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ABSTRACT

With high resolution (0.”25 x 0.”18) ALMA CO 3-2 (345 GHz) observations of the nearby (D=21 Mpc, 1”=102 pc), extremely
radio-quiet galaxy NGC1377, we have discovered a high-velocity, very collimated nuclear outflow which we interpret as a molecular
jet with a projected length of £150 pc. The launch region is unresolved and lies inside a radius r < 10 pc. Along the jet axis we find
strong velocity reversals where the projected velocity swings from -150 kms™ to +150 kms™'. A simple model of a molecular jet
precessing around an axis close to the plane of the sky can reproduce the observations. The velocity of the outflowing gas is difficult
to constrain due to the velocity reversals but we estimate it to be between 240 and 850 kms™' and the jet to precess with a period
P=0.3-1.1 Myr. The CO emission is clumpy along the jet and the total molecular mass in the high-velocity (+(60 to 150 kms™'))
gas lies between 2 x 10° M, (light jet) and 2 x 107 M, (massive jet). There is also CO emission extending along the minor axis of
NGC1377. It holds > 40% of the flux in NGC1377 and may be a slower, wide-angle molecular outflow which is partially entrained
by the molecular jet.

We discuss the driving mechanism of the molecular jet and suggest that it is either powered by a (faint) radio jet or by an accretion
disk-wind similar to those found towards protostars. It seems unlikely that a massive jet could have been driven out by the current
level of nuclear activity which should then have undergone rapid quenching. The light jet would only have expelled 10% of the inner
gas and may facilitate nuclear activity instead of suppressing it. The nucleus of NGC1377 harbours intense embedded activity and we
detect emission from vibrationally excited HCN J = 4 — 3 v, = 1f which is consistent with hot gas and dust. We find large columns
of H, in the centre of NGC1377 which may be a sign of a high rate of recent gas infall. The dynamical age of the molecular jet is
short (<1 Myr), which could imply that it is young and consistent with the notion that NGC1377 is caught in a transient phase of its
evolution. However, further studies are required to determine the age of the molecular jet, its mass and the role it is playing in the
growth of the nucleus of NGC1377.
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1. Introduction

The growth of central baryonic mass concentrations and their
associated supermassive black holes (SMBHs) are key compo-
nents of galaxy evolution (e.g. Kormendy & Ho|2013). The un-
derlying processes behind the evolution of the SMBH and how
it is linked to its host galaxy and its interstellar gas are, however,
not well understood. In addition, it is not clear how SMBHSs can
grow despite the energy/luminosity of accretion that leads to gas

—_ expulsion from the region. Massive molecular outflows powered

X
®

by AGNs and bursts of star formation are suggested as being
capable of driving out a large fraction of the galaxy’s cold gas
reservoir in only a few tens of Myr (e.g.Nakai et al.|1987} Walter]
et al.|2002; [Feruglio et al.[|2010; Sturm et al.|[2011}; |Aalto et al.
2012a; |(Combes et al.|[2013} Bolatto et al.|[2013} |Cicone et al.
2014} [Sakamoto et al.|[2014} |Garcia-Burillo et al. 2014} |Aalto
et al[[2015b} |Alatalo| 20155 [Feruglio et al|[2015). To maintain

* Based on observations carried out with the ALMA Interferometer.
ALMA is a partnership of ESO (representing its member states), NSF
(USA) and NINS (Japan), together with NRC (Canada) and NSC and
ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint
ALMA Observatory is operated by ESO, AUI/NRAO and NAOIJ.

nuclear activity and growth, an inflow of gas from larger radii is
therefore required.

Cold molecular gas has been proposed as an important
source of fuel for SMBH growth since the accretion of hot gas is
meant to be inefficient and slow (Blandford & Begelman|/1999;
Nayakshin|[2014)). However, it is not known how the cold gas
is deposited into the inner nucleus of the galaxy. This angular
momentum problem is similar for the growth of SMBHs and
the formation of stars (Larsonl2010) and is even more severe for
SMBHs because they are smaller than stars in relation to the size
of the system in which they form. Thus, the mass that SMBHs
may achieve is likely to be strongly regulated by the efficiency
of angular momentum transfer during the fuel process. In pro-
tostars there is strong evidence of a physcal link between infall
and outflow (e.g. |Arce et al.|[2007) and angular momentum can
be transferred by molecular jets and outflows. A link betwen in-
fall and outflow seems to also exist for galaxy nuclei and AGNs
(e.g.|Davies et al.|2014; |Garcia-Burillo et al.|2014)

Chaotic inflows of cold gas clumps with randomly ori-
ented angular momenta have been suggested as alternatives to
large scale disks in feeding the growth of the SMBH (King &
Pringle| 2007}, |Gaspari et al.|[2013} [Nayakshin et al.|[2012)). In
this scenario, SMBH growth may occur primarily through mul-
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tiple small-scale accretion events, rather than continous accre-
tion (e.g. King & Pringle[2007) leading to AGN luminosity vari-
ations on time scales of 10° — 10° yr (Hickox et al|[2014). A
somewhat contrasting picture is that angular momentum may be
effectively transported by, for example, bars and spiral density
waves on large and small scales (see e.g. discussion in |Garcia-
Burillo et al.| (2014)). AGN luminosity and nuclear growth is
therefore expected to vary depending on the interplay between
mode of accretion, outflow, and winds.

To test how gas inflow and the feedback of central activity in-
fluences the growth of SMBHs it is important to study galaxies
in early or transient phases of their nuclear evolution. NGC1377
is a likely example of such a system. It belongs to a small subset
of galaxies that has a pronounced deviation from the well-known
radio-to-FIR correlation, having excess FIR emission compared
to the radio (¢ > 3; q:log[FIR/3.75><1012 Hz]/S,(1.4GHz)
(Helou et al.|[1985)). These FIR-excess and radio-quiet galax-
ies are rare. Roussel et al.|(2003)) find that they represent a small
fraction (1%) of an infrared flux-limited sample in the local uni-
verse, such as the IRAS Faint Galaxy Sample. Their scarcity is
likely an effect of the short time spent in the FIR-excess phase,
making them ideal targets for studies of transient stages of AGN,
starburst, and feedback.

1.1. The extremely radio-quiet FIR-excess galaxy NGC 1377

NGC 1377 is a member of the Eridanus galaxy group at an es-
timated distance of 21 Mpc (1”7=102 pc) and has a far-infrared
luminosity of Lpr = 4.3 X 10° L, (Roussel et al[2003). In stel-
lar light, NGC 1377 has the appearance of a regular lenticular
galaxy (de Vaucouleurs et al.|[1991)) although |Heisler & Vader
(1994) and Roussel et al.| (2006) find a faint dust lane that ex-
tends along the southern part of the minor axis.

NGC 1377 is the most radio-quiet, FIR-excess galaxy known
to date with radio synchrotron emission being deficient by at
least a factor of 37 with respect to normal galaxies (Roussel
et al.[[2003| 2006)). Interestingly, H II regions are not detected
through near-infrared hydrogen recombination lines or thermal
radio continuum even though faint optical emission lines are
present (Roussel et al.|[2003| [2006). Deep mid-infrared silicate
absorption features suggest that the nucleus is enshrouded by
large masses of dust (e.g. Spoon et al.[|2007). This supports the
notion that NGC1377 may be in a transient phase of its evolu-
tion since a more advanced nuclear activity is expected to have
cleared out the enshrouding material. It has been suggested that
the compact IR nucleus may be the site of a nascent (r <1 Myr)
opaque starburst (Roussel et al.|2003} 2006) or of a buried AGN
(Imanishi2006; [Imanishi et al.[2009)).

High resolution SMA CO 2-1 observations revealed a large
central concentration of molecular gas and a massive molec-
ular outflow (Aalto et al||2012b) that appeared to be young
(~ 1.4 Myr). The extremely high nuclear dust and gas obscu-
ration of NGC1377 aggravates the determination of the nature
of the nuclear activity and the driving force of the molecular
outflow, but the extraordinary radio deficiency implies transient
nuclear activity .

We used the Atacama Large Millimeter/submillimeter Array
(ALMA) to observe CO 3-2 at high resolution in NGC1377 aim-
ing to determine the nature of the buried source and the structure
and evolutionary status of the outflow. Here we present the dis-
covery of a high-velocity, extremely collimated and precessing
molecular jet in NGC1377. Our results show that the nuclear
source is likely an AGN and that we are either witnessing a faint
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radio jet driving a molecular collimated outflow, or a jet powered
by cold accretion. The nuclear activity of NGC1377 may be fad-
ing, or the large nuclear concentration of gas and dust signify
that the major AGN event has not yet occured. We also discuss
how the gas transfer in the moleular jet may instead foster gas
recycling and how this process may promote SMBH growth.

2. Observations

Observations of the CO J=3-2 line were carried out with ALMA
(with 35 antennas in the array) on 2014 August 12, for about
half an hour on-source and with good atmospheric conditions
(precipitable amount of water vapour of ~0.5 mm). The phase
centre was set to @=03:36:39.074 and 6=—-20:54:07.055 (J2000).

The correlator was set up to cover two bands of 1.875 GHz
in spectral mode, one centred at a frequency of ~344.0 GHz
to cover the CO J=3-2 line (in the lower side band), and the
other centred at 354.3 GHz to cover the HCO" J=4-3 and HCN
J=4-3v=0andv = 1f lines (in the upper side band). The
velocity resolution for these bands was 1.0 km/s after Hanning
smoothing. In addition, two 2 GHz bands were set up in contin-
uum mode, i.e., with a coarser velocity resolution of ~27 km s,
centred at 342.2 and 356 GHz, respectively.

The bandpass of the individual antennas was derived from
the quasar J0423 —0120. The quasar J0340—-2119 (~0.3 Jy) was
observed regularly for complex gain calibration. The absolute
flux scale was calibrated using the quasar J0334 —401. The flux
density for J0334 — 401 was extracted from the ALMA flux-
calibrator database.

After calibration within the CASA reduction package, the
visibility set was imported into the AIPS package for further
imaging. The synthesized beam is 0.””25 x 0.”18 (25%18 pc for
NGC1377) with Briggs weighting (parameter robust set to 0.5)
and the resulting data has a sensitivity of 0.8 mJy per beam in a
10 kms™' (12 MHz) channel width.

3. Results
3.1. CO 3-2 moment maps

The CO 3-2 integrated intensity (moment 0) map, velocity field
(moment 1) and dispersion map (moment 2) are presented in
Fig|ll We smoothed to two channel resolution, then for the mo-
ment 0 map we clipped at the 30 level, and for the moment 1
and 2 maps we clipped at 40-. The velocity centroids were deter-
mined through a flux-weighted first moment of the spectrum of
each pixel, therefore assigning one velocity to a spectral struc-
ture. The dispersion was determined through a flux-weighted
second moment of the spectrum of each pixel. This corresponds
to the one dimensional velocity dispersion (i.e. the FWHM line
width of the spectrum divided by 2.35 for a Gaussian line profile)
The integrated intensity map shows centrally peaked emis-
sion with some structure extending radially from the centre up
to a radius of ~1.”5 (150 pc). An estimated 11% of the emission
is emerging from the inner 25x18 pc (see Table([T). The velocity
field is complex and implies that the maximum velocity shifts
occur outside the nucleus. There is evidence for a shallow east-
west velocity gradient around the nucleus. The moment 2 map
reveals a striking, narrow 3" long feature of high dispersion.
The CO emission clearly delineates two separate structures
(Fig. E]): an extremely well collimated jet-like structure, which,
essentially, is visible at high velocities and large-scale emission
at low velocities, which surrounds the high velocity jet-like fea-
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Fig. 1. CO 3-2 moment maps. Left: Integrated intensity (momQ) where
contours are 1.7x (1, 2, 4, 8, 16, 32, 64) Jy kms™! beam™'. Colours
range from 0 to 172 Jy kms™' beam™". Centre: velocity field (mom1)
where contours range from 1690 kms™' to 1820 kms™ in steps of 10
kms™!. Right: Dispersion map (mom?2) where contours are 4.4x(1, 3,
5,7,9, 11, 13) kms™'. Colours range from 0 to 66 kms™'. The cross
indicates the position of the 345 GHz continuum peak (see Table [I).

ture. We interpret the high velocity feature as a molecular jet (see
Sect.[4.1)) and we will refer to it as such in the text below.
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Fig. 2. CO 3-2 integrated intensity image where emission close to sys-
temic velocity (1700 - 1760 kms™") is shown in greyscale (ranging from
0 to 70 Jy kms™"). The high velocity (+80 to +150 kms™') emission
from the molecular jet is shown in contours (with the red and blue show-
ing the velocity reversals). The contour levels are 1.0x(1, 2, 3, 4, 5, 6,
7,8,9) Jy kms~! beam™'. The dashed lines indicate the jet axis and the
inferred orientation of the nuclear disk. The CO 3-2 beam is shown as a
grey ellipse in the bottom left corner. The vertical bar indicates a scale
of 100 pc.

3.2. The high velocity gas — a molecular jet

The high velocity (projected velocities 60-150 kms™') gas
(Fig.[2) is aligned in a £1.”5 (150 pc) long, highly collimated,
jet. It has an unresolved width (d <20 pc - set by the limit of
our resolution) and a position angle PA=10°. In Fig. 2] we show
that near the nucleus (within 0.”5) emission at redshifted veloci-
ties is on the southern side and emission at blueshifted velocities
are found to the north. Further along the axis (beyond 0.”5) this
reverses.

3.3. Systemic and low-velocity gas

The systemic and low-velocity gas (projected velocities O-
60 kms™') consists of a bright central disk-like feature with
PA=105° + 5° and larger scale emission extending primarily
along the minor axis of NGC1377. Along the PA of 105° + 5°
there is an east-west velocity shift of ~50 kms™'. The low-
velocity emission surrounds the molecular high-velocity jet in
a butterfly-like pattern (Fig. [2] ). Most of the CO 3-2 flux of
NGC1377 emerges from this minor axis structure (Table[T)). The
minor axis extent of the systemic emission is similar to that of
the high-velocity molecular jet, but we note that at zero veloci-
ties, negatives in the map indicate that some flux is missing from
extended emission. The maximum recoverable scale of our ob-
servations is of the order of ~ 5”.

3.4. Position-velocity (PV) diagrams

In Fig[3] we present five PV diagrams to show the distinct struc-
ture of the high-velocity emission in relation to that of the sys-
temic and low-velocity gas.
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Table 1. CO 3-2 flux densities and molecular masses®
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Fig. 3. Position-velocity (PV) diagrams showing gas velocities in five
different slits: (A) along the jet axis; (B) Perpendicular to the jet axis
through the nucleus; (C) Perpendicular to the jet axis at 1.”2 to the
north; (D) Perpendicular to the jet axis at 0.”25 to the north; (E) Per-
pendicular to the jet axis at 0.”25 to the south; (F) Perpendicular to the
jet axis at 1.”2 to the south. Contour levels are 3.1x(1, 3, 5, 9, 18, 36)
mJy beam™! thus the first level is at 40~. The colour scale range from 2

to 156 mJy beam™'.

The PV diagram along the jet axis (A) shows the velocity
reversals. Near the nucleus the highest velocity is blueshifted to
the north and redshifted to the south. The maximum velocities
occur about 0.”25 (25 pc) away from the nucleus. Further away
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Molecular mass®

(central beam) 1.8 x 10" Mo,
(molecular jet) 2.3 x 107 Mg,
(whole map) 16 x 107 Mg

a) Listed errors are 10~ rms.

b) The position of the peak 345 GHz continuum emission
and of the CO 3-2 integrated intensity. The Peak Ty is at
@:03:36:39.072 6:-20:54:07.06 at V.=1730 kms™".

c¢) The Jy to K conversion in the 0.”25 x 0.”18 beam is
1 K=4.6 mJy. The peak Tp is 34 K corresponding to 156 mJy.
d) The jet flux is integrated from +(60 to 200) km s~ where the
blueshifted flux is 5.5 and the redshifted 17.7 Jy kms™'.

e) The H, mass M(H,)=1 x 10*S(CO1 — 0)AvD? (D is the
distance in Mpc, S Av is the integrated CO 1-0 line flux in Jy
kms™!) for a conversion factor N(H,)/I(CO 1-0)=2.5 x 10%
cm~2). Since we have CO 3-2 we have to correct for the fre-
quency dependence of the brightness temperature conversion. If
CO 3-2 and 1-0 have the same brightness temperature (thermal
excitation, optically thick) the correction factor is 1/9. However,
usually the CO emission is subthermally excited and the bright-
ness temperature ratio is expected to be about 0.5 for a giant
molecular cloud. Hence the correction factor we apply is 1/4.5
and M(H,)=2.2x 103 S (CO 3—2)Av D?. The inferred H, column
density in the central beam is N(H,)=3 x 10** cm™2.

(1.”2) the highest velocity is now redshifted on the north side
and blueshifted to the south.

The PV diagram also shows that the CO emission peaks
strongly in the nucleus and that the emission along the jet axis
is clumpy. The clumps are unresolved in the CO 3-2 beam and
from the Jy to K conversion in Table[T] we find that the clumps
have brightness temperatures of 75(CO 3-2)=1 — 8§ K. The CO
3-2 line widths of the gas clumps in the jet are high ranging from
50 to ~150 kms~!, which is evident in the PV diagram along the
jet axis, as well as in the PV diagrams cut across the jet (C-F in
Fig3).

We show four PV diagrams oriented perpendicular to the jet:
two at distance + 0.”25 from the nucleus (D and E) and two 1.”2
from the nucleus (C and F). They were selected at the locations
of highest velocities in the gas along the jet - and also to show
the switch in orientation of the high-velocity gas (the velocity
reversals). In PV diagrams D and E the distinction between the
narrow, unresolved high-velocity gas from the extended emis-
sion (on scales of ~ 2” (200 pc)) of the low-velocity gas is clear.
On the north side the high-velocity blueshifted emission in (D)
is narrower than the redshifted high-velocity emission further
out (C). A similar pattern is seen to the south where the nar-
row redshifted emission near the nucleus (E) is more confined
than the blueshifted emission further from the nucleus (F). Here,
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there is also some emission at near-systemic velocities as well
as an additional blueshifted component. Comparing D and E we
find that the low-velocity gas to the north is slightly redshifted
with respect to systemic velocity and to the south the emission
is somewhat blueshifted.

We also present a PV diagram across the nucleus that is per-
pendicular to the jet component (B). Again, it shows the central
concentration of the CO 3-2 emission, broad unresolved emis-
sion on the nucleus, and narrower emission extending to the east
and west of the nucleus. There is a low velocity shift from east
to west of 25 kms™'.

3.5. Nuclear gas

Velocities in the nucleus span a total of 300 kms™. It is not clear
what amount of this constitutes rotation of a circumnuclear disk
and what amount stems from the outflowing gas in the jet. The
velocities in the moment 1 map (Fig[I) do not show much rota-
tion around the nucleus. The nuclear emission is broad but un-
resolved in space, and the velocity outside of the nucleus drops
quickly with radius along the major axis of the galaxy, as is evi-
dent in PV diagram (B) in Fig[3]

From the CO luminosity, we infer an H, column density of
N(H;)=3x 10** cm™2 (Table towards the nucleus. This would
imply that the nucleus of NGC1377 is Compton thick and similar
to the nuclei of other extremely obscured early type disk galax-
ies, such as NGC4418 (Sakamoto et al.|2013} |Costagliola et al.
2013), IC860 and Zw049.057 (Falstad et al.|2015; |Aalto et al.
2015a)), but more studies are required to confirm this high N(H,)
for NGC1377.

Apart from CO 3-2 we also detected HCO* and H'3CN J =
4 — 3 and vibrationally excited HCN J =4 -3 v, = 1f (T =
E,/k=1050 K) The vibrationally excited lines is a factor of 20-
30 times fainter than CO 3-2 in the nucleus, but its detection is
consistent with a large N(H,) and the presence of very hot gas
and dust (Aalto et al.|2015a). We also detect lines at redshifted
frequency v=342.26 and 344.5 GHz. The identification of these
lines is not clear but we tentatively identify the first as HC'SN
J = 4 — 3 and the second either as vibrationally excited HC3N
J=38-37v4=1,v7 =1, 0r as SO,. We present spectra and a
brief discussion of the line identification in Appendix

3.6. Continuum

We merged all line-free channels in our observations into a
0.8mm continuum image (Fig. ). It consists of a compact com-
ponent and some extended emission. In the 0.”25 x 0.” 18 beam,
the deconvolved FWHM size is 0.”25 X 0.”09 and a position an-
gle PA=104 + 5°. The continuum is faint (1.3+0.1 mJy beam™!
peak and 2.2+0.3 mly integrated). The rms is 0.045 mJy. The
continuum and CO 3-2 peak in the same position, which we as-
sume is the nucleus of the galaxy.

4. Discussion
4.1. The high velocity gas: a precessing molecular jet?

We interpret the high velocity CO 3-2 emission as emerging
from a highly collimated and ordered molecular jet. The striking
velocity reversals along its symmetry axis are consistent with
those of jet precession (e.g. Rosen & Smith|[2004). The maxi-
mum velocity swings from 1590 to 1910 north of the nucleus
(Fig [3] figure (A)) and from 1920 to 1650 to the south. Thus on
average the shift is 300 kms™'. The velocity shifts to the north

T T T
-20 54 06.6 — 0.8mm continuum T
8 06.8 i
=]
N
2
5 07.0 -
T
£
Z 07.2 - .
Q
o
07.4 O i
-
076 - — ! ! ! ! ! ! 1
033639.14 39.12 39.10 39.08 39.06 39.04 39.02 39.00

Right Ascension (J2000)

Fig. 4. 0.8mm continuum (merged 342, 349, 356 GHz line-free chan-
nels). Contour levels are 0.14 x(1,2,3,4,5,6,7) mJy beam™!. The lowest

contour is at 3c0~. The cross indicates the continuum peak position (see
Table[T).

and south appear fairly symmetric, which suggests that the sym-
metry axis of the jet should be relatively close to the plane of the
sky and thus launched from a highly inclined disk.

The 0.8mm continuum image (Fig. @) implies a nuclear
disk of inclination 70°+ 10° and a FWHM radius of 13 pc (al-
though we caution that the continuum emission is faint and only
marginally resolved). In addition, the nuclear CO emission lines
are broad with an unresolved dynamics, which is also consistent
with the notion of a compact, highly inclined nuclear disk.

4.1.1. Simple models

The PV diagram along the symmetry axis of a precessing jet of
constant outflow velocity shows the projected velocity oscillateﬂ
as the jet alternates its direction towards and away from the ob-
server. This is demonstrated schematically in Fig. 5] where we
show the resulting PV diagram of a simple model with a preces-
sion angle 6=15°, the inclination of the precession axis is zero
(i.e. in the plane of the sky), and the outflow velocity vqy is con-
stant. The precession has gone through slightly more than half a
period. The first maximum velocity occurs 0.”25 above the nu-
cleus when the jet is most pointed towards us, implying that the
jet close to the nucleus is seen at an angle.

We require higher spatial resolution to carry out proper
model fits to the jet properties. However, for illustrative purposes
we present two model maps in Fig. [] showing what the model
above would look like if we presented it in contour plot form i.e.
similar to the high velocity contours in Fig.[2] We show two sce-
narios: one with precession angle 6=25° and v,,;=260 km s7h
the other with 8=10° and vy, =600 km s!, to demonstrate the
effect of the precession angle on the high-velocity contour plots.
Here the inclination of the precession axis to the declination axis
is 10° and, to the plane of the sky, it is zero. We assume a jet
width of 0.”4.

4.1.2. Jet parameters

The PV diagrams across the jet will show features that are broad
in velocity if the cut includes the maximum projected velocity.

I We use the formalism by Wu et al.| (2009) to describe the line-of-
sight velocity change along the symmetry axis of the jet: vios=Visgr +
Vou[COS @ sini + sin @ cosicos(2nl/A + ¢g)], where vy os is the observed
line-of-sight velocity, v, is the outflow velocity in the jet, i is the incli-
nation of the jet symmetry axis to the plane of the sky, f=precession an-
gle, [=distance from the nucleus, A=precession length scale, ¢y=initial
phase at the nucleus.
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Fig. 5. Simple schematic jet model where we have rotated the jet sym-
metry axis from PA=10° to 0°. Top: To the right, the northern part of
the jet viewed face on. The curve indicates the pattern of the jet path
on the sky and the blue and red colours indicate blue- and redshifted
emission in the sight-line. The precession angle here is 6=15° and the
arrow indicates where the CO 3-2 emission in the jet ends. The right
panel shows the jet viewed from an angle of 45° to illustrate its 3D na-
ture. Bottom: The observed PV diagram along the jet axis (Panel (A)
in Fig. [B) with the superposed tracks of a precessing jet of 6=15° and
outflowing velocity v, =390 kms™" and v, =520 kms™! indicated with
dashed curves. (These values are within the range for 6 and v, dis-
cussed in Sect. @]) We assume v, to be constant and a jet without
width.

For these velocities, the spatial extent will be the lowest and the
emission will be narrowest near the base of the jet, while the
emission at maximum velocity will be broader further away from
the nucleus owing to the precession of the jet. This effect can be
seen in Fig. [3|(panels (C) and (D)) where the blueshifted jet com-
ponent near the nucleus in (D) is narrower than the redshifted jet
component further away (to the north) from the centre. In ad-
dition, the position of the redshifted jet component is shifted to
the east, compared to the blueshifted component. This also gives
the jet precession direction implied in Fig. 3] The offset of the
redshifted jet component to the north can be used to estimate the
precession angle. The maximum velocity is expected to be com-
pletely aligned with the jet axis, but emission at lower redshifted
velocities are coming in from the east (also showing the direc-
tion of the precession). The east-offset implies a precession angle
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Fig. 6. Contour plots of integrated red- and blueshifted emission (> +60
kms™") for ALMA data (right) and model of precessing jet (left): The
precession angle is 10° (centre) and 25° (right) the inclination of the
model precession axis along the line of sight is close to zero.

0=10°-25°, but this is, of course, very uncertain since we only
have slightly more than half a turn of the jet. The unprojected
outflow velocity v, depends on 6 and the observed maximum
projected velocity vp;. This may either be done by selecting the
velocity at the 30 contour or the velocity of the brighter clumps.
This gives a rough span to vy, of 100-150 km s~'. The outflow

velocity should, therefore, lie in the range vq,:=240-850 km s7!
with a precession period P=0.3-1.1 Myr. The dynamical age of
the full length of the molecular jet appears to be short. The jet
can be traced out to ~150 pc and for vy,:=240-850 km s7! the
time scale ranges between t=0.2 and 0.7 Myr.

4.1.3. Launch region

The molecular jet emerges from the nucleus and its width is un-
resolved, which results in a launch region of the jet inside =10
pc. The nuclear rotation is also unresolved, but from the PV di-
agram we estimate a rotational velocity of ~110 kms™' and, if
this occurs ar r=10 pc, the rotational timescale is ~1 Myr. The
precession period must be longer than the rotational timescale of
the jet-launching region and hence the jet is very likely launched
close to the nucleus, within the inner few pc.

4.1.4. Origin of precession

Jet precession may occur in a variety of astrophysical objects,
including low-mass star formation in the Galaxy (L1157 |Gueth
et al.| (1996)); Kwon et al.| (2015)), (NGC 1333-IRAS4A [Santan-
gelo et al.| (2015), (L 1551 IRS 5 [Fridlund & Liseau| (1994)),
( IRAS 16293-2422 [Kristensen et al.| (2013)); Galactic micro-
quasars (SS433 Blundell & Bowler| (2005) and 1E 1740.7-
2942 (Luque-Escamilla et al.|[2015))), and AGN radio jets (e.g.
Veilleux et al.| 1993 |Steffen| [1997; Marti-Vidal et al.| 2011}
Pyrzas et al.|2015).

Jet precession may be caused by a warped accretion disk (e.g.
Greenhill et al.|2003)) i.e. by the misalignment between the spin
orientation of the black hole and the surrounding accretion disk
(e.g. Bardeen & Petterson| 1975} |Lu & Zhou|2005) and an accre-
tion flow that is transporting in gas of misaligned angular mo-
mentum (Krolik & Hawley|2015)), but see also the discussion
in Nixon & King|(2013). Alternatively, in a SMBH binary sys-
tem, jet precession may be caused by geodetic precession of the
spin axis of the primary rotating SMBH being misaligned with
the binary total angular momentum, or by inner disk precession
(owing to the tidal interaction of an inclined secondary SMBH).
Interestingly, the presence of a nuclear gas and dust concentra-
tion and a precessing molecular jet can aid the coalescence of the
SMBHs into resolving the "final-parsec problem" (Milosavljevi¢
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& Merritt|2003; Aly et al.[2015). The post-starburst spectrum of
NGC1377 (Gallagher et al in prep.) could perhaps be linked to a
past merger event that left left an SMBH binary in the heart of
NGC1377.

4.1.5. Other explanations

In Appendix [B|we discuss potential alternative explanations for
the high-velocity gas emission structure and why we find them
less likely (with current information) than the precessing jet
model presented here.

4.2. Low-velocity gas

The extremely simple jet model cannot explain all the features
we see in the PV diagrams (Fig. [3). Perpendicular to the jet axis
(panels C-F in Fig.[3), we see the jet emission as a broad veloc-
ity feature and narrow in space. However, there is also more spa-
tially extended emission at low velocities (panels (D) and (E)). In
PV diagram (A), the lower velocity emission occurs as straight
lines to the north (in particular) but also in the south. There is
also an extra component at 1800 km s~ to the south next to the
blueshifted part of the jet. This emission cannot be directly ex-
plained by a simple model of a precessing jet and may emerge
from a background disk, a molecular wide-angle wind, or it is
caused by interaction and entrainment by the jet.

For example a bow shock can arise by the formation of an
internal working surface within the jet at positions of strong ve-
locity discontinuity, and as the high velocity jet interacts with
the surrounding medium (Raga & Cabrit|[1993} |Gueth & Guil-
loteau||1999; [Cliffe et al.[|1996} Santiago-Garcia et al.|2009). The
structure and velocity of the ambient gas may become complex
owing to, for example, the action of the global bow shock and
gas sweeping into the wakes of the jet turns. Dynamical simula-
tions of precessing gaseous jets have been carried out by Raga
et al.| (2001). They present PV diagrams perpendicular to their
simulated jet (their Fig. 5) and find that the transverse spatial ex-
tent of the emitting region is larger at lower radial velocities. In
their simulations, this is due to the presence of bow shock wings
trailing behind each internal working surface. These bow shocks
result in transverse extended emission of low radial velocities
which forms a ’halo’ component. There is a striking similarity
between the Fig. 5 of [Raga et al.| (2001) and our PV diagrams
that are perpendicular to the jet.

The low-velocity gas has redshifted velocities north-east of
the jet and blueshifted velocities to the south-west. The angle
between the most red- and blueshifted gas is PA=40-45° and the
velocity shift is 60 + 20 kms™'. Apart from this gradient, there
is no significant net shift in velocity between the north and the
south (with deviations at the ends of the jet and at the edges of the
map). There is a small (10-20 km s east-west gradient which
is somewhat larger (50 kms™') at the disk major axis.

The PA=40-45° velocity structure can be caused by the jet
entraining and accelerating a very slow, wide-angle minor axis
molecular outflow and/or that it is interacting with gas already
entrained before. Another possibility is that there is a wind,
which is unrelated to the jet and which originates in a disk
warped about 20°, compared to the nuclear disk. This orientation
is however not consistent with that of the optical dust absorption
features south of the nucleus of NGC1377 ( Fig. 1 in Roussel
et al.| (2006), Fig.4c in|Heisler & Vader| (1994))). The dust struc-
tures have a v-shaped morphology (opening angle of ~90°) and

are oriented almost perpendicular to the stellar disk. They may
be caused, forexample, by the precessing jet bow shocks.

4.3. Comparing previous results for NGC1377

In our previous paper on NGC1377(Aalto et al.|2012b)), we sug-
gested that the molecular outflow seen in CO 2—1 is biconic with
an opening angle of 60°- 70°, an outflow mass > 1 x 10" Mg,
and an outflow velocity of 140 kms™'. These observations were
carried out with three times poorer spatial resolution and about
ten times lower flux sensitivity than the ALMA CO 3-2 data pre-
sented here. The CO 2-1 dispersion map has a cross-like struc-
ture that we used as a basis to suggest the biconic outflow. In the
ALMA data, high dispersion is found only along a structure that
we now identify as a molecular jet.

It is interesting to note that the position angle of the outflow
in the lower resolution CO 2-1 map is around PA=40°, while
the CO 3-2 jet has a PA of 10°. The lower resolution SMA data
has likely picked up the velocity shift in the low-velocity gas
discussed above (Sect. .2) which we propose is caused by jet
entrainment (or, less likely, an inclined wide-angle flow). Further
studies will reveal more on the origin of this gas component.

4.4. Mass and outflow rate

The molecular jet: The molecular mass in the high velocity gas
is estimated as M;(Hy) = 2.3 x 107 Mo, assuming a standard CO
to H, conversion factor (see Table [I)). For v, between 240 and
850 kms™!, we estimate the mass outflow rate in the jet at 9 —
40 Mg, yr~!. This results in a momentum flux of (14 - 200)L/c,
which is very high and exceeds values typically seen in cases of
AGN feedback (Cicone et al. 2014} |Garcia-Burillo et al.|2014).
However, since we use a standard conversion factor, the H, mass
may have been overestimated. If the gas is turbulent, and the
individual gas clouds unbound, the conversion factor may have
to be adjusted down by a factor of 10 (e.g.|Dahmen et al.|[1998).

The low-velocity outflow: The mass and velocity in the low-
velocity outflow (Sect. [1.2) is difficult to estimate since there is
the possibility of contamination by a background disk and the
morphology and velocity structure are complicated. But if we
assume that all the CO 3-2 flux above and below the stellar disk
belong to the slow outflow, it would constitute 40% of the total
CO 3-2 flux detected in NGC1377. For a standard conversion
factor (Table (1)) this implies Mo (Hy) = 6 X 107 Mg. About a
third of this is associated with the entrained (alt inclined wind)
part of the flow, with projected velocities +30 kms™'. A gener-
ous estimate of voy ~50 kms™! over 100 pc implies that 10 Mg
yr~! may be lifted off the midplane of NGC1377. This number
is highly uncertain.

4.5. What is powering the molecular jet?
4.5.1. Accretion

Jets are generally identified with accretion (Blandford| 1998
Konigl & Pudritz| [2000; Hujeirat et al. 2003; [Sbarrato et al.
2014) and are likely launched by magnetohydrodynamic pro-
cesses from the accretion disk and/or the central object. The
molecular mass is a crucial ingredient in determining the ener-
getics, nature, and evolutionary stage of the molecular jet. We
have to resort to a CO to M(H,) conversion factor to determine
the molecular mass and we have two limiting cases: A massive
Jjet where M;(H;) ~ 107 Mg, or a light jet with M;(Hy) ~ 10°
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M,. Below we discuss possible driving scenarios in relation to a
massive or a light jet.

Entrainment by a radio jet Powerful radio jets are launched
when an SMBH is growing through hot accretion which is an
inefficient accretion at low rates (<1% Eddington) (McAlpine
et al.||2015)). This is also referred to as radio mode AGN feed-
back. Radio jet production has been found for high Eddington
rates where the jet powers do not exceed the bolometric lumi-
nosity of their AGNs (Sikora et al.|2013). The jet may entrain
molecular gas from the disk of the host galaxy (NGC1266 (Alat-
alo et al[2011)), IC5063 (Morganti et al.|2015)), M51 (Matsushita
et al.[2007) and NGC1068 (Garcia-Burillo et al.|2014))) or the
molecular gas may form in the jet itself through rapid post-shock
cooling (Morganti et al.|2015)). Observed molecular gas distribu-
tions associated with these jets tend to be patchier than the more
coherent molecular structure of NGC1377. A relativistic radio
jet ploughing through a thick disk of gas, is likely to heat and
ionise it, and thus form a wide cocoon of multi-phase and tur-
bulent gas mixture, as simulated by Wagner & Bicknell| (2011)).
As shown in [Dasyra et al.| (2015), this kind of cocoon is both
pushing on the surrounding gas and has forward and scattered
flows that may lead to complicated velocity patterns.

However, NGC1377 is the most radio-quiet (with respect to the
IR luminosity) galaxy found so far and its radio power is very
low. (A similar case with faint radio emission associated with
molecular jets may be the double, collimated bipolar outflows
of the luminous merger NGC3256 (Sakamoto et al.|[2014)). We
can use the limit to the 1.4 GHz radio luminosity (Roussel et al.
20006) and the relation between jet power and 1.4 GHz luminos-
ity (Birzan et al.[2008)) to estimate the energy in a potential radio
jetin NGC1377. We find that it amounts to <10% of the mechan-
ical energy in the massive molecular jet. A short burst of hot ac-
cretion in the nucleus may have led to the formation of a radio jet
that then faded very rapidly without re-acceleration of electrons
in the jet itself. If the synchrotron life time is ¢, = 8 x 103 B~2y~!
(where B=B-field, y=Lorentz factor, (Xu et al.|[2000)) a reason-
able combination of B and 7y can result in a jet lifetime of 0.5-1
Myr. Also, it is conceivable that heavily mass-loading a radio jet
with dense molecular gas may lead to the quenching of the non-
thermal radio emission. In addition, Godfrey & Shabalal (2016)
recently suggested that jet power and radio luminosity may only
be weakly correlated for cases where the jet energy is being used
to, for example, drive shocks.

In the case of the light jet it is feasible that there would be
enough radio power to carry the gas out without invoking a fad-
ing or underluminous radio jet.

Cold gas accretion The jet may be a hydromagnetic disk-wind
(or an accretion X-wind) similar to the extremely collimated
molecular outflows found in accreting low-mass protostars (e.g.
Konigl & Pudritz|2000; (Codella et al.|2014; Kristensen|2015).
Its torque could efficiently extract disk angular momentum and
gravitational potential energy from the molecular gas. The jet
may be powered by accretion onto the central object and/or in-
falling gas onto the nuclear disk.

Assuming that the 5x 10 L, of NGC1377 emerges from a grow-
ing SMBH, the accretion rate would be ~ 1073 — 1072 M, yr~!
(L=5 "';,—Af where €=0.1 onto a 10 My SMBH). This is 10% of the
inferred Eddington luminosity of the SMBH (Aalto et al.[2012b)
and is a relatively high rate, placing it in the quasar mode of ac-
cretion (McAlpine et al.[2015)). But it may require an Eddington
or super-Eddington accretion rate to produce the mass-outflow
rate we see (even in the case of the light jet), implying that the
level of SMBH accretion has dropped recently.
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A jet may also be powered by accretion onto a nuclear disk.
The wind energy is derived from the gravitational energy re-
leased from the disk through gas rotation and a coupled mag-
netic field. The extracted angular momentum allows cold molec-
ular gas to sink further towards the nucleus. In the case of the
massive jet, it is not clear how the current rotational energy of
the disk could continue to sustain the outflow since M; would be
equal to that in the disk inside its launching region. The binding
energy of the jet is similar to the binding energy of the disk and
the outflow speed is at least twice that of the rotational veloc-
ity (unless the jet is actually launched very close to the nucleus
from a Keplerian disk). In the case of the light jet, however, the
jet-binding energy would be much less than that of the disk, and
there would be enough rotational energy to sustain the outflow.

We note that the molecular jet is observed as being lumpy which
may be due to internal and external shocks, or the condensa-
tions are gas clumps that originate in separate accretion/outflow
events. If so, the energetics of the outflow may be different to
that of the steady flow scenario we assume above.

4.5.2. Other scenarios

Radiation pressure from dust? Recent work by [[shibashi &
Fabian| (2015) suggests that large momentum flux outflows (>
10L/c) can be obtained in radiation pressure driven outflows if
radiation trapping is taken into account. However, it is not clear
how radiation pressure would result in a jet-like feature since it
should give rise to a more wide-angle wind. |Wada| (2015) finds
that dusty, biconical outflows (opening angles 45° — 60°) can
be formed as a result of the radiation feedback from AGNs. It is
conceivable that this may be happening in NGC1377, in addition
to the jet.

Starburst winds? In|Aalto et al.| (2012b)) we discuss the faint-
ness of the star formation tracers (such as optical, NIR and radio
emission) of NGC1377. We find that the upper limits on, for ex-
ample, the 1.4 GHz continuum imply that star formation falls
short by at least one order of magnitude in explaining the mo-
mentum flux in the molecular outflow detected with the SMA.

4.6. Is the molecular jet signaling nuclear growth or
quenching?

There is large molecular mass in the nucleus of NGC1377, which
appears to be linked to a current SMBH accretion at a respectable
rate of ~10% Eddington. So the question is: has the molecular
jet action quenched the nuclear activity, or did it promote it?

Light jet: Both scenarios discussed in Sect. 4.5.1] could power
the jet and enable SMBH accretion. A light jet has removed only
10% of the disk mass while it may have transported a substan-
tial amount of angular momentum away from the gas in the disk,
allowing it to sink closer to the SMBH. The molecular jet offers
a way for the cold gas to shed itself of excess angular momen-
tum, which could promote nuclear accretion from a disk. In this
scenario, the inflowing gas clouds do not have to have randomly
oriented angular momenta to facilitate accretion. There is no ev-
idence that star formation has hindered the gas flow toward the
nucleus of NGC1377. Instead there appears to be a mechanism
that prevents stars from forming in the high gas surface density
nuclear region. Higher resolution studies will hopefully find and
resolve the inflowing gas component in NGC1377.

Massive jet: Current rates of accretion would be difficult to rec-
oncile with a large mass outflow rate. Nuclear activity in the form
of radio luminosity, or other forms of accretion luminosities, are
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low and are, perhaps, a signature of quenching. The turning off
of the nuclear activity would have to have been abrupt since the
molecular jet can be traced almost all the way down to the cen-
tre. Furthermore, the large masses of molecular gas are surpris-
ing since it is not clear why the activity would turn off with 30%
of the nuclear fuel still in place. A possible explanation could be
that there has been a recent substantial inflow of molecular gas.

The discussion above rests on the assumption that most of the
FIR emission originates near the SMBH and is the result of the
accretion. However, if the FIR emission is, instead, related to
the jet-ISM interaction in an extremely dense medium, then the
SMBH would be in the hot accretion mode instead, but with its
synchrotron quenched by the interaction. If so, we are witnessing
the early stages of jet feedback before it has cleared its environ-
ment.

4.6.1. What is the fate of the molecular gas?

A precessing jet has the potential to impact and stir up a large
volume of ambient gas. In NGC1377 the jet appears to entrain
gas in a slow moving outflow, possibly in combination with a
wide-angle wind. It is, however, unlikely that the gas in the low-
velocity outflow can leave NGC1377 since even an optimistic
estimate of its outflow speed is below the bulge escape velocity
vese for NGC1377 (Aalto et al.|[2012b). Instead, gas may circu-
late back to the midplane of NGC1377 where it could eventually
participate in star formation or another cycle of nuclear growth.

The molecular jet appears to be a young structure with a
dynamical age <1 Myr (Sect. d.1.2). The estimated v,,=240-
850 kms™' is higher than ve,. for NGC1377. We find no high-
velocity molecular gas outside 200 pc and this would be consis-
tent with the notion that the jet has been caused by a recent ac-
cretion event in the nucleus. This would also be consistent with
the high nuclear concentration of molecular gas. However, if the
molecular gas becomes dissociated at 200 pc, we may simply be
observing the inner denser part of an older outflow event and, if
the gas is not slowing down, it may escape the galaxy. Yet an-
other alternative is that the jet is rapidly decelerating and its gas
is grinding to a halt at its end. The v-shaped optical dust lane
is roughly 2-3 times longer than the molecular jet/outflow struc-
ture, which implies that the molecular jet is part of a somewhat
older structure.

Our results demonstrate that outflows/jets even from low-power
AGNs can have substantial impact on the evolution of the galaxy,
also beyond the innermost pc. We require the high resolution,
dynamic range and sensitivity of ALMA to reveal the presence
of the molecular jet and to separate it from surrounding emis-
sion. Determining the molecular mass in the jet will provide an
important clue as to whether the jet is a signature of growth or
quenching of the nuclear activity. More detailed studies will also
reveal how the jet impacts its environment and entrains gas and
dust.

5. Conclusions

With high resolution (0.”2 x 0.”18) ALMA CO 3-2 observa-
tions of the nearby extremely radio-quiet galaxy NGC1377, we
have discovered a high velocity, collimated molecular jet with
a projected length of +150 pc. Along the jet axis we find strong
velocity reversals where the projected velocity swings from -150
kms™! to +150 kms™!. A simple model of a molecular jet pre-
cessing around an axis close to the plane of the sky can reproduce
the observations. The velocity of the outflowing gas is difficult

to constrain due to the velocity reversals but we estimate it to be
between 240 and 850 kms™! and the jet to precess with a period
P=0.3-1.1 Myr.

The jet is launched close to the nucleus inside a radius r < 10
pc and its molecular mass lies between 2 x 10° (light jet) and
2% 107 M, (massive jet) depending on which CO to M(H,) con-
version factor is adopted. There is also a wide-angle structure of
CO emission along the minor axis which may be a slower molec-
ular outflow. A substantial fraction of the CO flux is located here
and the estimated mass of the minor axis outflow is 6 x 107 Mg,
Its velocity structure is consistent with parts of the wind being
entrained by the jet, or that there is a molecular wind inclined by
30° with respect to the jet.

We discuss potential powering mechanisms for the molecu-
lar jet. It may be gas entrained by a very faint radio jet, or it is
driven by an accretion disk-wind similar to those found in pro-
tostars. It is important to better constrain the jet molecular mass.
Given the possibility of either a light or a heavy jet, it is difficult
to draw conclusions on whether the jet is quenching the nuclear
activity or, instead, is enabling it. The nucleus of NGC1377 har-
bours intense embedded activity and, if the current IR luminosity
is powered by a growing SMBH, it would have an accretion rate
of ~10% Eddington. But the origin of the FIR luminosity still
needs to be determined. The light jet would only have driven out
10% of the nuclear gas which should not (yet) significantly im-
pact the fueling of the activity. It seems, however, unlikely that
a massive jet could have been powered by the current activity
and this may be a sign of rapid quenching. In this case, the large
mass of Hj in the nucleus is surprising and may be caused by
a recent massive influx of gas. A fraction of the outflowing gas
may return to the inner region of NGC1377 to fuel further nu-
clear growth.

NGC1377 is the first galaxy with evidence for a precess-
ing, highly collimated molecular jet. The extreme g-value for
NGC1377, the short apparent time-scale of the molecular jet
(<1 Myr), and the gas-rich nucleus are all signs consistent with
the notion that we are seeing NGC1377 in a transient phase of
its evolution.

NGC1377 offers a unique opportunity for detailed studies of
the processes that feed, promote and quench nuclear activity in
galaxies. Further studies are required to determine the age of the
molecular jet, driving mechanism, its mass and the role it plays
in the growth of the nucleus of NGC1377.
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Appendix A: Spectra

In Fig.[A T]we present spectra towards the nucleus of NGC1377.
Apart from CO 3-2 we detect HCO™, H3CN J = 4 — 3, vibra-
tionally excited HCN J = 4 -3 v, = 1f (T = E;/k=1050 K).
We detect a line at v=345.5 GHz which is either vibrationally
excited HC3N J = 38 =37 vy = 1, v; = 1f (T = E;/k=1891
K) orit is SO, 6(4,12)-16(3,13) (T = E;/k=148 K). In addition
we detect a line at redshifted frequency v=342.26 GHz which
we tentatively identify as HC'>N J = 4 — 3. In this case, the line
would peak at v=1670 kms~! and thus be blueshifted with re-
spect to the other lines by 60 km s™!. This type of shift could be
caused by excitation, optical depth and/or abundance gradients
and should be investigated in further studies since it may hold
another clue to the nature of the nuclear emission of NGC1377.

Appendix B: Other potential explanations to the
high velocity CO 3-2 emission

An orbiting object andfor two jets? Velocity variations in a PV
diagram may also be caused by a jet launched from an orbiting
object. In this case the velocity reversals can be dominated by
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Fig. A.1. Spectra of the nuclear emission in NGC1377. Dashed vertical
line indicates v=1740 kms™'. Top panels: CO 3-2 in high- (left) and
low- (right) resolution spectral mode. The dashed red box of the right
panel indicates the zoomed-in region in the next panel. Centre: Zoomed-
in spectrum showing detections of H'3CN J = 4 — 3 and either HC;N
J=38-=37v4=1,v; =1o0r SO, 16(4,12)-16(3,13). Bottom: Panels
showing detections of HCO* J = 4-3, HCN J = 4-3 v, = 1 f (left) and
a line that we tentatively identify as HC'N J = 4 — 3. All spectra apart
from in panels 2 and 3 have Gaussian smoothed with FWHM of two
channels. In panels 2 and 3 there has been no smoothing but frequency
resolution is reduced by a factor of 3 (these data stem from another
spectral window than that presented in the first panel).

the orbital motion in a near edge-on plane of rotation. A possi-
bility would be a jet launched from one of two orbiting SMBHs.
Masciadri & Raga) (2002)) have discussed the similarities and dif-
ferences between orbiting and precessing jets. However, without
jet precession the velocity pattern will not fit the structure we
see in the observed PV diagram - unless the jet symmetry axis
is misaligned with respect to the axis of the plane of rotation.
Both SMBHs could have jets and a combination of orientation
and length of the jets could be put together to reproduce the ob-
served PV diagram. However, this seems unlikely compared to
the relatively simple scenario of one single precessing jet.

Jet shocks? A pulsed jet will have a sawtooth like pattern in
its PV diagram along the jet major axis (e.g. [Santiago-Garcia
et al.|[2009). This pattern is caused by axial compression and
lateral ejection of material inside the internal working surface.
Santiago-Garcia et al.[(2009) point out that the effects are local-
ized within the jet so it is not obvious how it would give rise to
the large scale shifts and gradients seen here. However, internal
and external shocks would be important for the jet of NGC1377
and thus influence its velocity structure.

A bicone projection? Is it possible that the velocity reversals
we observe in the PV diagram (A) (Fig[3) is a projection effect,
instead of the emission from a collimated jet? A tilted wide-

angle biconical outflow may result in projected, foreshortened
blueshifted emission from the lower end of the cone, and red-
shifted (more elongated) emission from the back side of the cone
(and vice versa on the underside of the cone). PV diagrams of
these scenarios are, for example, presented by (e.g.) (Cabrit &
Bertout| (1986)), Das et al.| (2005)) and [Storchi-Bergmann et al.
(2010).

In Fig. we show a sketch of a cone (displayed from two
angles) with the northern part tilted towards us. Schematic PV
diagrams along and transverse to the projected cone symmetry
axis are shown in Fig. (Note that it is a very simple cone
model with uniform density. The PV diagram would be much
more complicated for a non-uniform cone, or multiple cones.)
The resulting PV diagram along the main axis has two scenarios:
one with constant outflow velocity, and one where the gas is first
accelerating and then decelerating. It is likely possible to find an
outflow velocity scenario that can at least produce a reasonable
fit to the PV along the jet axis ((A) in Fig[3)), if the northern cone
is tilted towards us and the opening angle is large, >45°. This
orientation of a wide angle cone is, however, inconsistent with
the optical dust structure found by [Roussel et al.| (2006)) (their
Fig. 1) and |Heisler & Vader] (1994)) (their Fig.4c), which would
require the northern cone to be tilted away from us.

Another important argument against the cone-projection model
is the shape of the observed PV diagrams transverse to the jet
symmetry axis (panels C- F in Fig. [3). For a cone, the PV di-
agrams perpendicular to the major axis will always be ellipses
(see schematic PV diagrams in Fig.[B.Z). And, when the top cone
is tilted towards us, there should be a broad (in space) blueshifted
emission component to the north. The observed PV diagrams
transverse to the jet axis (Fig. [3) do, however, not show this
structure. In Fig. we show the PV diagrams D and E from
Fig.[3|with the expected PV diagram of a tilted cone indicated by
dashed lines. Instead of tracing out the curved front ellipse, the
maximum velocity is structured in a spatially unresolved tounge-
like shape of broad emission.

We note that this exercise is not an attempt to model the minor-
axis structure of the low-velocity gas as discussed in Sect. 4.2]
The low-velocity gas may (at least partially) originate in a cone-
like slow outflow, which we suggest is interacting with the
molecular jet. An attempt to link it to the optical dust structure
mentioned above would require its southern part to be at least
slightly directed towards us.
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Fig. B.2. Schematic PV diagrams of a cone with its top (northern) part
tilted towards us. Top panel: Cut perpendicular to the cone axis showing
the elliptical PV diagram through the cone. Bottom panel: Cut along
the cone major axis. We show two simplified cases: The straight solid
lines show the PV diagram of outflowing gas along the cone walls of
constant velocity. The dashed lines show the generic PV diagram along

the axis of a cone where the gas is first linearly accelerating and then
decelerating to zero velocity.

Fig. B.1. Sketch of a hollow cone with opening angle 60° and tilt angle

40° towards the observer.
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Fig. B.3. PV diagram, showing gas velocities in a slit across the jet
axis at +0.”3. Contour levels are 3.1x(1,2,4,8,16,32) mJy beam™'. The
colour scale ranges from -11 to 156 mJy beam™'. The dashed semi-
ellipticals show the PV diagram expected from a projected wide-angle
cone It is clear that this model does not fit the data.
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