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Abstract 
The ability of cells to migrate is a fundamental physiological process 
involved in embryonic development, tissue homeostasis, immune 
surveillance, and wound healing. Therefore, the mechanisms 
governing cellular locomotion have been under intense scrutiny over 
the last 50 years. One of the main tools of this scrutiny is live-cell 
quantitative imaging, where researchers image cells over time to 
study their migration and quantitatively analyze their dynamics by 
tracking them using the recorded images. Despite the availability of 
computational tools, manual tracking remains widely used among 
researchers due to the difficulty setting up robust automated cell 
tracking and large-scale analysis. Here we provide a detailed analysis 
pipeline illustrating how the deep learning network StarDist can be 
combined with the popular tracking software TrackMate to perform 
2D automated cell tracking and provide fully quantitative readouts. 
Our proposed protocol is compatible with both fluorescent and 
widefield images. It only requires freely available and open-source 
software (ZeroCostDL4Mic and Fiji), and does not require any coding 
knowledge from the users, making it a versatile and powerful tool for 
the field. We demonstrate this pipeline's usability by automatically 
tracking cancer cells and T cells using fluorescent and brightfield 
images. Importantly, we provide, as supplementary information, a 
detailed step-by-step protocol to allow researchers to implement it 
with their images.
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Introduction
The study of cell motility typically involves recording cell 
behavior, using live-cell imaging, and tracking their movement  
over time1,2. To enable the analysis of such data, various software 
solutions have been developed3–9. However, despite the avail-
ability of these computational tools, manual tracking remains  
widely used among researchers due to the difficulty in  
setting up fully automated cell tracking analysis pipelines.  
Automated tracking pipelines share a typical workflow that starts 
with a segmentation strategy that identifies the objects to track  
in each image. Tracking algorithms are then used to link 
these objects between frames. One challenging aspect of an  
automated tracking pipeline is often achieving an accurate 
segmentation of the objects to track. One option to facilitate  

cell segmentation is to label their nuclei, using fluorescent 
dyes or protein markers. Nuclei can then be automatically  
segmented using intensity-based thresholding. However, this 
approach tends to become inaccurate when images are noisy 
or when the cells to track are very crowded10. Deep Learning 
approaches have demonstrated their robustness against these  
two issues11. In this work, we present a new analysis workflow 
that builds upon a Deep Learning segmentation tool and a cell 
tracking tool to achieve robust cell tracking in cell migration 
assays. We combine StarDist, a powerful deep learning-based  
segmentation tool, and TrackMate, a user-friendly tracking  
tool, into a tracking pipeline that can be used without  
requiring expertise in or specialized hardware for computing  
(Figure 1)12–15.

Methods
Pipeline
The use of deep learning networks, such as StarDist, often  
requires the user to train or retrain a model using their images. 
While high-quality StarDist pre-trained models are readily  
available, they are likely to underperform when used on  
different data with, e.g., different staining, noise, and microscope  
type15. To train StarDist models, we took advantage of the  
ZeroCostDL4Mic platform, allowing researchers to train (and 

Figure 1. Workflow depicting how StarDist and TrackMate can be combined to track cells automatically.

      Amendments from Version 1
- The size of the training dataset is now included in the main text

- A sentence indicating that the pipeline is suitable to track 
dividing cells has is also now included

Any further responses from the reviewers can be found at 
the end of the article
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retrain), validate, and use deep learning networks15. Impor-
tantly, the ZeroCostDL4Mic StarDist 2D notebook can directly 
output a file containing all the nuclei’s geometric center  
coordinates (named tracking files), that can be used as input 
for TrackMate (Figure 1). Therefore, our proposed pipeline 
can be divided into three parts (Figure 1; Extended data16).  
1) First, a StarDist model is trained using the ZeroCostDL4Mic  
platform. This part needs to be performed only once for each 

type of data. 2) Second, the trained StarDist model is used 
to segment the object to track and generate Tracking files.  
3) Finally, the tracking files can be used in TrackMate to track  
the identified objects.

Training a StarDist model requires a set of images and their 
corresponding masks (Figure 1 and Figure 2). Generating a  
training dataset is by far the most time-consuming part of 

Figure 2. Example of datasets analyzed using StarDist and TrackMate. (A, B) Migration of MCF10DCIS.com, labeled with Sir-DNA, 
recorded using a spinning disk confocal microscope and automatically tracked. Examples of images used to train StarDist (A), and an 
example of results obtained using automated tracking are displayed (B, Video 1). The yellow square indicates a magnified ROI, where 
the local track of each nucleus is displayed. The full cell tracks are displayed on the left. Tracks are color-coded as a function of their 
maximum instantaneous velocity (blue slow, red fast tracks). (C–E) Migration of activated T cell plated on VCAM-1 or ICAM-1, recorded 
using a brightfield microscope and automatically tracked. Examples of images used to train StarDist (C) and an example of results obtained 
using automated tracking are displayed (D, Video 2). (E) Comparison of the migration of activated T cells on VCAM-1 or ICAM-1. Track mean 
speed and track straightness were quantified. Data are displayed as boxplots. *** p-value = <0.001, p-values were determined using a  
randomization test. (F, G) Cancer cells flowing in a microfluidic chamber, recorded live using a brightfield microscope and automatically 
tracked (Video 3). Examples of images used to train StarDist (F), and an example of results obtained using automated tracking are  
displayed (G). The full tracks shown here were color-coded as a function of their x coordinate.
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the analysis pipeline presented here as it requires the manual  
annotations of the images to analyze (Extended data:  
Supplementary protocol16). For instance, to generate the train-
ing datasets presented in Figure 2, each cell/nuclei contour was  
drawn manually using the freehands selection tool in Fiji. The 
creation of a high-quality training dataset is a critical part of 
the process as it will impact the specificity and performance  
of the StarDist model. However, the generation of a training 
dataset is only required once per dataset type. If a StarDist  
model already exists for similar images it can be used to  
significantly accelerate the creation of the training dataset via 
semi-automated annotation (see Extended data: Supplementary  
protocol16).

One of our analysis pipeline’s key features is that, once a  
StarDist model has been satisfactorily trained, movies of  
migrating cells can efficiently be processed in batch. Indeed, 
while individual tracking files can be analyzed one by one 
using the TrackMate graphical interface, we also provide a Fiji 
macro to analyze a folder containing multiple tracking files. 
Our batch processing macro will provide basic quantitative  
information for each track, including median and maximal  
speeds. If more information is needed, the tracking results  
generated by our script are directly compatible with the Motility  
lab website, where they can be further processed17.

Implementation and operation
The described image analysis pipeline is composed of a Jupi-
ter notebook optimized to run in Google Colab (ZeroCost-
DL4Mic framework15) and a Python script that can run in Fiji14. 
A step-by-step protocol describing how to use our analysis  
pipeline is provided as Extended data16.

Use case
To illustrate our analysis pipeline’s functionality and flexibil-
ity, we first trained a StarDist model to analyze the behavior of  
breast cancer cells migrating collectively (Figure 2A; Extended 
data: Video 116). The cancer cell’s nuclei were fluorescently 
labeled, and the cells imaged using fluorescence-based  
microscopy. The creation of the training dataset (72 
paired images, 24500 labelled objects) used in this exam-
ple was greatly facilitated by the availability of a StarDist  
model, released by the StarDist creators, capable of segment-
ing fluorescent nuclei. In this case, the StarDist Fiji plugin 
was used to segment the location of nuclei in the training  
images, and all miss-annotations were manually corrected  
(Extended data: Supplementary protocol16). Of note, the work-
flow described here performs well in the presence of cell 
divisions as StarDist successfully recognise dividing cells,  
and TrackMate allows for track splitting.

Underlying data. Video 1: Automated tracking of breast 
cancer cell migrating collectively

1 video file

https://doi.org/10.6084/m9.figshare.13122635.v118 

MCF10DCIS.com cells, labeled with Sir-DNA, were recorded using a 
spinning disk confocal microscope and automatically tracked using 
StarDist and TrackMate. Local tracks are displayed.

Cell migration experiments are typically performed using 
brightfield imaging. As it remains very challenging to  
segment brightfield objects using classical approaches, the 
field often relies on hand tracking to analyse cell migration  
movies. To highlight that our pipeline can also be used to analyze  
brightfield images, we generated a StarDist model (Training  
dataset after 5x augmentation: 209 paired images, 31200 
labelled objects)  to track T cells migrating on ICAM-1 or 
VCAM-1 (Figure 2C–E; Extended data: Video 216). Importantly, 
automated analysis of these data could reproduce the results  
obtained via manual tracking19.

Underlying data. Video 2: Automated tracking of T cell 
migrating on ICAM-1

1 video file

https://doi.org/10.6084/m9.figshare.13122755.v120 

Activated T cell plated ICAM-1 were recorded using a brightfield 
microscope and automatically tracked using StarDist and 
TrackMate. Local tracks are displayed.

Finally, we used our pipeline to automatically track  
non-adherent cancer cells flowing in a microfluidic chamber  
(Figure 2F and G; Extended data: Video 316). In this  
case, automated tracking is especially useful due to the very 
high number of frames to analyze (Training dataset: 57 paired 
images, 3680 labelled objects). For the last two examples, no 
suitable pre-trained StarDist models were available. Therefore,  
to generate the training datasets, we manually annotated 20 
images and trained a first StarDist model. This model was 
then used to accelerate the annotation of the rest of the training  
images.

Underlying data. Video 3: Automated tracking of cancer 
cells flowing in a microfluidic chamber

1 video file 

https://doi.org/10.6084/m9.figshare.13122764.v121 

AsPC1 pancreatic cancer cells flowing in a microfluidic chamber 
were recorded live using a brightfield microscope and 
automatically tracked using StarDist and TrackMate. Local tracks 
are displayed.

Use case dataset creation
Breast cancer cell dataset. MCF10DCIS.com cells were 
described previously15,22. DCIS.COM lifeact-RFP cells were 
incubated for 2h with 0.5 µM SiR-DNA (SiR-Hoechst,  
Tetu-bio, Cat Number: SC007) before being imaged live for  
14 h using a spinning-disk confocal microscope (1 picture 
every 10 min). The spinning-disk confocal microscope used 
was a Marianas spinning disk imaging system with a Yokogawa  
CSU-W1 scanning unit on an inverted Zeiss Axio Observer  
Z1 microscope (Intelligent Imaging Innovations, Inc.) equipped  
with a 20x (NA 0.8) air, Plan Apochromat objective (Zeiss).

T cell dataset. Lab-Tek 8 chamber slides (ThermoFisher) 
were coated with 2 µg/mL ICAM-1 or VCAM-1 overnight at  
4°C19. Activated primary mouse CD4+ T cells were washed 
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and resuspended in L-15 media containing 2 mg/mL D-glucose. 
T cells were then added to the chambers, incubated 20 min,  
gently washed to remove all unbound cells, and imaged. Imag-
ing was done using a 10x phase contrast objective at 37°C on a 
Zeiss Axiovert 200M microscope equipped with an automated  
X-Y stage and a Roper EMCCD camera. Time-lapse images  
were collected every 30 sec for 10 min using SlideBook 6  
software (Intelligent Imaging Innovations).

Flow chamber dataset. Cancer cells (500,000 cells/ml in  
PBS) were perfused at a speed of 300 µm/sec using a peri-
staltic pump (ISMATEC MS12/4 analogic) and a homemade 
tubing system (Ismatek 3-Stop tubes and Ibidi® tubings and  
connectors) in a microchannel (Ibidi® µ-slides400 LUER). 
Images were acquired with a brightfield microscope (Zeiss  
Laser-TIRF 3 Imaging System, Carl Zeiss) and a 10X objective.

Data display and statistical analyses
Box plots were generated using PlotsOfData23. Randomization  
tests were performed using the online tool PlotsOfDifferences24.

Conclusions
Here we show that StarDist and TrackMate can be integrated  
seamlessly and robustly to automate cell tracking in fluores-
cence and brightfield images. We envision that this pipeline 
can also be applied to any circular or oval-shaped objects.  
However, we acknowledge that using brightfield images 
may not always work directly with our pipeline, especially 
if cells display complex and interchanging shapes, since  
StarDist is mostly designed to detect round or compact 
shapes. In this case, other tools, such as Usiigaci, could also be  
considered8. Still, brightfield images could also be artifi-
cially labeled using deep learning, transforming the brightfield 
dataset into a pseudo-fluorescence one, as can be done with  
ZeroCostDL4Mic already15. The pipeline described here is 
currently limited to the tracking of objects in 2D. However,  
a similar workflow can be applied to 3D datasets as both  
StarDist and TrackMate can accommodate 3D images12,13,25.

Data availability
Underlying data
Zenodo: Combining StarDist and TrackMate example 1 - Breast 
cancer cell dataset, http://doi.org/10.5281/zenodo.403497626 

Zenodo: Combining StarDist and TrackMate example 2 - T cell 
dataset, http://doi.org/10.5281/zenodo.403492927 

Zenodo: Combining StarDist and TrackMate example 3 - Flow 
chamber dataset, http://doi.org/10.5281/zenodo.403493928 

Extended data
Zenodo: Combining StarDist and TrackMate - Extended  
data, http://doi.org/10.5281/zenodo.409146716.

This project contains the following extended data:
•  Supplementary protocol

•  Video 1: Automated tracking of breast cancer  
cell migrating collectively. MCF10DCIS.com cells, 
labeled with Sir-DNA, were recorded using a spinning 
disk confocal microscope and automatically tracked 
using StarDist and TrackMate. Local tracks are  
displayed.

•  Video 2: Automated tracking of T cell migrating 
on ICAM-1. Activated T cell plated ICAM-1 were  
recorded using a brightfield microscope and auto-
matically tracked using StarDist and TrackMate. Local  
tracks are displayed.

•  Video 3: Automated tracking of cancer cells  
flowing in a microfluidic chamber. AsPC1 pancreatic  
cancer cells flowing in a microfluidic chamber were 
recorded live using a brightfield microscope and  
automatically tracked using StarDist and TrackMate.  
Local tracks are displayed.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/HenriquesLab/
ZeroCostDL4Mic

Archived source code at time of publication: http://doi.org/10.5281/
zenodo.409147429 

License: MIT license.
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analysis. Using this approach, the authors here clearly describe and validate this process in 
fluorescent movies of collective cell migration as well as single cell bright-field cell migration 
datasets. While the description of methods is very clear (and special kudos to the authors for 
transparency and availability), and its applicability very apparent, a few other potential points to 
consider are as follows:

A comparison on a given dataset between trackmate with StarDist based segmentation 
versus canonical segmentation methods of the nuclei. How much better does it perform? 
This could be in terms of accuracy/precision or time taken to analyze.  
 

1. 

Related to point 1: The power of StarDist based nuclear segmentation is its ability in 
crowded environments as well as where there is poor signal in the fluorescent channels. Is 
there a way to explicitly show that when there is poor signal or bleaching during a movie, 
StarDist combined with trackmate does a better job? 
 

2. 

One of the hardest objects to segment are bright-field objects which is why the field has 
been relying on hand tracking of cell migration movies taken with bright-field. I think the 
authors should underscore this and highlight that this method is overcoming this big 
challenge enabling larger population analysis.

3. 

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Cell migration, mechanobiology, Cancer.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 08 Dec 2020
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Guillaume Jacquemet, University of Turku and Åbo Akademi University, Turku, Finland 

We thank the reviewer for his positive comments. Regarding the performance of Deep 
Learning and StarDist for nuclear segmentation, this topic has been extensively covered by 
others, and I would recommend the excellent paper from Caicedo et al. (Cytometry, 2019). 
In addition, StarDist was demonstrated to perform very well on images containing dividing 
cells, extensive noise and nuclei deformation. This has also been our experience. We would 
also add that the main reason why we started to use StarDist was that we could not 
segment our cell migration movies with enough accuracy using intensity-based 
thresholding. Because of this issue, automated tracking was not feasible.  We would argue 
that the best way to ensure that the results generated by automated tracking approach are 
of good quality are 1) the visual inspection of the tracks and 2) comparing the results 
obtained compared to manual tracking.  
 
We fully agree with the reviewer that the automatic tracking of brightfield movies is very 
challenging and that the field often relies on manual analysis. We have now added a few 
sentence to the text to highlight this further. We indeed hope that the protocol published 
here may help to alleviate some of this burden.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 11 November 2020

https://doi.org/10.5256/f1000research.29845.r73865

© 2020 Arganda-Carreras I. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Ignacio Arganda-Carreras   
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Sebastian, Spain 

The authors propose the combination of open-source tools (namely StarDist and TrackMate) for 
the automatic tracking of cells in fluorescence and brightfield images in 2D. Moreover, they 
provide a step-by-step workflow to process videos in a batch mode using exclusively free tools. 
They evaluate its performance by comparing the results obtained using such a workflow with 
those of manual tracking from an already published public dataset. 
 
The paper is very well written, concise and straight to the point, with a special emphasis on 
reproducibility. 
 
As pointed out in the conclusions, one of the limitations of the proposed approach is inherent to 
the type of objects that StarDist can properly segment (basically round). However, that doesn't 
prevent this pipeline from being extremely useful for a broad spectrum of cell tracking problems. 
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Moreover, the adaptation of the pipeline to 3D images seems pretty straightforward. 
 
Something interesting that is not mentioned in the paper is how well the workflow would perform 
in the presence of cell divisions of apoptosis. That could be easily tested using some of the 
datasets from the Cell Tracking Challenge (http://celltrackingchallenge.net/2d-datasets/). 
 
Minor comments:

Please homogenize how you write "deep learning", which appear sometimes as "Deep-
Learning" and sometimes as "deep learning".

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computer Vision, Bioimage Analysis.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 08 Dec 2020
Guillaume Jacquemet, University of Turku and Åbo Akademi University, Turku, Finland 

We thank the reviewer for his positive comments. The reviewer highlights an excellent point 
when asking about the ability of the pipeline to cope with cell division. This is indeed a 
critical concern when tracking cells for an extended period of time. Numerous cell divisions 
were actually detected in our DCIS.com test dataset. In this case, our pipeline worked very 
well, and division events were both recognized, and the tracks splits after divisions. This is 
due to two factors 1) we trained the StarDist model also to recognize mitotic cells and 2) we 
enabled track splitting in TrackMate. We have now added a sentence in the manuscript to 
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reflect this.  

Competing Interests: No competing interests were disclosed.
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Lachlan W. Whitehead   
The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia 

This article presents a pipeline for analyzing cell migration in a variety of contexts by combining 
several complimentary techniques. Utilising stardist for cell detection (provided cells are 
round/have nuclei staining), and trackmate for connecting the detected nuclei over time - a start-
to-finish protocol is described allowing a microscopist with little image analysis knowledge to be 
able to quantify their experiment.  
 
The authors do an admirable job of describing the required steps of the analysis pipeline, 
including an introduction to Jupyter Notebooks and the ZeroCostDL4Mic workflows to train a 
custom Stardist model. They also provide a FIJI macro for batch analysis, potentially saving a 
researcher many hours of human analysis time.  
 
Indeed, as all of these methods are published and validated already my only (small) criticism has 
to do with the training of the stardist models. As the authors rightly note, this is the most time 
consuming part of the analysis and as a result I would have liked to see some mention of how 
much manual time is required. For instance, while the article suggests training a small 20 image 
dataset and then using transfer learning to speed up the remaining annotation, the number of 
remaining images is not described. While the amount of training required is likely to vary across 
experiments, I think readers would benefit from knowing when considering this pipeline how 
many cells (rather than image fields of view) they are likely to be required to manually annotate. 
Perhaps for each dataset where a model was trained the authors could specify the size of the 
training dataset (in both images and number of cells).  
 
Overall, this is a clear description of several powerful tools being combined into a very useful and 
versatile workflow.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
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Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: bioimage analysis

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 08 Dec 2020
Guillaume Jacquemet, University of Turku and Åbo Akademi University, Turku, Finland 

We thank the reviewer for his positive comments. The reviewer makes an excellent point. 
We have now added in the main text of the manuscript the size of the training dataset, 
including both the number of images as well as the total number of annotated cells. The 
training dataset size are as follow: Breast cancer cell dataset  (72 paired images, 24500 
labelled objects); T cell dataset (Training dataset after 5x augmentation: 209 paired images, 
31200 labelled objects); Flow chamber dataset (Training dataset: 57 paired images, 3680 
labelled objects). We estimate that it takes between 4-8h of work to annotate a completely 
new training dataset.  

Competing Interests: No competing interests were disclosed.
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