict spatial attributes collated using PPGIS, most published articles apply a specific 
subset of analyses that fails to situate the methods within a broader, more holistic context 
of research and practice. Hence, the field currently lacks a methodological framework, 
making it essential to synthesize the various existing analysis methods to guide their 
processes and applications.

In this paper, we aim to produce a systematic framework of PPGIS data analysis 
methods supported by examples from published empirical studies. Our focus is mainly 
limited to the online PPGIS approaches, particularly the web-based mapping survey, the 
most common administrative technique for PPGIS data collection (Brown and Kyttä 2014). 
In order to provide context for our proposed framework, we first discuss spatial and non- 
spatial attributes in PPGIS surveys and implications of the combination of these on the 
quality of the PPGIS data produced and the methods for data analyses. This is followed by 
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presentation of our views on the different phases in PPGIS data analysis (Explore, Explain, 
Predict/Model) and identifying the methods, purposes, and analytical approaches, high-
lighting each with example studies and application domains, based on expert workshops 
and extensive literature review of peer-reviewed articles. Finally, we recommend potential 
future development directions for PPGIS analysis methods. The methods of analyses 
described herein are relevant to different applications including conservation and natural 
resource planning and urban and regional development. We aim to guide researchers and 
practitioners, both new and experienced, interested in PPGIS approaches, to address 
academic, or applied questions relevant to exploration, explanation, and prediction.

2. Methods

To draft and develop the methodological framework, the authors conducted a one-day 
expert workshop in August 2018, at the Aalto University in Helsinki, Finland. This was the 
first of the two workshops held at Aalto University where we discussed possible ways to 
categorize analysis methods. The second workshop held in October 2018 saw further 
refinements to the framework along with drafting of the manuscript contents and plan-
ning the literature review. Moreover, in January 2019 we searched for peer-reviewed 
articles using the Scopus electronic database (document search: title, abstract, keywords, 
and publication year 2004 to 2019) to gather examples of empirical studies that applied 
a broad range of data analysis methods, and contained the keywords: participatory GIS, 
participatory mapping, public participation GIS, PPGIS, SoftGIS, and geo-questionnaire. 
We identified 279 such published papers. We reviewed these articles to describe the 
applied analysis methods. Based on expert judgment, we also included several published 
papers that did not appear in the search results. In the third and final workshop held in 
December 2018 at the University of Turku in Turku, Finland, we critically reflected on the 
manuscript content, results of the literature review, and discussed future directions in the 
field of participatory mapping.

Although the article focuses on the online PPGIS approaches, we acknowledge that the 
presented methods can also be applied to analyze data collected through analog 
approaches (e.g. interviews, workshops, and mail surveys). Hence, we have included 
some offline PPGIS approaches to cover the range of methods and highlighted important 
examples where specific methods were applied for the first time. Online PPGIS surveys 
also include data collected from individuals, which is then aggregated to the scale of the 
survey population (Brown et al. 2015a), as opposed to deliberative valuation where the 
emphasis is on group negotiation and compromise, including the mapping of shared and 
social values (Raymond et al. 2014, Kenter 2016).

3. Data collection through PPGIS surveys and data quality

PPGIS data analysis methods are constrained by data quality. The PPGIS process includes 
the phases of survey/website design, participant recruitment, and data collection, fol-
lowed by data analysis. All phases are important and should be carefully prepared. Survey 
design identifies the spatial and non-spatial information to be collected which influences 
the user experience (Swobodzinski and Jankowski 2014, Poplin 2015, Gottwald et al. 
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2016), participation rates, and ultimately, the quality of spatial data and the possibilities of 
analysis offered.

There exists several recruitment methods for online PPGIS surveys, ranging from 
random samples drawn from a national population or household registers (Hausner 
et al. 2015, Kyttä et al. 2015, Laatikainen et al. 2019), purposive sampling (Garcia-Martin 
et al. 2017), and crowdsourced/volunteer sampling through traditional or social media 
(Kahila-Tani et al. 2016, Rall et al. 2017) to using internet survey panels (Brown et al. 2012, 
Munro et al. 2017). To improve the quality of spatial data generated, other participant 
recruitment strategies, such as collecting data in schools when studying children and 
young people (Kyttä et al. 2012, 2018b) or applying facilitated mapping processes where 
survey respondent receives assistance (Zolkafli et al. 2017b, Fagerholm et al. 2019a), can 
also be used. In a recent review, Kahila-Tani et al. (2019) found that the data collection 
strategy impacts sample representativeness; random sampling seems to promote good 
representativeness while crowdsourced/volunteer sampling poses a challenge to reach-
ing a balanced respondent profile.

The quality of PPGIS data also depends on many other factors including mapping 
efforts, accuracy, and precision, type of spatial data collected, and data usability in terms 
of how it fits the purpose (Brown and Kyttä 2014, Brown and Fagerholm 2015, Jankowski 
et al. 2016, Kahila-Tani et al. 2019). There are always practical limitations to the time and 
efforts exerted by the respondents in a survey. A meta-analysis shows that household 
sampling groups always dedicate more mapping efforts as compared to volunteer groups 
(Brown 2017). Cognitive challenges may vary depending on the type of data being 
collected through mapping, that is, objective or subjective. For instance, place-related 
activities and experiences seem to be cognitively less challenging to map as compared to 
place-related values and concepts such as ecosystem services (Brown 2017).

PPGIS data collection through online surveys are often self-administered, where indi-
viduals map spatial attributes of importance without outside assistance. These attributes 
can relate to mapping of either points, lines, or polygons, with points being the most 
commonly used and simple geographic feature in PPGIS (Brown and Fagerholm 2015). 
The mapped spatial PPGIS data attributes can, for example, signify a respondent’s:

(1) Spatial values, perceptions, or attitudes, e.g., landscape values (Brown and 
Raymond 2007), perceived environmental quality factors (Kyttä et al. 2013), and 
ecosystem service benefits (Ridding et al. 2018, Fagerholm et al. 2019a), in addition 
to perceived problems or unpleasant experiences (Raymond et al. 2016);

(2) Spatial behavior patterns, everyday practices, and activities, e.g., daily mobility 
patterns, and routes travelled (Laatikainen et al. 2017, Kajosaari et al. 2019), places 
visited (Sarjala et al. 2015), and their temporal characters, e.g., seasonality, length, 
or frequency of visitation (Bijker and Sijtsma 2017);

(3) Spatially defined future preferences or visions, e.g. development preferences 
(Brown 2006, Raymond and Brown 2007, Jankowski et al. 2016, Kahila-Tani et al. 
2016, Engen et al. 2018); and

(4) Preferred place features referred to as ‘geographic citizen science’ (Haklay 2013), 
e.g., mapping road/trail networks (e.g., OpenStreetMap) and wildlife observations 
(Brown et al. 2018a). These spatial data can be used to augment and validate 
authoritative data.
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In addition to mapping the spatial attributes, open or structured follow-up questions can 
be asked to describe the mapped attributes. These follow-up questions often appear in 
a pop-up window with relation to the mapped places in the survey. Videos, photos, and 
recorded stories can also be captured for the mapped places (e.g., Kahila-Tani et al. 2018).

Along with their focus on mapping, spatial surveys often include non-spatial PPGIS data 
collected through traditional open or structured questions (Figure 1). Such non-spatial 
data may include, but are not limited to, questions addressing:

(1) Socio-economic-demographic characteristics, e.g. age, gender, education, and 
income levels;

(2) Personal general values, attitudes, and preferences, e.g., lifestyle preferences, 
environmental worldviews, beliefs, and norms;

(3) Personal motivation and behavioral intentions, e.g., personal goals, and likelihood 
to engage in special behavior;

(4) Personal well-being, happiness, health, and satisfaction, e.g., perceived health, 
perceived quality of life, and neighborhood satisfaction; and

(5) Level of trust in planning and decision-making processes for land use.

An important trade-off in survey design relates to the abundance of spatial data versus 
descriptive depth of mapped places. When targeting a considerable number of mapped 
places by each survey respondent, the respondents are likely reluctant to spend sig-
nificant time to describe the mapped places in-depth. Similarly, when aiming for 

Figure 1. PPGIS survey data structure with mapped spatial and non-spatial data, and links to other 
geospatial data.
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detailed descriptions of numerous-mapped places, it is likely that the respondent’s 
efforts may not be sufficient. Hence, in terms of survey design, it is crucial to balance 
the quantity of mapped spatial data with the corresponding descriptions; in each case, it 
is important to critically reflect on the most essential information for the purpose of the 
study. Hence, data quality can be controlled when designing the survey and this affects 
analysis possibilities for the data.

4. Other geospatial data in PPGIS data analysis

PPGIS datasets are often combined with other geospatial data during analysis (Figure 1). 
Typical examples include land cover, land use, and road network data. CORINE land 
cover is an openly accessible European example of a land cover and land use dataset 
(https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012). Although, road 
network datasets, comprising national road datasets, are available, the use of Open 
Street Map (www.openstreetmap.org), an open geospatial road dataset produced by 
a community of mappers, has become common. Furthermore, versatile geographically 
referenced statistical data pertaining to population, species, city plans, population and 
housing density, conservation areas, zoned land units, real estates, buildings, and service 
and company locations can be used concurrently with PPGIS data. Participatory map-
ping also provides an opportunity to conduct ex-post planning evaluation, to obtain 
feedback from inhabitants regarding the performance of neighborhood, city, or regional 
level planning solutions once they are accomplished. PPGIS datasets can therefore be 
analyzed along with urban or spatial plans (Kyttä et al. 2014). To understand the actual 
realization of these plans, this analysis can be complemented with expert audit data of 
the physical environment (2018a) and virtual audits, now possible with the help of 
Google Street View (Rzotkiewicz et al. 2018). Additional spatially referenced datasets 
include social media data (Toivonen et al. 2019) and data produced through GPS 
tracking (Wolf et al. 2015).

5. Analysis of PPGIS data: a framework with three phases

Analysis methods applied to PPGIS data can be represented as a framework of three 
analytical phases: Explore, Explain, and Predict/Model. These phases graduate from basic to 
advanced. The three phases of the framework relate to different types of knowledge 
claims, as an output of PPGIS data analysis. The Explore phase defines the exploratory and 
descriptive character of the analysis method (Figure 2). Such methods are generally 
termed as exploratory spatial data analysis (De Smith et al. 2020). The analysis does not 
require high expertise and can be done by non-academics such as planners and stake-
holders. The Explain phase aims to understand the relationship between PPGIS data and 
multiple other geospatial data sources. This phase demands expertise in analytical meth-
ods. The Predict/Model phase intends to generalize mapped attributes to other places and 
contexts, and to understand future realities. This phase typically requires advanced 
expertise to perform analyses that integrate multiple data sources to predict and model 
PPGIS data.

The presented framework suggests a logical progression in data analysis. However, in 
reality, analysis often proceeds iteratively going back and forth between the different 
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phases. Moreover, it is not necessary to perform data analysis in all phases. For example, 
data analysis can simply focus on the first phase, Explore. Each phase of our framework 
and its related methods have been presented in the following sections. Since earlier 
literature have not given due justice to spatial PPGIS data analysis options, our paper 
specially focuses on these.

5.1. Explore

The first analytical phase, Explore, involves descriptive and univariate analysis of PPGIS 
data and generation of visual outputs. Spatial patterns are identified for one attribute at 
a time (univariate analysis) and compared across available attributes. Though the analyses 
in Explore phase focus on spatial and non-spatial PPGIS data, it incorporates other 
geospatial data merely as cartographic background information. The analyses are accom-
plished with basic GIS software or with the help of the interactive analysis tools provided 
by some online PPGIS services. An important part of Explore phase is the assessment of 
spatial data quality through validation. Before the data enter the exploration phase, PPGIS 
data need to be cleaned by detecting, correcting, or removing inaccurate spatial records, 

Table 1. PPGIS analysis methods, purposes, and example tools in Explore phase. Goals in Explore phase 
include assessment of spatial data quality and uncertainty, data exploration through simple univariate 
statistics, and visualization of spatial patterns.

Method Purpose Example tools/approaches Examples of references

External and internal validation
External validation through 

assessment of sample 
representativeness and 
application of mapping 
methods to other social and 
geographic contexts

Assessing PPGIS 
spatial data 
quality 
(external)

Assessment of sample 
representativeness e.g. 
comparison of random vs. 
volunteered samples, 
analysis of different sample 
cohorts, application of 
mapping methods and data 
typologies in multiple 
geographic locations to 
compare the results

Brown et al. (2014a), Lechner 
et al. (2014), Brown (2017), 
Brown and Hausner (2017), 
Munro et al. (2017)

Internal validation Assessing PPGIS 
spatial data 
quality 
(internal)

Assessment of content validity, 
criterion validity, and 
construct validity, 
identifying extreme 
mappers as outliers, 
measuring positional 
accuracy, correctness and 
completeness validity, 
testing spatial 
autocorrelation (i.e. global 
clustering): nearest neighbor 
index and Moran’s I

Bryan et al. (2011), Lechner 
et al. (2014), van Riper and 
Kyle (2014), Brown et al. 
(2015a), Jankowski et al. 
(2016), Rohrbach et al. 
(2016), Pietilä and 
Fagerholm (2016, Brown 
et al. (2017a), Garcia-Martin 
et al. (2017)

Descriptive and visual analysis
Data description Quantitatively and 

qualitatively 
explore data

Frequencies and simple 
descriptive statistics 
(univariate analysis)

Applicable to most cases

Data visualization Visually explore 
spatial patterns 
in data

Thematic maps, varying 
symbolization, charts

Ramirez-Gomez et al. (2013), 
Samuelsson et al. (2018), 
Kajosaari et al. (2019)
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and organized for subsequent data analysis. Such data manipulation may include value 
(re)classification, data (re)ordering, data queries, and removal of outliers.

5.1.1. External and internal validation
External and internal assessment of spatial data quality and uncertainty is important 
(Lechner et al. 2014). External validation addresses assessment of sampling strategy, 
size, and representativeness (i.e., a comparison of sample characteristics within a wider 
population) (Table 1). Exploration can also include comparison of different sampling 
groups, e.g., comparison between random versus volunteer samples (Brown et al. 
2014a) or different cohorts in the sample to assess sample representativeness (Munro 
et al. 2017). Testing whether the spatial results can be generalized to other locations, 
people, and situations is challenging because PPGIS studies are case studies with a unique 
mix of place-based contextual variables. External validity can be indirectly assessed by 
performing meta-analysis with multiple PPGIS studies to examine which spatial variables 
appear valid across different place settings. For instance, Brown and Hausner (2017) 
analyzed the distribution of mapped cultural ecosystem values in coastal areas of five 
countries and found that the mapped values were significantly more abundant in all 
coastal zones, regardless of ecosystem value category, country, population, or dominant 
land use.

Internal data validation involves assessing validity of content, criterion, and construct 
(see Brown et al. (2017a) for application of data validity concepts to quantitative and 
qualitative PPGIS data). Measurement of positional accuracy, correctness, and complete-
ness validity (Brown et al. 2015a, Jankowski et al. 2016, Rohrbach et al. 2016) is also 
a part of internal data validation. To explore global clustering, the data are commonly 
tested for spatial autocorrelation through nearest neighbor index (e.g., van Riper and 
Kyle 2014, Pietilä and Fagerholm 2016) and Moran’s I (e.g., Garcia-Martin et al. 2017). 
These descriptive statistical methods help to understand spatial distribution of the 
mapped data.

5.1.2. Descriptive and visual analysis
Simple univariate descriptive analysis is applied in the Explore phase to study PPGIS data 
qualitatively and quantitatively (Table 1). Visual outputs, in form of thematic maps and 
charts, are often generated to examine the spatial patterns (e.g., Ramirez-Gomez et al. 
2013, Samuelsson et al. 2018, 261, Kajosaari et al. 2019)

5.2. Explain

The second phase, that is, Explain, aims to look more closely at observations than the 
Explore phase, in order to explain observations by further analysis. A wide variety of PPGIS 
data analysis methods are categorized within this phase. The Explain phase essentially 
combines spatial and non-spatial PPGIS data with other geospatial data. Thus, several 
methods including inferential and multivariate statistics are used in this phase; it also 
involves the use of various statistical software along with GIS software.
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5.2.1. Visual and overlay analysis
Visualization of spatial patterns is typically part of Explain phase, but as a contrast to Explore 
phase, visual analysis includes generation of multiple simultaneous views or overlay maps 
(e.g. Kyttä et al. 2013, Laatikainen et al. 2017, Brown et al. 2018b) (Table 2). Overlay analysis, 
where multiple inputs are overlapped to generate new information, is common for viewing 
different mapped attributes or studying their relation to other geospatial data such as city 
plans, land use or ecologically valuable areas (e.g., Whitehead et al. 2014, 2018a, Rall et al. 
2019).

5.2.2. Spatial pattern analysis
A broadly applied method in multiple studies to analyze spatial patterns of PPGIS data is 
to produce a spatially continuous intensity/density surface of mapped attributes through 
Kernel density estimation (Silverman 1986) (e.g., Alessa et al. 2008, Sherrouse et al. 2011, 
Pocewicz and Nielsen-Pincus 2013, Fagerholm et al. 2016) (Table 2). A simpler version of 
intensity surface can be calculated through point density analysis (Hausner et al. 2015, 
Kantola et al. 2018). Alessa et al. (2008) investigated spatial interpolation methods (e.g., 
kriging) for intensity surface mapping, but concluded that this method appears appro-
priate when the interpolated variable has a continuous spatial coverage across an area 
(e.g., air temperature).

Clustering or dispersion of mapped attributes can be approached through methods 
developed for identifying statistically significant hot and cold spots, such as Getis-Ord Gi* 
statistics (Getis and Ord 1992). These methods have been applied extensively by Brown 
and Raymond (2014), Karimi et al. (2015), and Bagstad et al. (2017). Cluster identification 
through average nearest neighbor distance analysis has also been applied to create 
boundaries for clusters of mapped attributes (Raymond et al. 2016). Furthermore, 
Laatikainen et al. (2017) identified a corresponding distance band of the mean distance 
of the mapped points, based on which, points were aggregated to polygons to capture 
elongated clusters along the shoreline. Muñoz et al. (2019) implemented a Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) algorithm (Ester et al. 1996) to find 
areas with highest density of mapped place values.

5.2.3. Proximity-related analysis
There are various types of analysis available for exploring the proximity among the attri-
butes in mapped data or in relation to other GIS data (Table 2). Distance of mapped 
attributes from domicile can be useful to explain variation in spatial patterns of mapped 
attributes (Brown et al. 2018b). Circular buffers at specified distances around home or 
mapped places allow for calculation of the amount of different land uses and other GIS 
variables describing urban structure (Kyttä et al. 2015, Laatikainen et al. 2017) or landscape 
characteristics (Ridding et al. 2018) within the neighborhood of a mapped place. Brown 
(2013) applied circular buffer analysis to multiple radii to analyze the cumulative proportion 
of mapped forest values located within the neighborhood of mapped forest use prefer-
ences. Similarly, Brown and Hausner (2017) examined the distribution of mapped ecosystem 
values in coastal and non-coastal zones using multiple distance bands from the coastline. 
Circular buffers are also applied as the first step to identify home range, a concept common 
in ecology (Burt 1943), to spatially identify individual place attachment or activity space in 
PPGIS data. In addition, minimum convex polygon around mapped attributes has been 
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suggested as an operational model to define home ranges (Brown et al. 2015b, Hasanzadeh 
et al. 2017).

Proximity analysis is also used in viewshed analysis to calculate the range of visible 
territory in all directions at specified distances from a mapped attribute based on 
topography, using elevation values from Digital Elevation Models. The viewsheds of 
specific landscape values may be compared to the average viewshed for that attribute 
in the data (Garcia-Martin et al. 2017) or may be used to calculate the proportion of 
landscape characteristics variables derived from various GIS data within the viewshed of 
mapped outdoor locations (Ridding et al. 2018).

5.2.4. Analysis across spatial scales
Interactions of mapped locations with the surrounding landscape at different spatial 
scales (Table 2) were examined by Pietilä and Fagerholm (2016), who analyzed mapped 
tourism impacts at destination, park zone, and site scale in the context of a national park 
and by Bijker and Sijtsma (2017), who analyzed important natural places on local, regional, 
national, and global scales. Moreover, Ridding et al. (2018) calculated landscape charac-
teristic variables at different scales defined by 500 m and 5 km buffers around the mapped 
locations, whereas Ives et al. (2018) compared landscape values at suburb and munici-
pality scales using metrics of value abundance and diversity.

5.2.5. Calculation of indices across spatial units
Distribution of mapped attributes can also be analyzed across spatial units, such as land- 
use class, land management type, or grid cells using spatial indices (Table 2). Such indices, 
developed initially in landscape ecology (McGarigal and Marks 1995), have been modified 
for the purposes of PPGIS data and include, e.g. richness, diversity, abundance, dom-
inance, rarity, and complementarity (Bryan et al. 2010, Brown and Reed 2012a). Brown and 
Reed (2012a) presented a detailed elaboration of these ‘social landscape metrics’ and 
distinctions between boundary and inductive metrics. These spatial indices have been 
widely applied and further developed in PPGIS research in various application domains 
(Broberg et al. 2013, Hausner et al. 2015, Hasanzadeh 2019).

One of the specific fields of interest to explain potential tensions between mapped 
place values and land-use preferences is the identification of conflict potential based on 
PPGIS data. Brown and Raymond (2014, Figure 1), proposed a conceptual model of land- 
use conflict potential as a function of the level of agreement on land-use preferences and 
place importance. This conceptualization yielded sampling grid-based methods for cal-
culation of conflict indices using weighted and unweighted preferences, place values, and 
value compatibility scores. Application of these indices has been exemplified in practice, 
for example, by Brown and Raymond (2014) for residential and industrial development, 
Brown et al. (2017b) in natural resource management, and Plieninger et al. (2018) for 
land – and seascape values and development preferences. In addition, Karimi and Brown 
(2017) present an assessment of the different methods for conflict identification. 
Furthermore, Lechner et al. (2015) augmented the conflict identification approach to 
assess ecological connectivity.

Suitability analysis is another commonly used spatial analysis in land-use planning, 
wherein areas that are suitable for a specific land use are identified based on a set of 
decision criteria (see, e.g., Malczewski 2004). Suitability maps based on criteria (e.g., 
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elevation, slope) are generated to provide individual data layers that are overlaid to identify 
areas of spatial intersection that can satisfy multiple criteria. Traditional suitability analysis 
has often relied on biophysical landscape features, but PPGIS data layers can be used to 
identify relevant social criteria, such as landscape values, to include in the analysis (Reed and 
Brown 2003, Brown and Reed 2012b). Consistency analysis is related to suitability analysis 
and seeks to identify the significant association of PPGIS mapped attribute’s distribution 
(e.g., land-use preferences) with the current or proposed land uses (e.g., through zoning); it 
also assesses if the mapped attributes appear logically in accordance with the land use 
(Brown et al. 2018c). The consistency of PPGIS data with current or proposed land use can be 
interpreted with chi-square residual analysis, where spatial data are collected as frequencies.

5.2.6. Analysis of spatial associations
Spatial associations can be identified based on the relationships between mapped PPGIS 
attributes and physical or administrative land properties. These associations can be ana-
lyzed by tabulating the frequencies of mapped attributes within land units (cross tabula-
tion) and calculating chi-square statistics and standardized residuals to examine the 
statistical association (Brown and Brabyn 2012a) (Table 2). In addition, calculation of 
Z scores reveals the statistically significant under – or over-representation of attributes in 
a given land unit as presented, for example, by Brown et al. (2015b), Brown and Hausner 
(2017) and Fagerholm et al. (2019a). Spearman’s rank correlation analysis has been applied 
for the identification of spatial associations between pairs of mapped attributes such as 
ecosystem services or landscape values (e.g., Plieninger et al. 2013, Garcia-Martin et al. 
2017). The spatial overlap between different-mapped attributes has been quantitatively 
measured using the phi correlation coefficient (Zhu et al. 2010, Rall et al. 2017), the Jaccard 
coefficient, and the Pearson’s product moment correlations (Raymond and Brown 2011).

5.2.7. Cluster and multivariate association analysis
Creation of statistically significant clusters of mapped attributes, respondent groups, and/or 
other GIS data has been performed to identify bundles of perceived ecosystem services (i.e., 
sets of mapped ecosystem services that repeatedly appear together (Raudsepp-Hearne 
et al. 2010). Methods such as multiple correspondence analysis, hierarchical cluster analysis 
and principal component analysis have been used collectively to identify clusters/bundles 
of perceived ecosystem services in grid cells or land cover units (e.g., Plieninger et al. 2013, 
Rall et al. 2017).

Several methods identifying statistical associations have been applied to the PPGIS 
data to find associations between mapped attributes, respondent groups and/or attri-
butes from other GIS data. At a preliminary level, Spearman’s correlation is useful to 
analyze relationships between spatial and non-spatial PPGIS data or other GIS data; for 
example, to explore the association between spatially explicit social values and ecological 
values (Bryan et al. 2011), the perceived impacts of tourism and visitor satisfaction (Pietilä 
and Fagerholm 2016), cognition of fearful places in the urban environment, and presence 
of day/night (Pánek et al. 2017), and to understand the general importance of mapped 
ecosystem services and their place-specific importance (Rall et al. 2017).

At a more advanced level, regression models are the prominent multivariate modeling 
methods to analyze associations. Logistic regression models have been used to assess, for 
example, the connections between urban structure, children’s behavioral patterns, and 
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environmental experiences, and health measures (Kyttä et al. 2013), the adjusted odds of 
walking a high share of estimated monthly trips and travel distance in an urban context 
(Kajosaari et al. 2019), landscape characteristics associated with outdoor places of personal 
importance for the delivery of cultural ecosystem services (Ridding et al. 2018), and whether 
communities favor, or oppose human activities in protected areas when controlling the 
landscape characteristics, accessibility, and demographics (Engen et al. 2018). Redundancy 
analysis, a multivariate analog of regression, has been applied to examine potential relations 
between mapped ecosystem services on different land covers, subjective well-being, and 
socio-demographic characteristics (Fagerholm et al. 2016). Generalized linear models have 
been used to examine possible relationships between the mapped ecosystem services with 
frequency of green space use, affinity, and general importance of each service (Rall et al. 
2017). Generalized linear-mixed models have been applied to quantify the relationship 
between biophysical landscape characteristics and mapped ES benefits across 13 study 
sites that showed grouped structure and spatial autocorrelation (Fagerholm et al. 2019a). 
Structural equation models have been used to assess contextual variation and mediation of 
different factors in linking urban structural characteristics with health and well-being out-
comes (Kyttä et al. 2015, Laatikainen et al. 2019).

5.3. Predict/Model

The final analysis phase, Predict/Model, aims to generalize and predict mapped attributes 
to other places and contexts (prediction) or produce a representation of a system to make 
inferences (model). Analysis methods in this phase require multiple data sources in 
addition to PPGIS data and involve multivariate modeling. Performing analysis in 
Predict/Model phase requires in-depth expertise in applying GIS and statistical software. 
The phase may also demand skills in computer coding.

5.3.1. Predictive analysis
In the absence of empirical PPGIS data, quantitative relationships with physical landscape 
variables can be used to extrapolate, i.e.value transfer, mapped PPGIS attributes spatially 
for wider regions or even at national scale (Table 3). Brown and Brabyn (2012b) extra-
polated regional landscape values to a national scale using empirical relationships 
between physical landscape character and mapped PPGIS attributes. Brown et al. 
(2015c) and Brown et al. (2016) used the percent of mapped ecosystem values, spatially 
associated with land cover classes, as value transfer coefficients to assess the similarity 
between actual-mapped ecosystem values and value transfer spatial distributions.

For assessment of land use consistency, the quantitative relationship between existing 
land classifications and perceived landscape values has also been applied to build pre-
dictive discriminant functions to classify prospective lands for conservation purposes 
(Raymond and Brown 2006). Generated land classes can be mapped and overlaid with 
expert-derived classifications to estimate agreements in land use.

To identify and predict how conservation priorities change with the inclusion of PPGIS 
data, Whitehead et al. (2014) used the open-source spatial conservation prioritization 
software, Zonation (Moilanen 2007), to identify areas where there were synergies and/or 
conflicts between species distributions and social values derived from mapped data.
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5.3.2. Modeling
Regression models have been applied to estimate probabilities of mapped positive and 
negative experiences in places (Table 3). Snizek et al. (2013) applied a logistic multinomial 
regression model on urban cyclists to estimate the probability of a positive experience 
versus no experience, and the probability of a negative experience versus no experience, 
depending on variables such as road environment, cycling facilities, and environmental 
factors. Using PPGIS survey data on positive and negative experiences in the city of 
Stockholm, Samuelsson et al. (2018) predicted probabilities that if an experience was to 
occur at the location, it is positive rather than negative, as modeled through spatial 
logistic regression on environment attributes such as residential or workplace density 
and closeness to water or major roads.

An open-source statistical modeling application for social value prediction, SolVES 
(Social Value of Ecosystem Services, http://solves.cr.usgs.gov/), developed by U.S. 
Geological Survey, quantifies the relationship between density of perceived social values 

Table 3. PPGIS analysis methods, purposes, example tools and application domains in Predict/Model 
phase. Goals in Predict/Model phase include generalizing and predicting mapped attributes to other 
places and contexts (prediction) or producing a representation of a system to make inferences 
(model).

Method Purpose
Example tools/ 

approaches
PPGIS application 

domains Examples of references

Predictive 
analysis

Extrapolation Predict a mapped 
feature for location 
where there is no 
data available

Spatial value 
transfer 
through 
extrapolation

Ecosystem service 
assessment, 
landscape 
management, land 
use planning

Brown and Brabyn (2012b), 
Brown et al. (2015c), 
Brown et al. (2016)

Assessment of 
land use 
consistency

Predicting boundaries 
(polygons) of land 
use using a suite of 
mapped features

Discriminant 
analysis

Protected area 
management

Raymond and Brown (2006)

Heuristic and 
approximate 
optimization 
methods for 
spatial 
prioritization

Identify conservation 
priorities

Conservation 
prioritization 
software 
Zonation

Conservation planning Whitehead et al. (2014)

Modeling
Statistical and 

spatial 
modeling

Predict mapped 
features based on 
quantitative 
comparison to a set 
of independent 
variables

Regression 
models, SolVES 
+Maxent 
application

Ecosystem service 
assessment, 
protected area 
management, urban 
planning, transport 
planning

Snizek et al. (2013), 
Samuelsson et al. (2018), 
Sherrouse et al. (2011), 
Sherrouse et al. (2014), 
van Riper et al. (2017)

Mathematical 
modeling

Estimate the local 
activity space of an 
individual based on 
mapped features

Individualized 
residential 
exposure 
estimation 
model (IREM), 
fuzzy modeling

Urban planning Hasanzadeh et al. (2018), 
Hasanzadeh et al. (2019)

Sensitivity 
analysis

Identify uncertainty of 
a model or a system 
for outcome

Simulation; sub- 
sampling; 
choice of 
parameters

Applicable to various 
domains

Brown and Pullar (2012), 
Brown et al. (2014b), 
Hasanzadeh (2019)
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mapped through PPGIS and explanatory environmental variables (e.g. elevation, slope, 
distance to roads or water) using multiple regression modeling. SolVES was developed in 
the context of national forest planning (Sherrouse et al. 2011). Later, SolVES was inte-
grated with the Maxent maximum entropy modeling software (Elith et al. 2010) to 
generate comprehensive social value maps and to produce robust models (Sherrouse 
et al. 2014, van Riper et al. 2017).

PPGIS data have also been used to model people-based environmental exposure in 
urban context. Hasanzadeh et al. (2018) developed an individualized residential exposure 
model (IREM) to estimate local activity space of an individual, recognizing that the place 
exposure not only varies from one person to another in its geographical extents, but also 
from place to place in its magnitude. Mathematical models have also been applied to 
relate stated residential housing preferences with revealed preferences for the same 
individuals using empirical data describing the urban structure (Hasanzadeh et al. 2019).

Sensitivity analysis refers to a set of methods that can be applied to either the Explain or 
Predict/Model phases, to identify the uncertainty of a model or system, typically by varying 
the inputs and then examining the effects on the outcomes. Sensitivity analysis has not yet 
achieved widespread use in PPGIS applications but would be useful given the often- 
inherent limitations in the quantity and/or quality of PPGIS data used as input. For example, 
varying the quantity of PPGIS data entered in the spatial analysis through simulation or sub- 
sampling can demonstrate how the quantity of PPGIS data influences the spatial outcomes 
(Brown and Pullar 2012, Brown et al. 2014b) or how the choice of parameters can affect the 
measurements derived from PPGIS data modeling (Hasanzadeh 2019).

6. Discussion

In this article, we propose a methodological framework to describe and guide method 
application for data gathered through PPGIS approaches (including PGIS and collecting 
VGI) to guide both research and practice. The reviewed analysis methods can be grouped 
in three phases, beginning from Explore and advancing to Explain and Predict/Model, 
highlighting the depth and breadth of tools and methods applied in spatial PPGIS data 
analysis. The past decade has witnessed transitions in this field from practical and 
demonstrative participatory mapping in different planning contexts to a focus on analy-
tical possibilities and challenges associated with PPGIS data aggregation.

Although the cursory analysis, restricted to the Explore phase, is often sufficient to 
support practical management and planning needs, more complex methods have been 
developed within academia to drive scientific advancements. We encourage a shift 
towards more evidence-based, or knowledge-informed planning (Rydin 2007, Davoudi 
2012) by integrating more complex methods of spatial analysis into the planning process, 
including elements of exploration, explanation, and prediction. This would entail greater 
attention to: different sampling strategies for eliciting spatial attributes; different 
approaches to aggregating spatial attributes (including overlap and conflict analyses); 
possibilities for integrating different forms of spatial attributes; addressing issues of 
commensurability and compatibility; and the development of automated analyses tools 
targeted for practitioners (building on Raymond et al. 2014, Brown 2017, Pietilä and 
Fagerholm 2019, Kenter et al. 2019). In addition, an essential future direction relates to 
determining which methods are most suitable in the context of planning; adapting 
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analyses methods to different phases of planning and decision-making processes (Kahila- 
Tani et al. 2019), each with their different purposes and intended outcomes.

Researchers have an important role in ensuring that the PPGIS data and outputs can be 
readily applied in planning decisions by advancing methods that account for uncertainty. 
Identifying data thresholds and confidence intervals is basic to most scientific data, but 
the current analyses methods for PPGIS data do not estimate the validity of results, thus 
impeding the greater influence and impact of data and outputs on planning (see, e.g., 
Brown and Kyttä 2014, Brown and Fagerholm 2015). New analysis methods indicating the 
level of certainty associated with the spatial PPGIS data and derived results are now 
required, especially for planning or management decision support (building on the spatial 
uncertainty classes described by Lechner et al. 2014).

Furthermore, as online PPGIS approaches are basically a questionnaires, questions like 
sampling strategy, sample size, and response rate are critical for interpretation of analy-
tical outputs and also the possible analysis methods. A few important trends need to be 
highlighted here. First, most countries over the past decades have generally experienced 
reduced response rates leading to small and possibly biased sample sizes, even in PPGIS 
surveys (Brown et al. 2014a, Brown 2017). Second, partly due to the decreasing response 
rates, online panels are being increasingly used in PPGIS surveys (e.g. Bijker and Sijtsma 
2017). Finally, PPGIS approaches are increasingly being used in citizen science projects to 
generate big data (Kelling et al. 2015, See et al. 2016). These trends raise questions about 
possible analyses on both exceedingly small or very large datasets, and the possible 
application of data weighting in all phases of PPGIS data analyses.

Along with these, attention needs to be paid to ‘what constitutes genuine collabora-
tion in PPGIS studies?’, highlighted by Kahila-Tani et al. (2019) in their review of over 200 
urban and regional planning cases. In the field of public health, this has been addressed 
successfully in a few ‘strongly participatory science’ processes. The public not only 
participated in survey development and data collection, but also in the subsequent 
data analysis in a form of knowledge justice (Allen 2018). Similarly, Gray et al. (2018) 
highlighted the importance of inclusion of stakeholders and standardized communication 
about participatory socio-environmental modeling for potential innovation and new 
insights to collectively reason the environmental problems. In support of the data– 
information–knowledge–wisdom hierarchy (Rowley 2007), we encourage collected 
PPGIS data to be made publicly available (following data protection regulations) to 
make it accessible for analysis and review by the wider public.

Our review indicates that PPGIS data analysis methods are heavily focused on mobilizing 
knowledge but limited in terms of methods for synthesizing and translating insights across 
knowledge systems into actionable insights. However, it is a fallacy to assume that more 
emphasis on analytical methods and tools alone will improve the communicability and 
usability of PPGIS data. We assert that the coupling of advanced analytical methods with 
sophisticated knowledge co-creation and deliberative valuation processes, otherwise referred 
to as pragmatic paradigm including negotiation (Raymond et al. 2014), can facilitate com-
munication and uptake of results (Ramirez-Gomez et al. 2017, Fagerholm et al. 2019b). 
Analytical methods and co-creation processes need to be developed in tandem to under-
stand how and to what extent individual values articulated in PPGIS surveys become shared 
and social in collective environmental decision-making processes and how PPGIS approaches 
can build coalitions for social change (e.g., Kenter et al. 2019). Combining analytical tools and 
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processes of knowledge co-creation in this way necessitates a detailed consideration of how 
issues of conflict, power, and equity are articulated and elicited in PPGIS studies.

PPGIS data analysis methods mostly describe the current state and often overlook the 
temporal dimension. In particular, there is a lack of methods that would embrace the 
interrelationships between changes in socio-ecological or urban planning regime/inter-
vention, or changes caused by sudden shocks in systems such as by storms (i.e., place 
change), and changes in people’s place-related values, perceptions, behavior, and pre-
ferences (Kendal and Raymond 2018). Longitudinal studies by Brown and Weber (2012) 
and Brown and Donovan (2014) measured PPGIS values in two surveys with 6 and 14 years 
in between, respectively, but to cater for the dynamism in global challenges, we need new 
PPGIS data analysis methods to understanding how people’s place-based values form and 
change at various scales to comprehensively incorporate such dynamics.

The new technological developments offer wide possibilities to extend PPGIS data 
analysis, for example, to 3D and virtual environments, to elicit indoor values and prefer-
ences, or to engage with new forms of geo-navigation. From a visualization perspective, in 
the field of PPGIS, it is still rare to apply web-based and dynamic tools for visualization 
(such as open access tools GeoServer (http://geoserver.org/) and OpenLayers (https:// 
openlayers.org/)), which could assist in the creation of potentially effective PPGIS data 
visualizations. Moreover, the possibilities to harness artificial intelligence, automation, 
Internet of Things, big data collected through social media, and machine learning to 
PPGIS data analysis remains unexplored and presents opportunities for new enquiry.

The analysis methods presented here focus on spatial PPGIS data analysis possibilities, 
but we acknowledge that web-based mapping surveys also yield a rich source of quali-
tative analysis in terms of the non-spatial PPGIS data. In fact, mixed method approaches 
are prominently featured in the literature highlighting the advantage of linking partici-
patory mapping, for example, with narrative analysis techniques to elicit landscape values 
and development preferences (Plieninger et al. 2018), social media to share memories of 
a place (Nummi 2018), or route tracking to monitor mountain bikers (Wolf et al. 2018).

7. Conclusions

For data gathered through PPGIS approaches, development of methods has reached 
a high level of maturity. In this article, we have summarized the depth and breadth of 
these methods. We provide a framework for scholars interested in PPGIS approaches to 
guide their thinking, observations, and interpretations. Our framework is based on the 
categorization of existing methods into three phases, Explore, Explain, and Predict/Model, 
aiming at different depths of understanding and knowledge discovery. We believe the 
framework is particularly useful for researchers new to the field, to rapidly appraise the 
different analytical methods available and to guide planning practitioners in using the 
appropriate techniques to address specific questions or problems.

We urge a renaissance in the field involving: 1) the development of methods considering 
knowledge-informed planning; 2) the development of easy to understand decision heur-
istics; 3) PPGIS data analysis in genuine collaboration with the public; 4) coupling analytical 
methods with deliberative valuation and knowledge co-creation processes, enabling the 
synthesis and translation of PPGIS insights across knowledge systems into actionable 
insight; 5) addressing temporal dimensions and dynamics in analysis; and 6) embracing 
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recent technological developments. Considering PPGIS approaches in fields where it has 
not been applied yet, a more interdisciplinary PPGIS approach would support the emer-
gence of further novel analysis methods. PPGIS approaches provide an operational bridge 
between social and natural/technical/engineering sciences, thereby offering considerable 
opportunity to address societal challenges and thus, provide integrated solutions to 
sustainability problems, as increasingly called for, for example, in terms of biodiversity, 
nature-based solutions, and climate resilience agendas (Kabisch et al. 2017, Diaz et al. 2019). 
This paper provides a solid platform for both understanding existing methods and the 
development of new methods for addressing such integrated sustainability challenges.
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