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Introduction: Predictive survival modeling offers systematic tools for clinical decision-making and individualized
tailoring of treatment strategies to improve patient outcomes while reducing overall healthcare costs. In 2015, a
number of machine learning and statistical models were benchmarked in the DREAM 9.5 Prostate Cancer
Challenge, based on open clinical trial data for metastatic castration resistant prostate cancer (mCRPC).
However, applying these models into clinical practice poses a practical challenge due to the inclusion of a large
number of model variables, some of which are not routinely monitored or are expensive to measure.
Objectives: To develop cost-specified variable selection algorithms for constructing cost-effective prognostic
models of overall survival that still preserve sufficient model performance for clinical decision making.
Methods: Penalized Cox regression models were used for the survival prediction. For the variable selection, we
implemented two algorithms: (i) LASSO regularization approach; and (ii) a greedy cost-specified variable se-
lection algorithm. The models were compared in three cohorts of mCRPC patients from randomized clinical trials
(RCT), as well as in a real-world cohort (RWC) of advanced prostate cancer patients treated at the Turku
University Hospital. Hospital laboratory expenses were utilized as a reference for computing the costs of in-
troducing new variables into the models.

Results: Compared to measuring the full set of clinical variables, economic costs could be reduced by half
without a significant loss of model performance. The greedy algorithm outperformed the LASSO-based variable
selection with the lowest tested budgets. The overall top performance was higher with the LASSO algorithm.
Conclusion: The cost-specified variable selection offers significant budget optimization capability for the real-
world survival prediction without compromising the predictive power of the model.

1. Introduction

Prostate cancer is among the most commonly diagnosed types of
cancer in men [1]. The survival time with the disease is highly de-
pendent on its stage and grade at the time of diagnosis. Mortality due to
low grade prostate cancer can be even lower than due to competing
causes of death [2], whereas the median survival time of patients with
newly diagnosed metastases is only 42 months [3]. Due to the aging
population in many countries, the incidence and costs of prostate
cancer are expected to increase significantly in the future [4,5]. There is
therefore a critical challenge to develop cost-effective procedures for
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prostate cancer management in order to minimize the burden on public
health expenditure.

Several prognostic models have been developed for the survival
prediction of patients with metastatic castration-resistant prostate
cancer (mCRPC) [6-9]. In the DREAM (Dialogue for Reverse En-
gineering Assessments and Methods) 9.5 mCRPC Challenge that was
organized in 2015, 50 international teams developed competing models
for overall survival prediction. The top performing model (ePCR; en-
semble-based Penalized Cox Regression) significantly outperformed the
competing models in independent validation [10]. Meta-analysis of the
Challenge models supported the use of Cox regression model family
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coupled with regularization as the state of the art in survival prediction
for patients with advanced prostate cancer [10,11].

The prognostic models have conventionally been developed based
on data from clinical trials where it is often possible to conduct a large
number of laboratory tests. This may limit the usefulness of the models
in clinical practice. For instance, the winning model of the DREAM
competition takes as input 101 clinical variables ([10], supplementary
appendix). Many of them are related to medical history and their ex-
traction can be automated, but there are over 40 variables requiring
laboratory tests or other rather expensive procedures such as imaging.
Performing all required tests can incur a significant economic cost.

In order to develop cost effective prognostic models, one should
favor approaches that require as few clinical variables as possible, while
maintaining predictive performance. This task is closely related to
feature selection (variable selection) that is well known in the field of
machine learning [12]. Variable selection can serve a variety of pur-
poses: models with a smaller number of variables are easier to interpret,
more economic and faster to use, and may generalize better to new
data. Varying approaches to variable selection have been explored
when developing models for prostate cancer. In the Halabi model [9],
22 candidate variables were considered, of which 8 were included in
the final model. In the ePCR model [10] some candidate variables were
discarded due to being redundant, skewed or clinically insignificant
according to expert evaluation. Such variables included clinical trial
adverse effect variables, e.g. eye disorders. Model regularization was
also used. Another model tested in the DREAM Challenge used survival
forest and LASSO-based variable selection procedures [13]. However,
none of the studies analyzed or proposed methods for minimizing the
total economic cost of the variables required for applying the models in
clinical settings.

The main contribution of this work is the development of cost-
specified group-wise variable selection methods that are widely ap-
plicable to survival predictions based on patient hospital data generally
available in clinical practice. The novel methods are applied here to
patient cohorts of clinically significant prostate cancer, using real cost
information from Finnish university hospitals. The results indicate that
the approach enables significant saving of economic costs in a real-
world settings, and yet high enough prediction accuracy for clinical
applications. Four patient cohorts are included in the experiments:
three originating from randomized clinical trials and one consisting of
patients treated at the Turku University Hospital. Two variable selec-
tion methods are implemented and tested, one being a cost-specified
greedy algorithm, and the other based on LASSO regularization. The
methods are evaluated in two ways: by using cross-validation and by
using different training and test cohorts. Experiments show that greedy
selection gives better results when the allowed budget is so low that
only a few variables are selected. On the other hand, the peak model
performance with LASSO selection is higher in all cross-validation tests.
Similar observations are made in tests with different training and test
cohorts, although LASSO selection does not always outperform the
greedy method even with a large budget.

2. Materials and methods

Penalized Cox regression [14] has previously been successfully ap-
plied to the survival prediction of patients with prostate cancer. For
instance, the models by Halabi et al. [7,9] and the top-performing
model of the DREAM competition [10] were based on the Cox pro-
portional hazards model coupled with regularization. Therefore, we
also base our approach on penalized Cox regression. Three different
types of penalization terms for the model coefficients are commonly
used in order to prevent over-fitting the Cox model, L; (LASSO), L,
(ridge regression), or their sum (elastic net) [15]. We only considered
the former two possibilities in the variable selection.
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2.1. Problem setting

In medical care, clinical laboratory tests are typically ordered as a
package (group). For example, a standard blood test package at the
Helsinki University Hospital laboratory contains nine measurements
that are useful for characterizing the patient. This includes, for ex-
ample, hemoglobin and counts of white and red blood cells and plate-
lets. For the price of the laboratory test package one gets the results of
all its measurements. Some measurements appear in more than one
package.

Let the set of all available variables be F. A package of clinical tests
is also called a group of variablesG; and can be specified by listing all its
variables. Hence, G; € Ffor allie {1, 2, ..., ng}, where n, is the number
of groups. To simplify the notation, individual measurements not be-
longing to any package are represented as groups containing one
variable. It can then be assumed that all variables belong to some
group, i.e. Ui ,G; = F. On the other hand, a variable may belong to
several groups. The price of a group G; is denoted by c;.

The variable groups that are included in a model can be specified by
listing the corresponding group indices I. Thus, I € {1, 2, ..., ng}. It is
also allowed to include a group partially. Excluding variables of a group
does not reduce cost but, due to the possibility of overfitting, it may
improve model performance. The selected variables of group G; are
denoted by s; C G; and the set of all selected variables by S = U;¢;s;. The
total cost of the selected variables is C = X;cc;.

For given input data d, the performance of a model M is represented
as a score function score(M, d), with a higher score indicating a better
model. When comparing models that only differ due to including dif-
ferent variables, one may also consider the score to be a function of the
selected variables, score(S, d). If a maximum budget B for making
measurements is given, the problem is to maximize the performance
score(S, d) while respecting the budget constraint, i.e. C < B.

2.2. Cost-specified variable selection

The budget can be considered as a hard constraint on the set of
selected variables, meaning that no violations of the constraint are al-
lowed. It is difficult to enforce directly, because non-convexity and non-
continuity makes the optimization NP-hard [16]. A popular way to
select variables for Cox models is to introduce an L;-norm constraint on
the model, that can be considered as a convex and continuous ap-
proximation of the budget constraint. Using the Lagrange method, the
Li-norm constraint can be transformed to a so-called LASSO penalty
function, a soft constraint whose effect is controlled by a penalty
parameter. With a high enough amount of penalization, some of the
model coefficients get a zero value. The corresponding variables can be
removed. By varying the amount of penalization one can select different
sets of variables. Because the method does not take prices into account,
price is computed afterwards using a heuristic. The heuristic starts with
an empty variable set and adds variable groups sequentially. At each
step the group G; with the minimal cost per new variable is added. New
variable means a variable that has not been already added and is in the
target set S and the candidate variable group G;. The process is con-
tinued until all variables of S have been included.

Using the LASSO penalty for variable selection has a side effect of
also penalizing the coefficients of the useful variables that are selected.
While this side effect is sometimes beneficial, as regularized models
work better with noisy data, enforcing small budget constraints requires
so strong regularization that it causes the Cox model to underfit (see the
end of the supplementary appendix for a more detailed description and
an example). Therefore, we propose an alternative technique that
avoids the side effect, namely a greedy budget-constrained Cox re-
gression (Greedy Cox) algorithm, that enforces the hard budget con-
straint directly. The algorithm can be seen as a variant of the Group-
Wise Nested Forward Selection method proposed by Paclik et al. [17],
though the selection criterion is not exactly the same, and their work
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did not concern Cox regression or survival analysis. The basic idea of
the algorithm is to sequentially select the group of variables that gives,
together with all variables that have been selected earlier, the best
cross-validated prediction performance. This is locally optimal when
the only allowed operation is the addition of a single group of variables.
However, some variables of a group may not have a positive effect on
prediction performance. The method is therefore further refined by
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models. In particular, in the greedy method every call of the function
cv_score fits three models due to using threefold cross-validation.

Algorithm 1. Selecting the next group and its variables in the Greedy
Cox algorithm. The remaining budget b is the total budget minus the
price of the already selected groups I

i, G = null, )
I'={jle; <bAj ¢ I}
for j € I’ do // Iterate over groups

S’ := 8 U selected wvariables

for f € Fpew do

if best_wvariable # null then
group__score, selected__variables :=

else
‘ selection__finished := True
if group score > best__score then

return i, G/

Data: Values of variables X, Survival (y,d), Remaining budget b, Variable groups G, Group prices c,
Selected variables S, Selected group indices I

Result: The index ¢ of the best group to be added to I and the variables G} selected from G;

orig_score := best__score := cv__score(X, (y,0),S)

Fpew :=Gj;\S // Unselected variables of the current group
group__score, selected_variables, selection__finished := orig_score, (), False
while not selection_ finished do // Find the best subset of variables
best__variable__score,best_variable := group__score, null

variable_score := cv_score(X, (y,0),S" U{f})

if wariable__score > best_wvariable__score then
| best__variable__score, best_variable :== variable__score, f

best_wvariable score, selected_variables U {best_variable}

‘ best_score,i, G} := group_score, j, selected_variables

selecting variables within the groups. This inner selection is similar to
the group selection but operates on individual variables instead of
groups, and the variables are restricted to those of the currently con-
sidered group. The variable selection process is stopped when there are
no variable groups that fit within the remaining budget and improve
prediction performance. We chose to utilize L, penalization in the
models fitted in Greedy Cox, because when testing elastic net com-
bining L; and L, in a similar setting [10], models close to using only L,
were found to be optimal.

The pseudocode for selecting the next group and a subset of its
variables is given in Algorithm 1. The algorithm uses the function
cv_score to compute cross-validated (threefold) estimates of model
performance. To compute such an estimate, the function requires the
n X d matrix X of all values of the clinical variables of the patients, the
times and types of events (y, §) and the allowed variable set as an input.
The entire variable selection process starts by initializing an empty set
of selected variables. The remaining budget is set to the total budget
because no groups have yet been selected. After the initialization
Algorithm 1 is called repeatedly. After selecting each group the re-
maining budget and selected variables and groups are updated. When
there are no variables available that fit within the budget and improve
model performance, the algorithm returns an empty set of variables,
and the selection process is stopped.

Several alternatives are available for fitting the Cox models.
Goeman [18] developed a method for LASSO models, and extensions to
elastic net penalty were also outlined. The method uses both gradient
descent and the Newton-Raphson algorithm. An algorithm by Simon
et al. [19] is based on coordinatewise descent and was very fast in their
tests. Wu [20] adapted least-angle regression to Cox models. Any
method for fitting L,- and L,-penalized models is suitable for our pur-
poses provided that the running time is not too high. The importance of
running time results from both methods fitting a large number of

2.3. Model evaluation

Concordance index (C-index) [21] is selected as the primary mea-
sure of model performance, i.e. as the performance score function of
Section 2.1. It is a measure of how well the order of modeled risks
corresponds to the order of observed survival times. C-index has been
commonly used in survival analysis [22-25], including in the DREAM
competition [10] (supplementary appendix). Although there are several
estimators for C-index with censored data [25], we limit to the version
used in the DREAM competition: survConcordance function in the R
package survival.

Cross-validation is used in model evaluation as follows. The final
reported sets of variables are obtained by applying the selection algo-
rithms on all data that are available for the studied patient cohort. In
addition to the variable sets, estimates of model performance are re-
quired. For this purpose variable selection with fivefold cross-validation
is repeated 50 times, giving a total of 250 sequences of variable sets.
Each sequence contains all variable sets that were selected during a
single run of a selection algorithm. The performance scores are com-
puted during the cross-validation using the proper test sets. Finally, the
results of the cross-validation are linked to the final variable sets (that
were obtained using all data) by price. For a given variable set S this
means that the last variable sets not exceeding the cost of S are selected
from all 250 sequences and the corresponding 250 performance mea-
sures are averaged. Note that when using Greedy Cox, cross-validation
is also used in the variable selection process: when considering a given
cross-validation fold, the training data are further divided into cross-
validation folds for the variable selection. The test fold is never in-
cluded in the variable selection. This scheme is known as nested cross-
validation [26].

In cross-validation tests the patient groups in the training and test
sets tend to be highly similar because they are selected from the same
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patient cohort. This may lead to an optimistic bias in model evaluation.
Therefore, further tests are done where the training and test cohorts
originate from independent sources. We include four patient cohorts
and consider all 12 pairs of training and test cohort where the cohorts
are different.

2.4. Patient cohorts

Four patient cohorts were included, three of them originating from
randomized clinical trials (RCT cohorts) included in the Prostate Cancer
Challenge (PCC-DREAM), hosted by Project Data Sphere (PDS, https://
www.projectdatasphere.org/), a broad-access research platform that
collects and curates patient-level data from completed, phase III cancer
clinical trials. The fourth group (real-world cohort, RWC) consists of
patients treated at the Turku University Hospital according to the
clinical recommendations. The patient registry data for the RWC cohort
were provided by the Turku University Hospital Centre for Clinical
Informatics and were processed as before [27]. A notification of the
registry-based study design was made to the Office of the Data Pro-
tection Ombudsman according to the appropriate legislation, and the
data gathering and analysis was performed with the permission of the
hospital district (approval T287/2016). The patients of RWC were se-
lected based on castration resistance [27].

The patient cohorts are summarized in Table 1. Only patients that
received the standard treatment (docetaxel and prednisone) were in-
cluded in the three RCT cohorts. The ASCENT and MAINSAIL studies
were terminated early due to the novel treatment not being beneficial
in comparison to the standard treatment. The short follow-up times
were reflected in mortality: less than 30% of patients died during these
trials, compared to over 70% in the VENICE and RW cohorts.

The baseline patient characteristics for the RCT cohorts can be
found in the respective publications [28-30]. In the RW cohort the
median age of the patients was 76.3 years (first and third quartiles 70.1
and 82.6 years) in the beginning of the observation period, i.e. when
their disease was first diagnosed as castration resistant. The dates of
diagnosis ranged from April 2002 to October 2016. The median values
of clinical variables were as follows: PSA 38.5ug/1, HB 12.6 g/dl and
alkaline phosphatase (ALP) 85 U/1. The median of the observed values
of LDH was 193.5 U/1 but the observation was missing for almost90 %
of the patients. Compared to the RCT cohorts, the patients in the RW
cohort were older and their PSA and ALP values were lower. Informa-
tion about metastases and the patient performance status (ECOG_C)
were missing for most patients.

The survival curves for all four cohorts are shown in Fig. 1. In the
early follow-up survival is similar in all three RCT cohorts, whereas in
the RW cohort early mortality is higher. This is reflected also in the
median times to event in Table 1: although a similar number of deaths
occurred in VEN and RWC, the median time to event is much higher in
VEN. The short follow-up times in the ASCENT and MAINSAIL cohorts
are also apparent. In the RW cohort, survival (or censoring) times are
counted starting from the first instance mentioning castration resistance
in the patient records. The PCA plot in Fig. 1 indicates a difference in
the baseline patient characteristics between RWC and the RCT cohorts.

As potential model variables we started with the 101 variables of
the original ePCR model (Supplementary Data, Table 1). Prices of
various clinical examinations were provided by the Helsinki University
Hospital. Variables that can be automatically extracted from patient
records, such as medical history, were assumed to be cost-free. There
were 16 variables without a known cost, including information about
metastases. Those variables were ignored, leaving 85 potential vari-
ables. The variable groups, their variables and prices are shown in
Table 2.

3. Results

The following questions were considered when conducting the cost
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Table 1
Patient cohorts included in this study. The columns Tas0,/median/75% give the
quartiles of days to event (death or censoring).

Name Abbr. Origin Patients Tosos Tmedian I75% Tmax % dead
ASCENT ASC  RCT [28]" 476 259 357 482 796  29.0
VENICE VEN RCT [29]" 598 392 643 902 1594 72.4
MAINSAIL MAI  RCT [30]" 526 194 279 399 750 175
RW cohort RWC TYKS 581 128 330 702 4188 75.7

[271°

@ A data matrix collected and imputed during the DREAM competition was
used.
® Turku University Hospital.

vs. prediction performance trade-off evaluations:

1. Can variable set cost be reduced with little or no loss of model
performance?

2. Which of the variable selection methods is optimal with different
budgets?

3. Do the models give satisfactory results outside their training co-
horts?

Cross-validation tests give answers to the first two questions. Tests
where the training and test cohort originate from independent sources
answer the last question while also providing further information about
the usefulness of the estimated models. With the four patient cohorts
there are 16 different pairs of training and test cohort: four where the
cohorts are the same and 12 where they are different. All these pairs
were considered by training a model on one cohort and evaluating it on
another cohort. Cross-validation was used in cases where the training
and test cohorts are the same. Several variables were missing for most
of the patients in the RW cohort, including lactate dehydrogenase and
aspartate aminotransferase, which have previously been identified as
important predictive variables [10], resulting in differences in the se-
lected variable sets between the RW and RCT cohorts.

3.1. Implementation

The variable selection algorithms described in Section 2.2 were
implemented in Python language, version 3.5.2, and the glmnet
package' was used for model fitting. Concordance indices were com-
puted with the lifelines package. Variable sets were determined sepa-
rately for the four data sets using both algorithms. In RWC, missing
values were filled in using median imputation, which has previously
been tested to give satisfactory results [27]. We also tested k-nearest
neighbor (kNN) imputation before starting the variable selection tests
but it did not improve model performance.

3.2. Test results

Fig. 2 shows the C-index scores obtained in the four cohorts using
the two variable selection algorithms with various budgets, both for the
cross-validation and independent training-test cohort evaluations.
There were clear differences between the cohorts in the achieved model
performance. The order of survival times was predicted best in the RW
cohort, with C-index up to 0.721, while in the VENICE cohort C-index
was only 0.653. In the ASCENT and MAINSAIL cohorts the C-indices
were up to 0.680 and 0.700, respectively. The reasons for the differ-
ences between the RCT cohorts are not known but the good results in
the RW cohort may be explained by there not being stringent inclusion
criteria in this cohort, making the patient population heterogeneous. In
fact, PSA measurement alone allowed a model fitted to the RW cohort

! https://web.stanford.edu/hastie/glmnet_python/.
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(a) Kaplan-Meier survival plot (b) Principal component analysis
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Fig. 1. (a) Overall survival in the four cohorts. Circles indicate the censoring times. (b) PCA plot of the numeric variables of the four cohorts. The RCT cohorts appear

to be similar to each other, but the RW cohort differs from them.

Table 2

Variable groups and their prices. The prices are standardized so that the PSA
measurement gets the reference cost of 100. The groups correspond to la-
boratory test packages available at the Helsinki University Hospital. Only
variables considered for inclusion are shown. Non-abbreviated names of the
variables are given in Supplementary Appendix, Table 1.

Group Model variables Price
B-PVKT HB, HEMAT, RBC, WBC, PLT 40
B-PVK+Ne Same as in B-PVKT except PLT 60
B-PVK+TKD B-PVKT + LYMperLEU, MONOperLEU, NEU, POT, 920
MONO, BASOperLEU, EOSperLEU, NEUperLEU
B-Hb HB 50
cB-Het-Ion NA 100
Pt-GFReEPI CCRC 20
P-LD LDH 20
P-ASAT AST 20
P-ALB ALB 20
P-AFOS ALP 20
P-PSA PSA 100
P-Krea CREAT 20
Pt-Krea-Cl CREACL 70
B-Lymf LYM 90
P-Pi PHOS 20
P-Ca CA 20
P-Alat ALT 20
S-Prot TPRO 20
B-PNH-La WBC 4200
B-Eos EOS 90
S-Testo TESTO 330
P-Gluk GLU 20
P-Mg MG 20
P-Bil TBILI 20
Free variables =~ Medical history, age, race/region, performance status 0

(ECOG_C), medicines in use

to achieve a C-index that was similar to the best tested models in the
VENICE cohort.

3.2.1. Cross-validation results

In cross-validation tests the peak C-index of LASSO selection was
always better than that of Greedy Cox but with low budgets Greedy Cox
often achieved better results than LASSO. The results of LASSO selec-
tion also deteriorated with the greatest budgets while those of Greedy
Cox remained stable. A possible reason is that in Greedy Cox the

amount of model penalization is fixed while in LASSO selection high-
cost variable sets are obtained by reducing the penalization.

With relatively low budgets slightly increasing the budget occa-
sionally worsened model performance when using Greedy Cox. The
reason is that the larger budget was spent on the first selected variable
group, after which only cost-free variables could be selected. With a
slightly lower budget, a less expensive variable group had to be selected
first, leaving enough budget to select another inexpensive but non-free
group.

Table 3 shows the variables selected for the RW cohort by the two
algorithms and the achieved C-indices. An unlimited budget was used in
Greedy Cox. The table shows the variables selected in each step of the
algorithm. The results do not fully correspond to what one would get by
limiting the budget, but it was verified that the differences are minor for
the budgets shown in Table 3. The variable sets selected by the two
methods are similar during the initial steps, after which the selection
paths diverge. Of previously known prognostic variables lactate dehy-
drogenase (LDH) [9,10] was not included, likely because it was missing
for over 80 % of patients in RWC.

3.2.2. Tests with different training and test cohorts

When different cohorts were used for model fitting and evaluation,
Greedy Cox still often outperformed LASSO selection with low budgets.
The peak performance of LASSO was again in many cases better than
that of Greedy Cox, but there were also cases where Greedy Cox out-
performed LASSO or their scores were very similar. Fig. 2 also gives a
coarse indication of how much model performance is lost when the
training and test sets are not subsets of the same cohort, which is the
more typical use case in practice. The cross-validated C-index in the
MAINSAIL cohort with LASSO selection is clearly higher (0.70) than
what is achieved by models fitted to the other cohorts (0.65-0.68).
Greedy Cox applied on ASCENT does achieve a high C-index (slightly
over 0.70) with a very low budget. However, in a real predictive setting
one would not know the C-index that will be achieved in the new cohort
and the budget would have to be chosen based on, for example, the
cross-validation results. Then, a greater budget would be chosen and
the resulting model would perform much worse when evaluated in the
MAINSAIL cohort, C-index well below 0.65. Except for the poor fit to
MAINSAIL, a model fitted to the VENICE cohort performs well in the
other cohorts. Models fitted to the RW cohort have somewhat similar
predictive performance as those fitted to VENICE. Models fitted to
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Fig. 2. C-index scores achieved by the two variable selection algorithms in four cohorts. The rows correspond to the training cohorts and the columns to the test
cohorts. The plots on the diagonal show cross-validation results where the training and test sets are non-overlapping subsets of the same cohort of patients. 50
budgets were considered when selecting variables using Greedy Cox, except in the cross-validation tests where only 8 budgets were tested due to high execution time.
In tests involving the RW cohort, only variables that were available for at least 60% of the patients were included as potential model variables. In other cases all

variables with a known price were included in the analysis.

MAINSAIL and ASCENT are not able to predict the survival times of the
patients well for the RW and VENICE cohorts. The worse performance
of models fitted to ASCENT or MAINSAIL compared to VENICE and RW
may be related to the fact that there were relatively few deaths in the
former two trials. In the RW cohort many observations are missing and,
as noted before (Fig. 1), the baseline patient characteristics differ be-
tween the RCT and RW cohorts.

4. Discussion

We developed tools for constructing survival models that in-
corporate both the prognostic value and real-life clinical cost of the
available variables. The tools were applied to cohorts of prostate cancer
patients, and considerable cost savings were possible. In particular,
maximal prediction performance was obtained with variable sets whose
total cost was 2-4 times the cost of PSA measurement. Additional
variables had a negative effect on prediction performance when using
LASSO penalization because the amount of penalization had to be re-
duced to include more variables. The number of variables in the best
models was usually 10-15 and at most 19 when the full candidate set
contained 85 variables with a known cost.

The variables selected by the two algorithms and for different co-
horts (Supplementary Appendix, Section 4.2) were surprisingly dis-
similar. Some of the differences are explained by data availability. For

instance, lactate dehydrogenase (LDH) was selected in all RCT cohorts
when the budget was sufficient for achieving maximal model perfor-
mance, but in the RW cohort it was not available for most patients.
However, even in the RCT cohorts LDH was the only variable that was
always selected. When ranking the variables in terms of how often they
were selected in the four cohorts by the two algorithms (8 test cases),
LDH, hemoglobin (HB), alkaline phosphatase (ALP), history of con-
gestive heart failure (CHF) and PSA ranked highest. Except for LDH and
CHF, they were selected in the RW cohort by both algorithms. They
were also selected in the RCT cohorts in 2-3 of 6 test cases. Apart from
CHF these variables were also identified as important in the DREAM
competition [10] (supplementary appendix). On the other hand, several
variables that were important in the competition were rarely selected
by the algorithms considered in this work: aspartate aminotransferase
(AST), red blood cell count (RBC), albumin (ALB) and patient perfor-
mance status (ECOG_C). AST was selected in the RW cohort by both
algorithms and in MAINSAIL cohort by Greedy Cox. ALB was selected in
the MAINSAIL cohort by both algorithms but not in any other cohort.
ECOG_C was selected only in the VENICE cohort by LASSO. RBC was
not selected in any cohort by either algorithm.

In cross-validation tests greedy selection outperformed LASSO with
low budgets but when a larger budget was allowed, LASSO was better.
A similar observation has been made earlier in a different application
domain [31] and has been explained by too much penalization when
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Table 3

International Journal of Medical Informatics 133 (2020) 104014

Variables selected in the RW cohort in one representative run of the two algorithms. Variables selected after achieving peak performance score are not shown. An
unlimited budget was used in Greedy Cox. Prices are standardized so that PSA measurement gets a reference cost of 100.

Added (LASSO) Cost C-index Added (Greedy) Cost C-index

PSA 100 0.6437400751 PSA 100 0.6558329497
HB 140 0.6750675985 HB, WBC, LYMperLEU, NEUperLEU 190 0.7030678652
ALP 160 0.6926671617 ALP 210 0.7136055393
AGEGRP2 160 0.6926671617 LYMPHAD. 210 0.7136055393
NA 260 0.7108133119 MHRENAL 210 0.7136055393
LYMPHAD., CEREBACC 260 0.7108133119 CHF 210 0.7136055393
CREAT 280 0.7125581451 MHGASTRO 210 0.7136055393
CA 300 0.7162508398 MG 230 0.7133507852
PROSTATECTOMY 300 0.7162508398 CA 250 0.7137403901
MHRENAL 300 0.7162508398 MHRESP 250 0.7137403901
MHRESP 300 0.7162508398 CREAT 270 0.7138421132
COPD 300 0.7162508398 LDH 290 0.713529709
HEMAT 300 0.7162508398 MHBLOOD 290 0.713529709
PHOS 320 0.7193234862 MHCARD 290 0.713529709
AST 340 0.7197403359 MHINJURY 290 0.713529709
BILAT. ORCHID. 340 0.7197403359 CCRC 310 0.7132638455
POT 430 0.7212326369

CHF, MHGASTRO 430 0.7212326369

RBC 430 0.7212326369

WBC 430 0.7212326369

HMG_COA_REDUCT 430 0.7212326369

ANALGESICS 430 0.7212326369

ACE_INHIBITORS 430 0.7212326369

selecting only a few variables using LASSO [32]. When the training and
test cohorts were different, the results were mixed between the variable
selection methods. Overall, Greedy Cox was better when only a few
variables were included in the models while LASSO was very compe-
titive with larger budgets.

Further developments on both the greedy approach and penalized
models are possible. For instance, in the greedy selection it might be
beneficial to remove variables that have become redundant as a result
of adding other variables. The penalized approach considered in this
work, LASSO, does not take the groups of variables and their prices into
account; the cost of a variable set was computed after the selection
process. With larger budgets this gave rather good results, but in-
corporating the cost in the model as an additional penalization term
might further improve the results, especially with lower budgets.

4.1. Limitations of the study

The study considered mortality due to all causes. Therefore the
variables selected by the algorithms may contain variables that are not
related specifically to prostate cancer. Even in the initial set of variables
there was a scarcity of actual biomarkers of prostate cancer. While more
comprehensive patient information would be preferable, the lack of
biomarkers beyond PSA corresponds to what is available from the
current clinical management of prostate cancer patients.

Metastasis status was excluded from variable selection due to
missing price information and questionable availability in the RW data
set. While this is a significant omission, one may note that in the 2015
DREAM competition information about any particular metastasis site
was included in the models of less than 20% of the teams, although the
winning model did include several locations of metastases (see [27],
Supplementary appendix). Unlike in the RCTs dealing with mCRPC, in
the RW cohort there can be patients without any metastases, making
the availability of this information potentially more important. Cost-
specified variable selection should be repeated when the prices of ad-
ditional variables become available. The proposed approach and the
selected variables warrant further studies in other patient cohorts, both
in prostate cancer and other related cancer types, to confirm their
prostate cancer-specificity, and applicability of the approach to other
cancer types.

Summary table

What was already known on the topic?

Several models are available for the survival prediction of patients
with prostate cancer.

Variable selection methods have been used when developing the
models.

e Variable set cost has not been an explicit goal in variable selection.

What this study added to our knowledge?

e Two methods were developed for selecting cost-effective sets of

variables in survival prediction.

The methods offer significant cost reduction potential in all tested

cohorts with minor or no loss of model performance.

e The results of variable selection are sensitive to differences in al-
gorithms and data sets.

e With very low budgets Greedy Cox tends to produce better models
than LASSO selection.

e With large budgets LASSO selection is very competitive.
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