
SETS: Scalable and Efficient Tree Search in Dependency Graphs
Juhani Luotolahti1, Jenna Kanerva1,2, Sampo Pyysalo1 and Filip Ginter1

1Department of Information Technology
2University of Turku Graduate School (UTUGS)

University of Turku, Finland
first.last@utu.fi

Abstract

We present a syntactic analysis query toolkit
geared specifically towards massive depen-
dency parsebanks and morphologically rich
languages. The query language allows arbi-
trary tree queries, including negated branches,
and is suitable for querying analyses with rich
morphological annotation. Treebanks of over
a million words can be comfortably queried
on a low-end netbook, and a parsebank with
over 100M words on a single consumer-grade
server. We also introduce a web-based inter-
face for interactive querying. All contribu-
tions are available under open licenses.

1 Introduction

Syntactic search is one of the basic tools necessary
to work with syntactically annotated corpora, both
manually annotated treebanks of modest size and
massive automatically analyzed parsebanks, which
may go into hundreds of millions of sentences and
billions of words. Traditionally, tools such as
TGrep2 (Rohde, 2004) and TRegex (Levy and An-
drew, 2006) have been used for tree search. How-
ever, these tools are focused on constituency trees
annotated with simple part-of-speech tags, and have
not been designed to deal with dependency graphs
and rich morphologies. Existing search systems are
traditionally designed for searching from treebanks
rarely going beyond million tokens. However, tree-
bank sized corpora may not be sufficient enough for
searching rare linguistic phenomena, and therefore
ability to cover billion-word parsebanks is essen-
tial. Addressing these limitations in existing tools,
we present SETS, a toolkit for search in dependency
treebanks and parsebanks that specifically empha-
sizes expressive search of dependency graphs in-
cluding detailed morphological analyses, simplicity
of querying, speed, and scalability.

Operator Meaning
< governed by
> governs
<@L governed by on the left
<@R governed by on the right
>@L has dependent on the left
>@R has dependent on the right
! negation
& | and / or
+ match if both sets not empty
-> universal quantification

Table 1: Query language operators.

2 Demonstration outline

We demonstrate the query system on the set of all
available Universal Dependencies1 treebanks, cur-
rently covering 10 languages with the largest tree-
bank (Czech) consisting of nearly 90K trees with
1.5M words. We demonstrate both the command
line functionality as well as an openly accessible
web-based interface for the graph search and visual-
ization on multiple languages. We also demonstrate
how new treebanks in the CoNLL formats are added
to the system.

3 Query language

The query language is loosely inspired by TRegex,
modified extensively for dependency structures.
Each query specifies the words together with any
restrictions on their tags or lemmas, and then con-
nects them with operators that specify the depen-
dency structure. Table 1 shows the operators defined
in the query language, and Table 2 illustrates a range
of queries from the basic to the moderately complex.

1universaldependencies.github.io/docs.
Note that while the SETS system is completely generic, we
here use UD tagsets and dependency relations in examples
throughout.

universaldependencies.github.io/docs

Target Query
The word dog as subject dog <nsubj
A verb with dog as the object VERB >dobj dog
A word with two nominal modifiers >nmod >nmod
A word with a nominal modifier that has a nominal modifier >nmod (>nmod)
An active verb without a subject VERB&Voice=Act !>nsubj
A word which is a nominal modifier but has no adposition <nmod !>case
A word governed by case whose POS tag is not an adposition !ADP <case

Table 2: Example queries.

The query language is explained in detail in the fol-
lowing.

3.1 Words
Word positions in queries can be either unspeci-
fied, matching any token, or restricted for one or
more properties. Unspecified words are marked
with the underscore character. Lexical token restric-
tions include wordform and lemma. Wordforms can
appear either as-is (word) or in quotation marks
("word"). Quotation marks are required to dis-
ambiguate queries where the wordform matches a
feature name, such as a query for the literal word
NOUN instead of tokens with the NOUN POS tag.
Words can be searched by lemma using the L= pre-
fix: for example, the query L=be matches all tokens
with the lemma (to) be.

Words can also be restricted based on any
tags, including POS and detailed morphologi-
cal features. These tags can be included in the
query as-is: for example, the query for search-
ing all pronouns is simply PRON. All word
restrictions can also be negated, combined ar-
bitrarily using the and and or logic operators,
and grouped using parentheses. For example,
(L=climb|L=scale)&VERB&!Tense=Past
searches for tokens with either climb or scale as
lemma whose POS is verb and that are not in the
past tense.

3.2 Dependency relations
Dependency relations between words are queried
with the dependency operators (< and >), option-
ally combined with the dependency relation name.
For example, the query to find tokens governed
by an nsubj relation is <nsubj , and tokens
governing an nsubj relation can be searched with
>nsubj . The left-most word in the search

expression is always the target, and is identified in
the results. While the two preceding nsubj queries
match the same graphs, they thus differ in the tar-
get token. To constrain the linear direction of the
dependency relation, the operators @R and @L can
be used, where e.g. >nsubj@R means that the
token must have a nsubj dependent to the right.

Negations and logical operators can be applied
to the dependency relations in the same manner as
to words. There are two different ways to negate
relations; the whole relation can be negated, as in
!>nsubj , which means that the tokens may

not have an nsubj dependent (not having any depen-
dent is allowed), or only the type can be negated,
as in >!nsubj , where the token must have
a dependent but it cannot be nsubj. Tokens which
have either a nominal or clausal subject dependent
can be queried for with the logical or operator:
>nsubj|>csubj .

Subtrees can be identified in the search expres-
sion by delimiting them with parentheses. For ex-
ample, in >nmod (>nmod), the target to-
ken must have a nominal modifier which also has
a nominal modifier (i.e a chain of two modifiers),
whereas in >nmod >nmod the token must
have two (different) nominal modifiers. Note that
queries such as >nmod >nmod are inter-
preted so that all sibling nodes in the query must be
unique in the match to guarantee that the restriction
is not satisfied twice by the same token in the target
tree.

There is no restriction on the complexity of sub-
trees, which may also include any number of nega-
tions and logical operators. It is also possible to
negate entire subtrees by placing the negation op-
erator ! before the opening parenthesis.

3.3 Sentence

The more general properties of the sentence instead
of just the properties of certain token, can be
queried using the operators +, match a sentence
if both sets are not empty and ->, universal
quantification – operators. For example, if we
wanted to find a sentence where all subject de-
pendents are in the third person, we could query
(<nsubj) -> (Person=3 <nsubj).
And to find sentences where we have a token
with two nmod dependents and a word dog
somewhere in the sentence we could query
(>nmod >nmod) + "dog".

4 Design and implementation

The scalability and speed of the system stem from
several key design features, the most important of
which is the that every query is used to generate
an algorithmic implementation that is then compiled
into native binary code, a process which takes typi-
cally less than a second. Search involves the follow-
ing steps:

1) The user query is translated into a sequence of
set operations (intersection, complement, etc.) over
tokens. For example, a query for tokens that are in
the partitive case and dependents of a subject rela-
tion is translated into an intersection of the set of
partitive case tokens and the set of subject depen-
dents. Similarly, negation can in most cases be im-
plemented as the set complement. The code im-
plementing these operations is generated separately
for each query, making it possible to only include
the exact operations needed to execute each specific
query.

2) The code implementing this sequence of op-
erations is translated into C by the Cython compiler.
The set operations are implemented as bit operations
on integers (bitwise and, or, etc.) and can thus be ex-
ecuted extremely fast.

3) An SQL statement is generated and used to
fetch from a database the token sets that are needed
to evaluate the query. The query retrieves the to-
ken sets only for those trees containing at least one
token meeting each of the restrictions (dependency
relations, morphological tags, etc.).

4) The sequence of set operations implementing
the query is used to check whether their configura-

tion matches the query. For each match, the whole
tree is retrieved from the database, reformatted and
output in the CoNLL-U format.

The data is stored in an embedded database as pre-
computed token sets, with separate sets for all dif-
ferent lemmas, wordforms, and morphological fea-
tures. These sets are stored as native integers with
each bit corresponding to a single token position in
a sentence. Since the vast majority of sentences are
shorter than 64 words, these sets typically fit into
a single integer. However, the system imposes no
upper limit on the sentence length, using several in-
tegers when necessary.

The system uses SQLite as its database back-
end and the software is written as a combination of
Python, Cython and C++. Cython enables easy inte-
gration of Python code with fast C-extensions, vital
to assure the efficiency of the system. As it uses the
embedded SQLite database, the system is fully self-
contained and requires no server applications.

In addition to the primary search system, we cre-
ated a simple browser-based frontend to the query
system that provides a dynamic visualization of the
retrieved trees and the matched sections (Figure 1).
This interface was implemented using the Python
Flask2 framework and the BRAT annotation tool
(Stenetorp et al., 2012).

5 Benchmarks

Our graph-search tool is tested and timed on three
different machines and two datasets. Evaluation
platforms include a server-grade machine with good
resources, a standard laptop computer and a small
netbook with limited performance. To compare
the efficiency of our system to the state-of-the-art
treebank searching solutions, we employ ICARUS
(Gärtner et al., 2013) search and visualization tool
which also focuses on querying dependency trees.
ICARUS system loads the data into the computer’s
main memory, while our system uses a database,
which is optimized by caching. The comparison of
our graph-search tool and the ICARUS baseline is
run on server machine with a dataset of roughly 90K
trees.

Three test queries are chosen so that both
systems support the functionality needed in or-

2http://flask.pocoo.org/

http://flask.pocoo.org/

Figure 1: Web interface showing trees in Finnish.

der to run the tests. The first query is a
straightforward search for all subject dependents
(<nsubj) and the second query adds a lex-
ical restraint to it and requires the lemma to be
I (L=I <nsubj). The third query is much
more complex and is inspired by an actual linguis-
tic use case to find examples of an exceptionally
rare transitive verb usage in Finnish. The query
includes chaining of dependencies and a negation
(>nsubj (Case=Gen >) >dobj ...
! <xcomp).

Query 1 Query 2 Query 3
ICARUS 2m30s 2m30s 2m30s
SETS 1.61s 1.2s 2.18s

Table 3: The speed of our system compared to the base-
line on the three different test queries when a treebank of
about 90K sentences is used.

As can be seen from Table 3, when our system and
the baseline system are tested on the server machine
using the three example queries our system clearly
outperforms the baseline. The speed of the baseline
seems to be relatively unaffected by the complexity
of the query, suggesting a bottle-neck somewhere

else than tree-verification. It should be noted that
these measurements are only to illustrate the relative
speed and performance differences, and are subject
to change depending on system cache. Due to their
architecture, neither system has a major advantage in
the use of memory and the results are broadly com-
parable.

Our system is also tested on a standard laptop, and
a netbook using the same three queries and the same
input corpus. The first test query was finished by a
netbook in 37 seconds, the third query, most com-
plex of them, was finished in 13.5 seconds. The lap-
top finished the first query in 16 seconds, the second
in 7 seconds and the third in 16 seconds.

As our system is meant for searching from very
large corpora, we test it with a parsebank of 10 mil-
lion trees and over 120 million tokens. A variant of
the test query number 3, the most complex of the
queries, was executed in time between 1m52s and
48s (depending the system cache). The test query 1
took from 5m10s to 4m30s and the lexicalized ver-
sion (query 2) from 12s to 9s. The test queries were
performed on the same server-machine as the runs
shown in Table 3.

Since our system uses pre-indexed databases the
disk space needed for holding the data slightly in-
creases. Indexing the 90K sentence treebank used
in our tests requires about 550M of free disk space,
whereas indexing the 10 million sentence parsebank
uses 35G of space.

6 Conclusion

We have presented a syntax query system especially
geared towards very large treebanks and parsebanks.
In the future, we will implement support for graph
queries, e.g. coindexing of the tokens, since many
treebanks have multiple layers of dependency struc-
tures. Related to this goal, we aim to include sup-
port for properties of the tokens and dependencies,
for example the annotation layer of the dependency,
word sense labels, etc.

The full source code of the system is available un-
der an open license at https://github.com/
fginter/dep_search. Additionally, we main-
tain a server for public online search in all avail-
able Universal Dependencies treebanks (Nivre et
al., 2015) at http://bionlp-www.utu.fi/
dep_search.

Acknowledgments

This work was supported by the Kone Foundation
and the Emil Aaltonen Foundation. Computational
resources were provided by CSC – IT Center for Sci-
ence.

References
[Gärtner et al.2013] Markus Gärtner, Gregor Thiele,

Wolfgang Seeker, Anders Björkelund, and Jonas
Kuhn. 2013. Icarus – an extensible graphical search
tool for dependency treebanks. In Proceedings of
Demonstrations at ACL’13, pages 55–60.

[Levy and Andrew2006] Roger Levy and Galen Andrew.
2006. Tregex and Tsurgeon: tools for querying and
manipulating tree data structures. In Proceedings of
LREC’06).

[Nivre et al.2015] Joakim Nivre, Cristina Bosco, Jinho
Choi, Marie-Catherine de Marneffe, Timothy Dozat,
Richárd Farkas, Jennifer Foster, Filip Ginter, Yoav
Goldberg, Jan Hajič, Jenna Kanerva, Veronika Laip-
pala, Alessandro Lenci, Teresa Lynn, Christopher
Manning, Ryan McDonald, Anna Missilä, Simon-
etta Montemagni, Slav Petrov, Sampo Pyysalo, Na-

talia Silveira, Maria Simi, Aaron Smith, Reut Tsarfaty,
Veronika Vincze, and Daniel Zeman. 2015. Universal
dependencies 1.0.

[Rohde2004] Douglas L. T. Rohde, 2004. TGrep2 User
Manual. Available at http://tedlab.mit.edu/˜dr/Tgrep2.

[Stenetorp et al.2012] Pontus Stenetorp, Sampo Pyysalo,
Goran Topić, Tomoko Ohta, Sophia Ananiadou, and
Jun’ichi Tsujii. 2012. Brat: a web-based tool for nlp-
assisted text annotation. In Proceedings of Demon-
strations at EACL’12, pages 102–107.

https://github.com/fginter/dep_search
https://github.com/fginter/dep_search
http://bionlp-www.utu.fi/dep_search
http://bionlp-www.utu.fi/dep_search

	Introduction
	Demonstration outline
	Query language
	Words
	Dependency relations
	Sentence

	Design and implementation
	Benchmarks
	Conclusion

