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Secretin is the first hormone that has been discovered, inaugurating the era and the field of
endocrinology. Despite the initial focus, the interest in its actions faded away over the
decades. However, there is mounting evidence regarding the pleiotropic beneficial effects
of secretin on whole-body homeostasis. In this review, we discuss the evidence from
preclinical and clinical studies based on which secretin may have a role in the treatment
of obesity.
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INTRODUCTION

We are currently facing a global epidemic of obesity (1). Obesity poses an additional risk for several
diseases comprising cancer, neurodegeneration, cardiovascular disease (CVD), musculoskeletal
disorders, and an increased vulnerability to infections (2–6). Of these CVD is the leading cause of
death world-wide (7). While lifestyle modification has been shown to be only a weak arm in the
battle against obesity, bariatric surgery (BS) represents today the most effective treatment to induce
significant and sustained weight loss. As recently demonstrated by Yoshino et al., the beneficial
metabolic effects of BS can be ascribed solely to weight loss itself, rather than to any weight-loss-
independent effects (8).

It is now well-established that the beneficial effects of BS on weight loss are not only to be
attributed to decreased nutrient intake, and decreased nutrient absorption, but several other
mechanisms are involved, such as the marked elevation of gut-derived peptides with
anorexigenic action, such as glucagon-like peptide 1 (GLP-1). GLP-1 is secreted by the L cells of
the intestine in response to feeding. Apart from being an incretin hormone (thus stimulating insulin
secretion after oral ingestion of nutrients), GLP-1 has important effects on regulating appetite.
Abbreviations: BAT, brown adipose tissue; BS, bariatric surgery; CNS, central nervous system; CSS, composite satiety score;
CVD, cardiovascular disease; FFA, free fatty acids; fMRI, functional magnetic resonance imaging; GI, gastrointestinal; GLP-1,
glucagon-like peptide 1; PET, positron emission tomography; TRPV1, Transient receptor potential vanilloid; UCP1,
uncoupling protein 1; VAS, visual analogue scale.
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Semaglutide, a long-acting GLP-1 analogue, has recently shown
promising results in terms of weight loss, with subjects receiving
2.4 mg of Semaglutide once weekly on top of lifestyle
intervention (9).

The intestines secrete several other hormones as well. One
such is secretin, which has recently gained back interest from the
metabolic community. It was discovered in 1902 by Bayliss and
Starling to stimulate pancreatic fluid secretion, becoming the first
hormone ever discovered and inaugurating the era and the field
of endocrinology. Since then it has been shown that secretin
receptors are present in nearly every organ throughout the body
(10). Aside from the classic exocrine effects, secretin has several
interesting metabolic effects. It is a powerful lipolytic agent and
its levels are increased after prolonged fasting (11). Moreover,
preclinical and clinical studies have recently shown that secretin
may induce satiation (12, 13). Also following bariatric surgery,
secretin levels have shown to be increased (14). Taken together
the gastrointestinal hormone secretin may have potential in
future weight loss strategies. In this review, we describe the
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basic characteristics of secretin secretion and its effects on whole-
body homeostasis, with special interest in its action as a
satiation signal.
REGULATION OF SECRETIN SECRETION
AND GASTROINTESTINAL EFFECTS

Human secretin is synthesized as a pre-propeptide of 121 amino
acid residues, containing a signal peptide (residues 1-18),
propeptide (19-26), secretin (28-54), and propeptide (58-121)
(15). This pre-propeptide is cleaved from both ends to achieve
the active peptide of 27 amino acid residues. Secretin is
predominantly synthesized by the S-cells in the crypts of
Lieberkühn of the duodenal epithelium (16). Other sites with
relatively high expression of secretin mRNA include intestinal
enteroendocrine cells in the jejunum, ileum, colon, and rectum as
well as plasmacytoid dendritic cells (17). Its release is initiated
during feeding, when acidic contents of the stomach move into
FIGURE 1 | Figure summarizing the best-established effects of secretin. Apart from the well-established exocrine functions of secretin, it also has a mild incretin
effect, induces appetite and brown adipose tissue (BAT) activation. Also, during prolonged fasting it enhances lipolysis. Secretin has also been shown to increase
cardiac output and stroke volume.
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the duodenum (16) and duodenal pH decreases to 3 - 4.5 (18,
19) (Figure 1).

In rats, Green and colleagues showed that secretin secretion is
larger after intraduodenal infusion of fat, compared to protein
(20).Also, the fatty-acid composition of a meal induces different
levels of secretin release. In a study comparing equicaloric fat
emulsions, given intraduodenally in women who had undergone
cholecystectomy, it was shown that whereas neutral fat did not
induce any significant secretin release compared to the fasting
state, medium-chain fatty acids yielded a large increase in
secretin release (21). Notably, the consumption of the
medium-chain fatty acid meal was followed also by a marked
decrease in intraduodenal pH, whereas neutral fat modified the
pH values only slightly. However, no significant differences were
found in the intraduodenal pH values between the 2 groups at
postprandial states. Thus, the authors proposed that even though
the duodenal acidity is an important determinant of secretin
release, other factors are also involved which may potentiate the
secretin response, and even alter the pH threshold of secretin
secretion (21). Recently, glucose was also shown to promote
secretin’s release (14), even though to the best of our knowledge a
direct comparison between glucose and FFA stimulation of
secretin release has not been investigated. All in all, the exact
mechanisms controlling secretin’s release are incompletely
understood. A secretin-releasing peptide has been found to
promote it, but the exact nature of this mechanism is unclear
(22, 23). Pancreatic phospholipase A2 from the upper small
intestine has also been found to stimulate secretin release
(24, 25).

The oldest and best-known function of secretin is the
stimulation of pancreatic exocrine secretion (10). This is also
initiated by vasoactive intestinal peptide (VIP), cholecystokinin
(CCK) and vagal stimulation (10). Secretin also neutralizes the
acidic contents of the duodenal lumen by stimulating pancreatic
acinar cells and duodenal Brunner’s glands to produce
bicarbonate and water (26, 27), and by inhibiting gastric acid
secretion and gastric motility (10). The intestinal lining is
protected by these effects, while digestive enzymes start to
break down nutrients (10). In addition to ingested nutrients,
pancreatic proteases also break the secretin releasing peptide,
creating a negative feedback loop for secretin release (23).
Secretin also induces biliary secretion of water, bicarbonate
and chloride (28), but not bile acids (29), while inhibiting the
absorption of water, sodium, and glucose in the jejunum and
ileum (30–33).
PHARMACOKINETICS

Secretin has a relatively short half-life in plasma in humans (2.5-
4.0 min) (34–37). Animal studies have revealed that secretin
removal from the circulation occurs mainly through the kidneys
(38) but also the capillary beds of various other tissues (39, 40).
Despite the kidneys being an important organ for secretin
removal, only small amounts of secretin appear in the urine
Frontiers in Endocrinology | www.frontiersin.org
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(41) because, after glomerular filtration, secretin is reabsorbed in
the distal part of the nephron (42, 43). Further research is
required to understand the pharmacokinetics of secretin in
humans and its molecular mechanisms.
CURRENT CLINICAL USES

Currently, synthetic secretin is in clinical use solely for rare and
specific diagnostic purposes. In Zollinger-Ellison syndrome, a
rare neuroendocrine tumour (gastrinoma) produces high levels
of gastrin (44), leading to abnormally increased gastric acid
production. A secretin stimulation test can be performed, if a
gastrinoma is suspected but gastric pH and serum gastrin levels
are not diagnostic. After an overnight fast, a bolus of secretin is
given (2 IU/kg) intravenously, and serum gastrin levels are
measured at 0, 2, 5, 10 and 15 minutes. Even though in
normal subjects, secretin inhibits gastrin release (45), it
stimulates the gastrinoma cells to release gastrin, which leads
to a significant increase in serum gastrin levels. Serum gastrin
levels greater than 200 pg/ml are diagnostic. Secretin is
sometimes also used to investigate exocrine pancreatic
insufficiency (46, 47). It can be given during magnetic
resonance cholangiopancreatography, in order to study
pancreatic exocrine function, or to evaluate the anatomy of the
pancreatic duct (48).
HEMODYNAMIC EFFECTS OF SECRETIN

Early studies have shown that pharmacological doses of secretin
increase renal blood flow in healthy humans by 58% (49), and
subsequently in patients with angina and heart failure (NYHA
class III-IV) it was shown that a secretin infusion significantly
increases cardiac output (~20%) and stroke volume (50, 51).
Systemic resistance was decreased, while heart rate was not
affected. These effects are indicative of a vasodilator effect of
secretin, whereas an inotropic effect of secretin is also likely (50).
Our group is currently investigating whether secretin has effects
on myocardial metabolism and renal function on healthy
humans, assessed with [18F]-FDG-PET (NCT03290846).
EFFECTS OF SECRETIN IN THE LUNGS

In addition to the gastrointestinal tract, the secretin receptor is
abundantly expressed in the distal regions of the lungs (52),
specifically in type 2 alveolar cells (17) that are responsible for
surfactant secretion (53). In addition, some secretin receptor
expression is present in the club cells of the bronchiolar
epithelium (17), and tertiary bronchial smooth muscle (52). It
is likely that secretin participates in maintaining the airway
surface liquid and mucociliary clearance, and bronchial
smooth muscle relaxation (52).
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SECRETIN AS A NEUROPEPTIDE

The potential central effects of secretin were first recognized
when secretin-like bioactivity was found in porcine brain extracts
(54). A study on human brains found secretin immunoreactivity
in the pyramidal neurons of the motor cortex, deep cerebellar
nuclei, cerebellar Purkinje cells and the hippocampal and
amygdala nuclei (55). Spatially, the secretin receptor is even
more widely distributed than its ligand, which may indicate that
several different neuronal functions could be modulated by
secretin (56). Secretin may even be important in early
postnatal neurological development. In secretin deficient mice,
hippocampal neurogenesis was disturbed, which lead to
impaired neurobehavioral development (57). Secretin
deficiency also led to impaired synaptic plasticity in the
hippocampus (58).

Secretin could also have wide effects on the autonomic
nervous system, since it has been shown to have regulatory
effects on catecholamine metabolism in the axon terminals of
sympathetic nerves (59). It also has a stimulatory effect on cyclic
adenosine monophosphate (cAMP) production (60). cAMP
regulates the enzyme tyrosine hydroxylase (61), which catalyses
the rate limiting step of catecholamine biosynthesis. Secretin has
been shown to increase tyrosine hydroxylase activity in the
sympathetic ganglia and several autonomic end organs (62).
When rats were given an interventricular infusion of secretin,
there was an increase in tyrosine hydroxylase activity in the
hypothalamus (63).

Rodent studies indicate that secretin is also involved in the
regulation of dihydroxyphenylalanine (DOPA) synthesis and
turnover (64). Secretin also facilitates gamma-aminobutyric
acid, or GABAergic input of Purkinje cells in the cerebellum
(65, 66) and vasopressin expression and release in the
hypothalamus (64). However, this effect on both vasopressin
and oxytocin release may also be through a noradrenergic
pathway, as shown in a rat model by Velmurugan et al. (67).
All in all, it has been proposed, that the central actions of secretin
may be related to fluid homeostasis (68, 69), food intake (70) and
control of social behaviour (71, 72). These effects by peripherally
secreted secretin would be mediated through the autonomic
nervous system (ANS) (70, 73), or directly after transmembrane
diffusion of the hormone (74).
FLUID HOMEOSTASIS

Initially it seemed that secretin had a diuretic effect on dogs and
humans (75), but there were opposite findings in rats (76).
Secretin increases renal blood flow (77), and glomerular
filtration rate and glomerular plasma flow are also increased in
dogs (78). More recent studies in mice showed that secretin
stimulates vasopressin expression and release in the
hypothalamus (68), and also increases renal water absorption
through a vasopressin-independent mechanism on aquaporin 2
channels in the collecting tubules in hyperosmolar conditions
(79). Centrally injected secretin induced water drinking
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behaviour in rats, which increased diuresis, while peripherally
injected secretin did not have this effect (69). Thus, it is likely that
secretin’s effect on fluid homeostasis varies depending on
whether its effect is peripheral or central, or depending on
conditions such as osmolarity or serum secretin concentration.
APPETITE CONTROL

Another suggested central effect of secretin is appetite control
(73). In an elegant study, Yang and colleagues demonstrated that
an intraperitoneal injection of secretin induces a dose-dependent
increase in the number of Fos-positive neurons in the arcuate
nucleus, the hypothalamic nucleus that suppresses appetite (73).
Subsequently it was shown that both peripheral and central
administration of secretin suppresses appetite in mice (80), and
that following either vagotomy, or administration of capsaicin,
an afferent neurotoxic agent, the anorexigenic effects of secretin
were attenuated (70).
INSULIN SECRETION AND GLUCOSE
HOMEOSTASIS

Secretin has a mild incretin effect, but this effect is much smaller
than that of GLP-1 and GIP. Early studies showed that insulin
secretion was increased by secretin during a glucose infusion and
pre-treating patients with secretin also potentiated glucose-
stimulated insulin release (81). The increase in insulin levels
was small and only lasted a few minutes, due to which the
authors suggested that secretin only stimulates the first phase of
insulin release and not production (82).

In another study on healthy subjects, a physiological dose of
intravenous secretin (0.5 pmol/kg) did not induce an increase in
insulin secretion, whereas pharmacologic doses of secretin (16
pmol/kg) induced a significant increase in plasma insulin
concentrations, which returned to pre-stimulus values after 20
minutes (83). Isoprotenerol and secretin-induced insulin release
was blunted in the same effect in adult-onset diabetics, compared
to healthy controls (84).
SECRETIN AND LIPOLYSIS

Secretin receptors induce lipolysis in white adipose tissue,
initiated by its ligand (85, 86). This happens through Gs-
coupled cAMP - protein kinase A (PKA) signalling,
independently of sympathetic activation (87). During
prolonged fasting, plasma secretin levels are increased almost
8-fold from day 1 to 3 (11, 88–90). These levels are much higher
than the levels achieved through feeding and supports secretin’s
role as a potent lipolytic agent (85, 86). The mechanism by which
the increased secretin levels are achieved is not known but it is
independent of hydrochloric acid concentration (88, 91).
Secretin levels have also been studied during exercise when
lipolysis is also increased. A 3 hour bicycle exercise
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intervention markedly increased serum secretin levels, both
during exercise and after 3 hours of rest (92). O’Connor et al.
investigated marathon runners and found that secretin levels
were increased along with all other examined gastrointestinal
peptides, except for insulin both immediately and 30 minutes
after finishing the race (93). At the time, no direct speculation
was made on the mechanism or purpose. It was previously
unknown what effect secretin has on brown adipose tissue
(BAT). Since lipolysis is important not only in fuelling, but
also initiating uncoupling protein 1 (UCP1) thermogenesis in
BAT, studies on secretin as a BAT activator seemed warranted.
SECRETIN AND OBESITY

There is evidence that the increase of serum secretin in
prolonged fasting is blunted in obesity. In a study conducted
by Andrews et al., gastric hormone levels were measured after 12
and 36 hours of fasting and after an oral glucose tolerance test
(OGTT) (94). Secretin, glucagon, and vasoactive intestinal
polypeptide (VIP) increased in lean but not obese after 36 h of
fasting (94). Further, obese subjects had an insulin secretion
response to a smaller dose of secretin than lean ones, even if the
response to a higher dose was similar in groups (94). Potential
differences in fasting and postprandial secretin levels in lean and
obese subjects have not been thoroughly investigated, but a small
study by Vezina et al. reported no difference in the fasting and
postprandial secretin levels after ingestion of a small volume
liquid fatty meal to promote gallbladder emptying, between lean
and obese subjects (95).

Expression of the secretin receptor may also be affected by
obesity, as a positive correlation between BMI and ApoB levels
with the SCT receptor expression in omental fat in humans has
been described (96).
SECRETIN AND BARIATRIC SURGERY

In a study by Miskowiak et al. in 1984, 11 morbidly obese patients
underwent gastroplasty and plasma secretin levels were measured
before and 3 months after (97). Postprandial secretin levels were
higher after gastroplasty compared to before the operation, but the
difference was not statistically significant, which could be either due
to the small sample size (n=11) or the operation technique (97).
Interestingly, a recent study by Modvig et al. noted a two- to
threefold increase in postprandial secretin three months after RYGB
(14). Nergård et al. also noted a two- to threefold increase in
postprandial secretin three months after RYGB (98).

The increase in postprandial secretin levels is in line with a
finding in rats that underwent RYGB, where secretin was found to
be upregulated after the operation in the alimentary limb and
proximal common channel (99). Modvig et al. showed with a rat
model, that there are glucose sensitive S-cells in the distal part of
the small intestine, which could explain the increase in
postprandial secretin after RYGB (14). In humans, the results
are somewhat conflicting. Nergård et al. found no increase of
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secretin secreting cells in the perianastomotic jejunum in 18
patients 12 months after RYGB (98). In a study by Rhee et al,
mucosal biopsies were collected from the small intestine during
surgery and 10 months after RYGB (100). Immunohistochemistry
and RNA sequencing results from different biopsy sites were
compared in 12 patients with T2D and 11 healthy subjects.
Secretin encoding SCT was reduced significantly in all biopsy
sites (alimentary limb, secretory limb and common limb), except
the alimentary limb of the non-diabetic group (100). Taken
together, even though most clinical studies suggest an increase
in circulating secretin levels following bariatric surgery, the results
regarding the expression of the secretin receptor are conflicting.
Therefore, more studies are needed in order to clarify this and also
to address whether some of the beneficial effects following bariatric
surgery may be attributed to changes in secretin levels.
SECRETIN: A NOVEL MEDIATOR OF AN
APPETITE CONTROLLING GUT-BAT-
BRAIN AXIS

It was recently shown with in vitro and in vivo experiments, that
secretin has a thermogenic effect on BAT (12) (Figure 2). Secretin
activated thermogenesis in a culture of adherent primary brown
adipocytes, an effect which was much stronger (~50-fold) than that
of isoproterenol, a b-adrenergic receptor agonist (12). The
thermogenic effect of secretin was independent of activation of
the adrenergic receptors, since pre-treatment of brown adipocytes
with propranolol did not affect secretin-stimulated respiration,
while blocking isoproterenol-stimulated respiration (12). Secretin
stimulation resulted in a dose-dependent increase of cytosolic
cAMP (12). Next, the thermogenic effect of secretin was also
confirmed in vivo in mice with the utilization of indirect
calorimetry and multispectral optoacoustic tomography. The
former measures gas exchanges, whereas the latter detects the
spectra of oxygenated and deoxygenated haemoglobin. It was
shown that relative oxygen saturation was markedly decreased
following secretin administration (12).

While it had already been shown that peripheral and central
administration of secretin reduces food intake in fasted mice (80),
the exact mechanism for this effect was not elucidated. To explore
whether the satiety-inducing effect of secretin was through BAT
activation, UCP1 wild type and knockout (KO) mice were studied.
UCP1 KO mice did not reduce their food intake following secretin
administration, confirming that this effect of secretin is mediated
through BAT activation (12). However, this effect is limited to only
an initial phase of feeding, possibly because of the short half-life of
the peptide. Furthermore, when endogenous secretin was
neutralized by an antibody, meal size and duration was
significantly increased compared to controls (12). These results
confirmed that the satiation effect is induced by secretin and BAT
thermogenesis (Figure 2). The neurobiological basis of the effect
was then studied with hypothalamic samples, collected from fasted
WT and UCP1 KO mice after intraperitoneal injections of secretin.
Secretin increased proopiomelanocortin (POMC) and decreased
agouti-related protein (AgRP) mRNA levels in WT mice (12).
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POMC neurons have anorexigenic effects, while AgRP have
orexigenic effects. Furthermore, temperature sensitive ion
channels; transient receptor potential vallinoid 1 (TRPV1) were
upregulated in the POMC neurons of WT mice, supporting the
hypothesis of heat, generated by BAT, functioning as an appetite
reducing message to the central nervous system (12).
RECENT PET AND fMRI DATA

We have recently conducted an imaging study that further
highlights the potential of secretin as an anti-obesity agent in
humans (Figure 2). Positron emission tomography (PET)
represents the state-of-the art method for quantifying metabolic
rates in vivo in humans. Based on the tracer used, different
metabolic aspects can be evaluated (101–104). [18F]-FDG-PET is
considered the gold standard method for studying BAT activation
in humans (105), while perfusion by [15O]-H2O-PET is considered
an indirect measure of BAT thermogenesis, because it has been
shown to associate with BAT oxygen consumption (106).

We have recently conducted a study where secretin’s effects were
investigated with whole body [18F]-FDG-PET, to measure glucose
uptake rates, and [15O]-H2O-PET, to measure BAT perfusion. In
Frontiers in Endocrinology | www.frontiersin.org 6
accordance with our previous findings in mice, we showed that
secretin activates BAT in healthy lean men (13). More specifically,
secretin induced an increase in [18F]-FDG uptake in BAT,
suggestive of increased metabolic activity, while perfusion was not
changed in an acute setting (13). In mice, maximal thermogenesis
was achieved 20 minutes after secretin administration (12). The
[18F]-FDG scan was initiated 20 minutes after the first 1 IU/kg
injection of secretin, simultaneously with another 1 IU/kg 2-minute
infusion of secretin. In contrast, perfusion was measured only two
minutes after the first secretin infusion (13). Since secretin
stimulates BAT endogenously instead of through a faster
neuronally mediated effect, the perfusion scan was likely
conducted too early to measure secretin’s effect on BAT perfusion.

Evidence of a catabolic effect was found with indirect
calorimetry: whole body energy expenditure increased by
secretin compared to placebo (13). BAT computer tomography
radiodensity was increased at the end of the scan, compared to
the start, and this increase was associated with whole body fat
oxidation after secretin infusion (13). Higher adipose tissue
radiodensity indicates reduced intracellular triglycerides or
increased perfusion (106) and as such, the results could
indicate that secretin induces BAT fatty acid oxidation.

In a subsequent study, we showed that secretin administration
changed the brain’s responses (as measured by the blood-oxygen-
FIGURE 2 | Figure summarizing the novel anti-obesity effects of secretin. Li et al., 2018 showed the presence of a gut – BAT – brain -axis with rodent models.
Secretin, secreted by the gut during feeding, binds to secretin receptors in brown adipose cells. This induces thermogenesis, which functions as a satiation signal for
the brain and terminates feeding. Secretin’s BAT activation and satiation effects were shown to translate to humans by Laurila et al., 2021. These results highlight
that secretin has a rare dual role on energy homeostasis, potentially both increasing energy expenditure and decreasing energy intake. This makes it an attractive
anti-obesity agent for further studies.
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level-dependent signal by functional magnetic resonance imaging)
to palatable vs non-palatable food cues (13). In the placebo
condition, visual exposure to palatable versus non-palatable foods
increased hemodynamic brain activity in the medial frontal cortex,
cingulate cortex, caudate and middle and posterior insula, while this
anticipatory reward-sensitive coding of the food images was
abolished after secretin infusion (13). Satiety was assessed with
the composite satiety score using visual analogue scale questions.
We found that secretin increased the subjective satiety compared to
placebo in fasting conditions and during early feeding, but this effect
was no longer significant in the postprandial evaluation (13). Since
subjects were instructed to feed until satiated, postprandial
differences in satiety were not expected. Meal consumption
following secretin was not statistically significantly decreased
compared to placebo, but our study was underpowered to explore
this endpoint. However, secretin delayed resumption to eat after the
test meal, with a mean delay of 39 minutes, as compared to
placebo (13).

All in all, our results indicate that the gut – BAT – brain axis
previously shown in mice, translates to healthy, normal weight
humans (Figure 2). Secretin activates BAT and increases whole
body energy expenditure in humans, making it a catabolic agent. It
also has an attenuating effect on anticipatory reward responses to
appetizing food, increases satiation pre-prandially and in early feeding
and delays resumption to eat. These results highlight that secretin has
a rare dual role on energy homeostasis in humans, potentially both
increasing energy expenditure and decreasing energy intake.
CONCLUSIONS AND FUTURE
DIRECTIONS

Despite enormous efforts from several metabolic units around the
globe, a complete and long-lasting resolution of obesity relies
predominantly on bariatric surgery. However, BS is an invasive
procedure, which is not widely and equally available around the
globe. Many patients do not represent good candidates for
undergoing BS and some do not wish to undergo BS. Also, even
though the safety of BS has been proven, some “bariatric” patients
may suffer from post-prandial hypoglycaemia (mild, moderate, or
severe) (107), nutritional deficits, or gastrointestinal occlusions that
need emergency treatment. Thus, identifying pathways that lead to
obesity (appetite dysregulation, or decreased thermogenesis) for
medical treatments of obesity is taking on a new urgency.
Frontiers in Endocrinology | www.frontiersin.org
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In this review we have highlighted secretin’s pleiotropic and
somewhat forgotten metabolic roles. Most importantly, our recent
findings show that secretin both increases energy expenditure and
reduces appetite, making it a potential anti-obesity agent. The
problem with only aiming to increase energy expenditure as a
weight loss treatment is that increased energy expenditure leads to
increased energy intake (108). Secretin’s dual effect on energy
homeostasis makes it a very attractive candidate for future studies.
Still, much work is warranted to investigate the potential of secretin
as a weight-reducing agent. Our volunteers were all healthy, normal
weight and male. Whether this gut-BAT-brain axis is preserved in
overweight and obese individuals needs to be demonstrated. In our
study, we infused intravenously a synthetic human secretin with a
rapid half-life. Currently, there is no long-acting secretin analogue
for human use, but it would be warranted to investigate whether a
longer acting secretin analogue could provide similar or even more
pronounced effects. The serum secretin levels measured in our study
after intravenous infusions were similar to postprandial secretin
levels. Supra-physiological levels of secretin could have a more
pronounced effect on appetite and energy expenditure.
Furthermore, larger clinical trials are needed in order to confirm
pre-prandially administered secretin’s potential in reducing energy
intake in humans. All in all, further clinical trials on secretin are
warranted, as it seems to have a dual effect on energy homeostasis
and could have potential in weight control.
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