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ABSTRACT
Background. Human skin harbors complex transient and resident microbial commu-
nities that show intra- & inter-individual variation due to various environmental and
host-associated factors such as skin site, diet, age, gender, genetics, or the type and use
of cosmetics. This variation remains largely uncharacterized in the Indian population;
hence, the present study aims to characterize the variation in skin microbiota among
individuals of Indian origin and quantify associations with age, diet, and geography.
Methods. Axillary sweat samples from genetically unrelated individuals (N = 58)
residing in the three geographical locations ofMaharashtra, India, were collected using a
sterile cotton swab. Bacterial DNAwas extracted using a standard protocol and checked
for quality. Variable regions (V3–V4) of the 16S rRNA gene were sequenced using
the Illumina platform. We used standard methods from microbiota bioinformatics,
including alpha and beta diversity, community typing, and differential abundance, to
quantify the association of skin microbiota with age, diet, and geographical location.
Results. Our study indicated the prevalence of phyla- Firmicutes, Proteobacteria, and
Actinobacteria, consistent with previous reports on skin microbiota composition of the
world population level. The alpha diversity (Shannon index)was significantly associated
with the age group (Kruskal–Wallis test, p= 0.02), but not with geography (p= 0.62) or
diet (p= 0.74). The overall skin microbiota community composition was significantly
associated with geographical location based on Community State Types (CST) analysis
and PERMANOVA (R2

= 0.07, p= 0.01). Differential abundance analysis at the genus
level indicated a distinctively high abundance of Staphylococcus and Corynebacterium
among individuals of the Pune district. Pseudomonas and Anaerococcus were abundant
in individuals fromAhmednagar whereas, Paenibacillus, Geobacillus, Virgibacillus, Jeot-
galicoccus, Pullulanibacillus, Delsulfosporomusa, Citinovibrio, and Calditerricola were
abundant in individuals from Nashik district.
Conclusion. Our work provides one of the first characterizations of skin microbiota
variation in different sub-populations in India. The analysis quantifies the level of
individuality, as contrasted to the other factors of age, geography, and diet, thus helping
to evaluate the applicability of skin microbiota profiles as a potential biomarker to
stratify individuals.
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INTRODUCTION
As one of the largest organs, our skin serves a key role in protecting the body from
pathogens, viruses, and toxins present in the external environment (Pasparakis, Haase &
Nestle, 2014; Greaves, 2007). Grice et al. (2009) discussed the variation in the taxonomic
composition and diversity in microbial communities that occupy the human skin. Human
skin microbiota harbors bacteria, fungi, viruses, and mites. The concentration of aerobic
bacteria in moist regions like axilla alone accounts for 107 cells/cm2, whereas the density
of anaerobic bacteria can count up to 106 cells/cm2 (Fredricks, 2001). The commensal
microorganisms that live on the skin prevent colonization and invasion of pathogens and
modulate innate and adaptive immunities (Belkaid, 2015).

Human skin harbors resident and transient microbiome species (Nelson, Holder &
Maryland, 1938). The resident species can sustain growth, showing relatively stable
abundance and composition. These species are present on andwithin the outermost layer of
the epidermis. Such bacterial species remain attached to the skin surface and are long-term
body residents. The resident skin microbiota includes genera Cutibacterium (Cutibacterium
formerly known as Propionibacterium), Staphylococcus, Micrococcus, Corynebacterium,
Malassezia yeast, and bacteriophage species (Scholz & Kilian, 2016; Johnson et al., 2002).
The transient species reside primarily on exposed skin and originate from exogenous
sources. These bacterial species lie freely on the skin surface and often cannot grow for
extended periods in variable physio-chemical conditions, and hence remain on the skin
only for a short time. Examples of commonly observed transient species include Escherichia
coli, Bacillus species, Staphylococcus aureus, and Pseudomonas aeruginosa (Bojar & Holland,
2002).

Human skinmicrobiome project based on 16S rRNAprofiling from twenty different skin
sites representing three skin microenvironment types: sebaceous, moist, and dry, suggested
topographical and temporal diversity (Grice et al., 2009). A study by Oh et al. (2016)
described that skin’s biogeography in terms of skin site, type, physiology is responsible
for the stability and persistence of skin microbial communities. They investigated moist
skin regions that were inversely correlated to stability over time. They previously showed
that strain-level bacterial composition determines individuality; however, the species-level
bacterial composition was more specific to skin physiology (Oh et al., 2014). The most
prevalent phyla detected were Actinobacteria (51.8%), Firmicutes (24.4%), Proteobacteria
(16.5%), and Bacteroidetes (6.3%) (Grice et al., 2009). Another study on the Chinese
population involving 200 skin samples showed the predominance of the same four phyla,
with the difference in mean relative abundances in Actinobacteria (36.6%), Proteobacteria
(31.6%), Firmicutes (19.1%), and Bacteroidetes (7.1%). These four phyla account for over
94% of detected phylotypes in the Chinese population. The ten most abundant genera,
which were well documented and made up over 50% of skin microbiota within each
sample, were Cutibacterium, Staphylococcus, Acinetobacter, Streptococcus, Enhydrobacter,
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and Corynebacterium. Thus, suggesting, geographical and ethnic differences in the human
population are the factors that could explain some of the differences observed in the skin
microbiota (Leung, Wilkins & Lee, 2015; Ruuskanen et al., 2021).

Fierer et al. (2010)while demonstrating human skin microbial community composition,
explained its use in forensics by analyzing residual skin-associated bacteria recovered from
touched surfaces. A significant interpersonal variation was observed between left and right
antecubital fossae, axillae, and volar forearms. This observation was also supported byGrice
et al. (2009), wherein four of the five resampled volunteers showed taxonomic similarity
to their previously donated samples (Grice et al., 2009). The significant qualitative and
quantitative interpersonal variation on the skin microbiota was due to various driving
factors (Roth & James, 1988), such as skin type (Bojar & Holland, 2002), gender (Leung,
Wilkins & Lee, 2015; Troccaz et al., 2015; Ross, Doxey & Neufeld, 2017) use of skincare
products, perspiring agents (Bouslimani et al., 2019), or age (Capone et al., 2011; Kim et
al., 2019). The use of statistical and machine learning techniques to understand the intra-
and inter-individual variation and to develop new applications for diagnostic, prognostic,
forensic, and related tasks is currently an active research area in human skin microbiome
studies (Kyrpides et al., 2021; Moreno-Indias et al., 2021; Zambrano et al., 2021).

Our study aims to complement these previous reports by quantifying the overall
taxonomic variation on skin microbiota composition in a previously uncharacterized
population of genetically unrelated individuals of Indian origin.We analyzed the association
with external factors that may influence skin microbiota composition and inter-individual
variability, including age, diet, and geography. We chose three geographical locations that
are relatively close to each other, with slight differences in the climate. As all individuals
were of Indian origin, we can assess the effect of differences in climatic conditions on skin
microbiota taxonomic composition and diversity.

MATERIALS AND METHODS
Human ethics committee
Human Ethics Committee of Savitribai Phule Pune University, which follows the guidelines
of the Indian Council of Medical Research (ICMR), India, approved the present study
(Letter no: SPPU/IEC/2019/60 Date: 20/11/2019). After explaining the details of the study,
written informed consent was obtained from volunteers.

Subject selection
Before sample collection, the power analysis was carried out using G*Power 3.1.9.4 software
to compute the required sample size. The α-level was set at 0.05 (statistical power 95%)
with an effect size ρ = 0.50. The total required sample size (N) was calculated to be 57
for this study. Individuals from different housing societies were randomly chosen from
three different geographical locations. A summary of the project and study design was
provided, and the volunteers filled in the detailed questionnaire concerning health and
medication history and lifestyle, including the history of dermatological disease, alcohol
consumption, smoking habit, consumption of either antibiotics or long-term medications
(diabetes, CVD, hypertension), and extent of physical activity. Volunteers were asked to
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Table 1 The distribution of recruited individuals (N = 58) in different covariates. The three geograph-
ical locations Pune (N = 36), Ahmednagar (N = 11), and Nashik (N = 11). The diet groups: Vegetarian
(N = 30) and Mixed (N = 28). Age groups: Adult (16–40 years; N = 24), Middle-age (41–59 years; N =
16), and Elderly (60–91 years; N = 18). Gender: Male (N = 30), Female (N = 28).

Factors Geographical Location (N = 58)

Pune
(N = 36)

Ahmednagar
(N = 11)

Nashik
(N = 11)

Vegetarian (%) (N = 30) 61 (N = 22) 64 (N = 7) 9 (N = 1)
Diet

Mixed (%) (N = 28) 39 (N = 14) 36 (N = 4) 91 (N = 10)
Adult (16–40 years)
(%) (N = 24)

25 (N = 9) 46 (N = 5) 91 (N = 10)

Middle age (41–59 years)
(%) (N = 16)

31 (N = 11) 36 (N = 4) 9 (N = 1)Age
group

Elderly (60–91 years)
(%) (N = 18)

44 (N = 16) 18 (N = 2) 0 (N = 0)

Male (%) (N = 30) 44 (N = 16) 55 (N = 6) 73 (N = 8)
Gender

Female (%) (N = 28) 56 (N = 20) 45 (N = 5) 27 (N = 3)

avoid underarm shaving, bathing, cosmetic items (such as deodorants and perfumes), and
certain food items (like onions, garlic, cabbage, and chilies) for 24 h before the sample
collection, and this was verified with each person during sampling through observation and
communication. Each individual’s dietary habits were recorded in detail (such as frequency
of consumption of beef, mutton, fish, and chicken in a week). Only subjects with overall
similar dietary habits were recruited for the study. Of the recruited genetically unrelated
individuals of Indian origin, there were 11 co-habiting couples.

Sample collection
Sweat samples from genetically unrelated male and female individuals (N = 58, 16
to 91 years), having mixed and vegetarian diets, were collected using a sterile cotton
swab. Recruited volunteers belonged to three geographical areas of Maharashtra,
India, viz., Pune (altitude: 1,840 ft; longitude:73◦51′19.26′′E; latitude:18◦31′10.45′′N),
Ahmednagar (altitude:2129 ft; longitude: 74◦44′58.53′′E; latitude:19◦5′42.75′′N)
and Nashik (altitude:1916 ft; longitude:73◦47′27.46′′E; latitude:19◦59′50.17′′N). The
demographics of the 58 individuals are represented in Table 1. The three geographical
locations are in close vicinity (∼220 kms) to each other, to avoid climate and urbanization
differences and their effect on sweat level, we collected the axillary sweat samples within 1
to 2 days. The sterile cotton swab was moistened in sterile PBS solution before sampling,
and the volunteers were asked to scrub the moistened swab several times in the axillary
region. These cotton swabs (approximately 9 × 7 cm) were placed in a sterile vial to avoid
contamination/ degradation, and samples were stored at −80 ◦C until DNA extraction.

DNA extraction
Bacterial DNA was extracted from sweat samples by Sambrook’s Phenol: chloroform:
isoamyl alcohol method (Sambrook, Fritsch & Maniatis, 1989). Extracted bacterial DNA
samples were measured on the Nanodrop spectrophotometer at 260 nm and 280 nm
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absorbance. Further, these DNA samples were diluted to 25 ng/ul, of which 5 ng/ul was
used for 16S rRNA sequencing of V3 and V4 region on Illumina miSeq V2 standard flow
cell technology.

16S rRNA gene amplicon sequencing
Amplification of the V3–V4 region of 16S rRNA with specific forward and reverse primers
was carried out using KAPA HiFi HotStart Ready Mix R© (KAPA biosystems, Boston,
MA, USA), following manufacturer’s amplification mix composition and thermal cycling
conditions (Klindworth et al., 2013). PCR products were purified using PureLinkTM PCR
purification kit R© (Invitrogen, Waltham, MA, USA). The purified PCR products were then
ligated with a specific barcode adapter using the Nextera XT Index Kit R© (Illumina, San
Diego, CA, USA) following the manufacturer’s amplification mix composition (Illumina,
2013). Indexing PCR products were purified using PureLinkTM PCR purification kit R©

(Invitrogen, Waltham, MA, USA). The amplicon concentration was assessed using Qubit
2.0 fluorometer (Life Technologies, Waltham, MA, USA) using QubitTM dsDNA HS Assay
Kit R© (Invitrogen, Waltham, MA, USA) following manufacturer’s protocol, and samples
were stored at−20◦ C until further use. AMilliQ water sample was used as negative control
and a healthy gut sample of a known microbial community as a positive control. Controls
were amplified in the same run to monitor contamination and next-generation sequencing
(NGS) run.

Illumina library preparation and sequencing
The quantified samples were normalized by diluting them to 4 nM. An aliquot of diluted
DNA (5ul) was loaded on Miseq V2 standard flow cell, and quantitation of DNA samples
was redone for validating DNA concentration. qPCR was performed using the PerfeCTa R©

NGS library quantification kit for Illumina R© sequencing platforms (Quanta Biosciences,
Maryland, USA). High-throughput sequencing on a MiSeq instrument (Illumina, San
Diego, CA, USA) was used to analyze the amplified V3–V4 region of the 16S rRNA.
According to the manufacturer’s protocol, the MiSeq reagent v3 kit (500 cycles) (Illumina,
San Diego, CA, USA) was used to prepare the final quantified pool for sequencing. A 5%
PhiX control was included to increase sample diversity (Illumina, San Diego, CA, USA).

Assembly of sequence data
Microbiome sequence processing was carried out in three steps: preprocessing, clustering
similar sequences to obtain Operational Taxonomic Units (OTUs), and annotating the
OTU sequences (Sandhu, Pourang & Sivamani, 2019). The raw FASTQ files were filtered
and trimmed at Q score 30 to remove low-quality reads and PCR-generated chimeric
sequences. We used the method from (Illumina, 2014), to generate the OTU table based
on taxonomic identification with the Greengenes database (DeSantis et al., 2006). A total
of 955 206 reads (ranging from 836 to 101 182 reads) of >250 base pairs passed a quality
score (Q) of 30. These were clustered into 2,569 OTUs based on a <98% sequence identity
cut-off. The OTUs were further refined using data normalization, wherein we removed
singleton OTUs.
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Statistical analysis
Analysis of skin microbiota composition was carried out with the phyloseq (McMurdie &
Holmes, 2013) andmicrobiome (Shetty & Lahti, 2019) R/Bioconductor packages (R Version
3.6.1). We compared the alpha and beta diversities between volunteer groups based on
age, diet, and geography. The Shannon diversity index was chosen for alpha diversity
analysis. Group-wise alpha diversity comparisons were performed at the genus level
with the Kruskal–Wallis test (Wilcoxon for two-group comparisons). Beta diversity was
quantified with Bray–Curtis dissimilarity, and differences in community composition
between predefined groups were quantified with PERMANOVA (99 permutations)
(Anderson, 2017) using the R vegan::adonis function (Oksanen et al., 2020). Principal
coordinates analysis (PCoA) based on the Bray-Curtis dissimilarity index was used to
visualize community-level similarity. Community state types (CSTs) were identified based
on partition around medoids (PAM) clustering using the cluster R package (Maechler et
al., 2021). Clusters were chosen based on visual investigation of the clustering scores as in
DiGiulio et al. (2015). The association between the CSTs and the discrete groupings (age,
diet, geography) was quantified using Fisher exact test. To further quantify the association
of abundant genera within the geographical location, an analysis of compositions of
microbiomes (ANCOM) was performed (Mandal et al., 2015). The Dunn post hoc test was
performed using the Kruskal–Wallis test for pairwise multiple comparisons on subgroups
to compare median similarities of the genus within individuals. The p-values were adjusted
and reported using the Benjamini-Hochberg (BH) method.

RESULTS
Core microbiota
We observed altogether 26 bacterial phyla, 53 classes, 119 orders, 234 families, and
673 genera in whole study population. The four most prevalent phyla had >20%
prevalence above the 0.1% abundance threshold Firmicutes (mean relative abundances
59.8%, prevalence 100%), Proteobacteria (24.4%, 94.8%), Actinobacteria (15.4%, 96.6%)
(Table 2). Four most prevalent genera were Staphylococcus (mean relative abundances
23.2%, prevalence 100%), followed by Bacillus (21.7%, 100%), Corynebacterium (7.1%,
93.1%), and Anaerococcus (5.8%, 77.6%). Along with these genera, we observed 20 genera
exceeding 0.1% relative abundance and >20% prevalence threshold (Figs. 1A–1B, Table 3).
We consider the remaining 649 unique genera as accessory microbiota since they were
absent in most individuals. Further, the relative abundance for the individuals in each
geographical location at the phylum level is shown in Fig. 1C.

Alpha diversity
Host and environmental factors influence skin microbiota composition. We compared
skin microbiota alpha diversity (Shannon index) with geographical location, age, and diet.
Statistically significant differences were not observed in alpha diversity between neighter
the geographical locations (Kruskal–Wallis test, p= 0.62, Fig. 2A) nor the diet groups
(Wilcoxon test, p= 0.74, Fig. 2B). In contrast, we did observe a significant difference
between the three age groups (Kruskal–Wallis test, p= 0.02, Fig. 2C). Further, multiple
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Table 2 The most prevalent phyla observed with mean relative abundance, and standard deviation.
Prevalence (above the detection threshold= 0.1%). The phyla with> 20% prevalence are shown.

Phyla Mean relative
abundance (%)

Standard
deviation
(σ)

Prevalence (%)

Firmicutes 59.8 0.37 100.0
Proteobacteria 24.4 0.33 94.8
Actinobacteria 15.4 0.24 96.6

Figure 1 Relative abundance of the most prevalent phyla and genera observed on the skin microbiota
of the genetically unrelated individuals (N = 58) of Indian origin. (A) The relative abundance and (B)
prevalence for the most prevalent genera observed on the skin microbiota of the genetically unrelated in-
dividuals (N = 58) of Indian origin. The genus names are sorted by prevalence in both figures. The mean
relative abundance and prevalence values are shown in Table 3. (C) Phylum level relative abundances in
each volunteer that vary most between the three geographical locations (i) Ahmednagar (ii) Pune (iii)
Nashik.

Full-size DOI: 10.7717/peerj.13075/fig-1

pairwise comparisons between each two age groupswere performedusing theWilcoxon test.
Statistically significant differences were noted between the adult andmiddle age (p= 0.001)
groups. We did not observe differences in alpha diversity between the elderly age group
and adults (p= 0.715) and or middle-aged (p= 0.125) volunteers. The group-wise average
alpha diversities for geographical location, diet, and age are shown in Table 4.
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Table 3 The most prevalent genera along with its mean relative abundance and standard deviation
across genetically unrelated individuals (N = 58). For abundance, detection threshold= 0.1% was con-
sidered. The genera with> 20% prevalence are shown.

Genus Mean relative
abundance (%)

Standard
deviation
(σ)

Prevalence (%)

Staphylococcus 23.2 0.34 100
Paenibacillus 1.3 0.07 100
Bacillus 21.7 0.33 100
Corynebacterium 7.1 0.15 93.1
Pseudomonas 2.3 0.07 86.2
Thiolamprovum 0.1 0.00 86.2
Clostridium 0.2 0.01 86.2
Arthrobacter 1.3 0.08 79.3
Anaerococcus 5.8 0.16 77.6
Oceanobacillus 1 0.04 77.6
Cutibacterium 1.6 0.08 74.1
Acinetobacter 2.4 0.10 72.4
Brevibacillus 0.7 0.03 72.4
Intestinimonas 0.2 0.01 67.2
Aeromonas 0.3 0.01 65.5
Salmonella 1.7 0.07 63.8
Moraxella 2 0.05 62.1
Geobacillus 0.7 0.02 62.1
Brevibacterium 0.2 0.01 60.3
Pantoea 2.5 0.13 56.9
Enterobacter 6.6 0.18 56.9
Virgibacillus 0.4 0.01 56.9
Micrococcus 0.8 0.04 55.2
Exiguobacterium 1.2 0.07 46.6

Table 4 The alpha diversity for each group of covariates. The mean Shannon diversity and standard de-
viation for each group of covariates are shown (N = 58).

Factors Mean Shannon
diversity
(x̄)

Standard
deviation
(σ)

Pune 1.18 0.69
Ahmednagar 1.48 0.88

Geographical
location

Nashik 1.27 0.73
Vegetarian 1.24 0.65

Diet
Mixed 1.27 0.82
Adult (16-40 years) 1.45 0.66
Middle age (41–59 years) 0.89 0.49

Age
group

Elderly (60–91 years) 1.31 0.90
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Figure 2 Alpha diversity variation observed on the skin microbiota across studied groups. Alpha di-
versity variation (Shannon index) for the N = 58 study volunteers by (A) geographical location (p= 0.62;
Kruskal–Wallis), (B) diet (p= 0.74; Wilcoxon test) and, (C) age group (p= 0.02; Kruskal–Wallis). The p-
value indicates level of significance as< 0.001∗∗∗,< 0.01∗∗,< 0.05∗, 0.1ns. Statistical differences are indi-
cated only for the significant groups (Table 4).

Full-size DOI: 10.7717/peerj.13075/fig-2

Table 5 Association of skin microbiota composition (beta diversity) with key covariates
(PERMANOVA; Bray–Curtis index). The p-values are based on 99 permutations.

Factors Df R2 p-value

Geographical location 2 0.07 0.01**

Age group 2 0.03 0.24
Diet 1 0.01 0.55

Notes.
***, < 0.001; **, < 0.01; *, < 0.05; ns, < 0.1.

Beta diversity
Further, we quantified the associations between skin microbiota composition and
geography, age, and diet (seeMethods). Significant differences were observed in community
composition across the three geographical locations (p = 0.01), but no significant
differences were observed with age (p= 0.24) or diet (p= 0.55) parameters (Table 5).
The PCoA ordination (Figs. 3A–3C) and comparison with the detected community types
indicated that the clusters are partially associated with the geographical locations (Fig. 3D).
Furthermore, the individuals were categorized into three broad community state types
(CSTs) (DiGiulio et al., 2015). CST is a standard cluster analysis for microbial community
analysis wherein each CST represents one community type, with a peculiar community
composition shared by individuals who fall into that cluster. We observed a significant
association between the CST clusters and geography.We have numbered the CSTs fromone
to three; each CST is abundant in a different set of taxonomic groups. We have visualized
the community composition for each CST on a heatmap (Fig. 4). The genera that differ
most between the CSTs were Tuberibacillus, Treponema, Staphylococcus, Pullulanibacillus,
Halobacillus, Geobacillus, Desulfosporomusa, Bacillus, Anoxybacillu, and Anaerococcus.

Differential genus abundance
Our analysis revealed twelve genera being significantly associated with the three
geographical locations. Pairwise comparisons using the Dunn test indicated a high
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Figure 3 Observed beta diversity on skin microbiota composition using Principal Coordinates Analysis. Taxonomic similarity (beta diversity) of
skin microbiota composition among the study volunteers illustrated on Principal Coordinates Analysis (PCoA; Bray–Curtis). The samples are col-
ored according to; (A) diet; (B) age group; (C) geographical location (D) community state type (CST).

Full-size DOI: 10.7717/peerj.13075/fig-3

Figure 4 Taxonomic composition by community state type. Taxonomic composition by community
type (CST)(A–C). CST is a clustering method for analyzing bacterial community compositions wherein,
individuals with a similar taxonomic composition cluster together. Here, columns correspond to individu-
als and the rows correspond to genera. The colours indicate the clr/z-transformed abundance of each bac-
teria compared to its own population mean of the taxa. The abundances have been scaled to zero mean
and unit variance to allow visual comparison between taxonomic groups with different abundance levels.

Full-size DOI: 10.7717/peerj.13075/fig-4

abundance of Staphylococcus and Corynebacterium on the skin of individuals from the Pune
district (Figs. 5A and 5C). A high abundance of Paenibacillus, Geobacillus, Virgibacillus,
Jeotgalicoccus, Pullulanibacillus, Delsulfosporomusa, Citinovibrio, and Calditerricola, was
observed on the skin of individuals from the Nashik district (Figs. 5B and 5F–5L). In
Ahmednagar individuals, Pseudomonas and Anaerococcus were observed in abundance
(Figs. 5D and 5E). These variations in the taxonomic compositions across three locations
could be due to differences in urbanization and climate, the effect of which was otherwise
minimized during sampling.

Potbhare et al. (2022), PeerJ, DOI 10.7717/peerj.13075 10/22

https://peerj.com
https://doi.org/10.7717/peerj.13075/fig-3
https://doi.org/10.7717/peerj.13075/fig-4
http://dx.doi.org/10.7717/peerj.13075


Figure 5 Genus abundances in geographical locations arranged as per most abundant in a panel. Pune (A, C), Nashik (B, F–L), and Ahmed-
nagar (D–E). The black line represents the median and the boxes represent interquartile ranges. The p-values are based on the Dunn test using the
Kruskal-Wallis test and adjusted with the ‘‘Benjamini–Hochberg (BH)’’ method. The p-value indicates level of significance as< 0.001∗∗∗,< 0.01∗∗,
< 0.05∗,< 1ns.

Full-size DOI: 10.7717/peerj.13075/fig-5

DISCUSSION
Research on skin microbiota is an emerging field, which would help to understand
the significance of skin microbiota in health, disease, and its inter-and intra-individual
variations. High-throughput sequencing based on 16S rRNA gene has generated a broad
range of bacterial community analyses. In 2016, Meisel et al. suggested using the V1–V3
hypervariable region of 16S rRNA for skin microbiome studies, as these were the most
accurate recapitulation technique for Cutibacterium. However, a recent study by Castelino
et al. (2017), after comparing the results of the V1–V3 and V3–V4 amplicons on two
sequencing platforms MiSeq and 454, found V3–V4 providing better capture of healthy
skin microbial diversity irrespective of the sequencing platform.

Healthy individuals harbor a typical skin microbiota composed mainly of phyla
Firmicutes, Proteobacteria, and Actinobacteria. The Review of Byrd, Belkaid & Segre (2018)
discussed the previous studies on site-specific skin microbial composition of healthy
individuals and reported the predominance of Corynebacterium and Staphylococcus genera
on the moist body regions similar to our findings (Byrd, Belkaid & Segre, 2018). Same
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genera were also reported in the skin samples of healthy individuals from the USA as
part of the human microbiome project (Huttenhower et al., 2012). Further, Li et al. (2019)
have also revealed the predominance of Staphylococcus and Corynebacterium in healthy
subjects. They found dominance of phyla Firmicutes, Proteobacteria, and Actinobacteria
in addition to Bacteroidetes and Fusobacteria (Li et al., 2019). Taylor et al. (2003) showed
the dominance of Corynebacterium and Staphylococcus with lower levels of Cutibacteria in
the axilla of healthy individuals of the U.K. Another axillary skin microbiota study on 53
healthy individuals reported an abundance of Actinobacteria, Firmicutes, and Proteobacteria
with the predominance of Corynebacterium and Staphylococcus genera (Callewaert et
al., 2013). However, in contrast to earlier studies showing the dominance of phylum
Actinobacteria (Schommer & Gallo, 2013), we observed Firmicutes and Proteobacteria in the
Indian individuals. Our observations are aligned with another recent study on the skin
microbiota of 54 healthy individuals from six Indian families, which showed the prevalence
of Firmicutes, Proteobacteria, and Actinobacteria (Chaudhari et al., 2020). Similarly, a
study on facial microbiota of healthy females (N=30) from Bangalore (India) detected
dominance of four phyla viz., Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes
(Mukherjee et al., 2016). Earlier, Grice et al. (2009), found an abundance of Staphylococcus
and Corynebacterium in the axillary region. The study also emphasized that skin microbiota
diversity and variation depend on body site (sebaceous, moist, and dry). A comparative
skin-microbial study on primates and human axilla has also been done, which suggested
that humans and monkeys share 95% of core microbiome taxa. However, a relatively large
microbial diversity was detected in monkeys resembling their soil habitat, whereas the
dominance of Staphylococcaceae was found in human axilla (Council et al., 2016).

The transient environment of skin is influenced by the contact with other surfaces
and surroundings (Fierer et al., 2010). The climatic condition of a geographical area
is determined by humidity, temperature, rainfall, and sun heat which influences the
sweat level, affecting skin microbiota composition and diversity. The previous studies
by Ross et al. (2018) have shown that the geographic location affects the diversity of
mammalian skin microbiota. They further interpreted that accurate classification of
mammals could base on their geographical location, which might be different because
of the type of soil present in a given habitat. Hospodsky et al. (2014) compared left and
right-hand microbiota of women from the US and Tanzania and showed the prevalence
of Propionibacteriaceae, Staphylococcaceae, and Streptococceacae in the former and the
predominance of Rhodobacteraceae and Nocardioidaceae in letter. These earlier studies
re-enforce our finding of variation in the skin microbiota due to geographical location.
The three geographical locations selected in the present study are not very far off, but there is
a slight difference in the climatic condition.We wanted to see if limited variation in climatic
condition affects distribution, composition, and abundance of skin microbiota within a
group of individuals with a relatively homogeneous genetic and cultural background. Our
analysis suggested statistically significant differences in skin microbiota composition in the
three geographical locations. Although geographical location-wise sample distribution is
uneven/low, we found robust results and clear association using widely used microbiome
statistical analysis methods. These variations, therefore, could be due to varying climatic
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conditions in the selected three cities. Of the three locations, Nashik has the hottest and
driest climate; in Ahmednagar, the climate is hotter and drier than Pune.

Similarly, the average humidity and rainfall received in Nashik (67%, ∼99.3 mm)
are higher compared to those in Pune (60.3%, ∼67.9 mm) and Ahmednagar (59%,
∼46.3 mm). A recent study by McCall et al. (2020) has suggested alterations in skin
microbiome diversity due to urbanization and lifestyle-associated changes in an individual.
Our results indicating differences in skin microbiota composition among the individuals
of three geographical locations could also be due to urbanization status and population
size per city. Pune has the highest population size (∼.3.1 million), followed by Nashik
(∼1.6 million) and Ahmednagar (∼0.3 million). Likewise, Pune, a metropolitan city,
has developed industrial areas and infrastructure, and individuals residing in Pune are
adapted to urbanization and the western lifestyle. They use skin ointment and cosmetics
like moisturizers, deodorants, and antiperspirants, altering axillary bacterial communities.
The axillary studies of Grice et al. (2009), Kim et al., 2019, Callewaert et al. (2013), and
Council et al. (2016) found dominance of Corynebacterium and Staphylococcus genera in
individuals residing in cities which complies with our results of differential abundance
analysis. Our analysis indicated that both Corynebacterium and Staphylococcus genera were
higher in Pune than the other two studies areas, although we ensured that volunteers did
not apply deodorants and cosmetics to their skin/axilla 24 h before sample collection.
In contrast, a moderate level of urbanization is found in the Nashik and relatively low
in Ahmednagar, where the poor establishment of industrial units and development of
agricultural land is observed. Ahmednagar individuals hence are more exposed to soil or
environment than populations in other two cities. Urban individuals with more indoor
activity predominantly showed a human-derived community (Ying et al., 2015). Earlier
studies comparing volar forearms and back of the hand bacterial composition of individuals
from urban and rural areas of China showed an abundance of Trabulsiella in the urban
population compared to the rural population. These differences could be due to direct
contact with soil bacteria or other environmental factors, as studied adults and elderly
individuals of the rural area were active workers in the agricultural field. Despite the
limited sample size from geographical locations, we could identify a robust and significant
association with taxonomic composition.

Skin is a regenerating organ that sheds off the cells, regrows, and renews itself. Microbial
colonization of skin starts at birth and continues with age and is affected by habitat,
environment, and lifestyle. A study by Bokulich et al. (2016) suggested that the birth
mode (cesarean or vaginal) shapes skin microbiota. They found that babies’ early skin
microbiota composition (1 and 10 years) is more similar to their mother’s than unrelated
women’s (Bokulich et al., 2016). In order to investigate the effect of age on skin microbiota
composition, we categorized the volunteers into three age groups. A significant association
was observed between the alpha diversity and age, particularly between young and middle-
aged individuals. A significant difference in beta diversity was not observed. Present
observations agreewith the study byChaudhari et al. in 2020, where no significant difference
was observed in alpha diversity of skinmicrobiome-based on three age groups (Chaudhari et
al., 2020). Somerville reported the age-dependent distribution of microbial genera in 1969.
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He explained that infants have lower diversity because of less environmental exposure than
their mother; infants tend to have microbiota similar to their mother (Somerville, 1969).
Children coming in contact with people and exposed to the outside environment have
more diverse microbiota than infants. At puberty, as the sebum production starts, it further
affects the composition of the microbiota. At this stage, diversity reaches its peak; however,
it remains stable or decreases with age (Leyden et al., 1975). Kim et al. (2019), determined
and compared age-wise alpha diversity and showed significantly high diversity in adults
(20–30 years) than in elderly individuals (50–60 years). Furthermore, species evenness was
found to be lower in the younger group. They also found that Bacteriodetes (Prevotella,
Prophyromonas, Spingobacterium) were significantly abundant in the younger age group,
whereas Proteobacteria and Actinobacteria (Micrococcus, Corynebacterium, Dermacoccus)
were more abundant in the elderly group.

Nutrition level is known to affect the biochemical and physiological parameters of
the human body and, subsequently, skin microbiota composition. Several clinical and
therapeutic implications had been characterized by studying gut-skin microbiome and
metabolome (Bouslimani et al., 2015). Our study did not find significant differences
between the two dietary groups regarding microbiota diversity or taxonomic composition.
However, the more subtle effects might have been overdriven by the dominant role of
geographical variation with the limited sample size of 58 individuals in our study. Higher
diversity of skin microbiota in rural populations has been reported earlier, for instance, by
Clemente et al. in 2015, who compared skin microbiota between American-Indians and
Western individuals (Clemente et al., 2015). A study by Sriharsha et al. (2015) suggested
that diet can contribute to skin health. Nutrients are metabolized and excreted through
the skin as sweat metabolites are converted to odoriferous compounds by skin microbial
communities. Therefore, diet alterations can eventually lead to skin dysbiosis. Their studies
have shown that the diet is associated with skin disease conditions like atopic eczema,
dermatitis herpetiformis, acne, and psoriasis. Although several studies show the association
of gut microbiome with diet, a correlation between skin microbiome diversity and diet is
less studied. Recently, probiotic-based skin ointments for atopic dermatitis therapeutics
have yielded positive results implying a relationship between diet-dependent gut-skin
microbiome axis (Sherwani et al., 2018).

While our study is informative for subsequent study design and extensions, a larger
sample size would be helpful for additional verification and analysis. The co-habitation of
the individuals and differences in the sample sizes between age groups can potentially add
confounding effects and reduce the statistical power of the analysis, respectively. Profiling
environment bacterial communities of the three geographical locations is another potential
limitation of the present study, which could have provided valuable and better insight on
differences in the skin microbiota of genetically unrelated individuals. Our study helps to
establish the basis for designing future studies.

Geography, age, diet, gender, and ethnicity have previously contributed to skin
microbiota composition. Our findings have highlighted the notable contribution of
geography, intimately associated with various environmental and cultural differences, as a
significant driver of the observed variation in community composition.
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CONCLUSION
The human skin harbors a diverse and variablemicrobiota with remarkable inter-individual
differences due to host and environment-associated factors. We observed significant
community composition differences at the genus level between the three geographical
locations, implying it is as a significant driving factor for community composition and
variation. This is the first study based on skin microbiota profiling of genetically unrelated
individuals of the same ethnicity from three different geographical locations in the Indian
population to the best of our knowledge. Outcomes of the present study can partially inform
future research on the Indian skin microbiota. This study’s extension could characterize
individuality and variations across the Indian population to better understand the interplay
between cultural, environmental, and genetic factors.
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