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Abstract: Short oligonucleotides with cyclopalladated benzylamine moieties at their 5′-termini have
been prepared to test the possibility of conferring palladacyclic anticancer agents sequence-selectivity
by conjugation with a guiding oligonucleotide. Hybridization of these oligonucleotides with natural
counterparts was studied by UV and CD (circular dichroism) melting experiments in the absence
and presence of a competing ligand (2-mercaptoethanol). Cyclopalladated benzylamine proved to
be strongly stabilizing relative to unmetalated benzylamine and modestly stabilizing relative to an
extra A•T base pair. The stabilization was largely abolished in the presence of 2-mercaptoethanol,
suggesting direct coordination of Pd(II) to a nucleobase of the complementary strand. In all cases,
fidelity of Watson-Crick base pairing between the two strands was retained. Hybridization of the
cyclopalladated oligonucleotides was characterized by relatively large negative enthalpy and entropy,
consistent with stabilizing Pd(II) coordination partially offset by the entropic penalty of imposing
conformational constraints on the flexible diethylene glycol linker between the oligonucleotide and
the palladacyclic moiety.
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1. Introduction

The groundbreaking discovery of the antitumor activity of cisplatin [1,2] has been followed
by efforts to develop more potent anticancer agents based on transition metal complexes [3–11].
In particular, problems associated with the presently available platinum anticancer compounds,
notably acquired or intrinsic resistance, limited spectrum of activity and relatively high degree of
toxicity [12–14], have prompted interest in transition metals other than platinum for chemotherapeutic
use [4,6–8,15]. Palladium is an attractive candidate because its coordination chemistry is similar to that
of platinum [16,17]. Pd(II) complexes are, however, kinetically approximately five orders of magnitude
more labile than the respective Pt(II) complexes [18]. While the relatively rapid ligand-exchange
of Pd(II) should allow formation of thermodynamic (rather than kinetic) products and thus higher
selectivity than attainable with Pt(II)-based drugs, it is also likely to result in a different mode of
action, at least with simple analogues [19]. No clinically approved palladium-containing drugs are
presently available.

The possibility of using palladacyclic complexes as anticancer agents to circumvent the problems
caused by the kinetic lability of Pd(II) has received attention over the past decade. The high stability of
palladacyclic compounds in physiological media and the resultant low toxicity to normal cells make
them promising candidates for future therapeutic agents [9,20]. The selectivity of these agents could
be further improved by conjugation to a guiding oligonucleotide. The feasibility of this approach has
already been demonstrated with a number of Pt(II)-carrying DNA and PNA oligonucleotides [21–26]
but with palladacyclic modifications we are only aware of a single recent example, a short DNA
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oligonucleotide incorporating a single cyclopalladated phenylpyridine residue in the middle of the
sequence [27]. In that case, coordination of Pd(II) to the opposite base on a complementary strand
was inferred from the abnormally high UV and CD (circular dichroism) signals but the expected
stabilization of the double helix by such coordination could not be demonstrated unambiguously.
Possibly a stable Pd(II)-mediated base pair was formed but could not be readily accommodated within
the base stack, leading to disruption of the double helix.

Herein we describe the synthesis and hybridization properties of short oligonucleotides
incorporating cyclopalladated benzylamine “warheads” at their 5′-termini. At monomer level,
palladacyclic benzylamine derivatives have already been found to exhibit antitumor activity [28,29].
The 5′-terminal position was chosen to avoid disruption of the double helix by suboptimal coordination
geometry. For the same reason, a relatively long and flexible diethylene glycol spacer was used between
the cyclopalladated benzylamine and the oligonucleotide.

2. Results

2.1. Synthesis of the Benzylamine Phosphoramidite Building Block

Synthesis of the protected phosphoramidite building block of benzylamine (1) is outlined in
Scheme 1. First, benzyl bromide was allowed to react with an excess of 2-(2-aminoethoxy)ethanol
to give 2-[2-(benzylamino)ethoxy]ethanol (2). The secondary amino function was then protected as
a trifluoroacetamide by treatment with ethyl trifluoroacetate. Finally, the protected intermediate 3 was
phosphitylated by conventional methods to afford the phosphoramidite building block 1.
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acetonitrile. Near-quantitative conversion of the starting material was achieved overnight. 1H NMR 
(nuclear magnetic resonance) spectrum of the product revealed loss of one ortho proton of the phenyl 
ring and 13C NMR spectrum a downfield shift of the respective carbon signal. Both results are 
consistent with replacement of the ortho proton with Pd(II). The most likely structure of the product 
is the chlorido-bridged dimer 4 (Scheme 2), as reported previously on related compounds [30–32]. 
While only mononuclear Pd(II) species could be unambiguously identified in the mass spectrum, the 
splitting of several peaks in both 1H and 13C NMR is consistent with formation of a dimer, present in 
both cisoid and transoid forms. 

Scheme 1. Synthesis of the benzylamine phosphoramidite 1. Reagents and conditions:
(a) 2-(2-aminoethoxy)ethanol, MeCN, 25 ◦C, 16 h; (b) ethyl trifluoroacetate, Et3N, MeOH, 25 ◦C,
16 h; (c) 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite, Et3N, CH2Cl2, N2 atmosphere, 25 ◦C, 3 h.

2.2. Cyclopalladation of 2-[2-(benzylamino)ethoxy]ethanol

Cyclopalladation was first tested at monomer level with 2-[2-(benzylamino)ethoxy]ethanol (2)
by treatment with an equimolar amount of lithium tetrachloropalladate in a mixture of water and
acetonitrile. Near-quantitative conversion of the starting material was achieved overnight. 1H NMR
(nuclear magnetic resonance) spectrum of the product revealed loss of one ortho proton of the phenyl
ring and 13C NMR spectrum a downfield shift of the respective carbon signal. Both results are
consistent with replacement of the ortho proton with Pd(II). The most likely structure of the product
is the chlorido-bridged dimer 4 (Scheme 2), as reported previously on related compounds [30–32].
While only mononuclear Pd(II) species could be unambiguously identified in the mass spectrum,
the splitting of several peaks in both 1H and 13C NMR is consistent with formation of a dimer,
present in both cisoid and transoid forms.
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Scheme 2. Cyclopalladation of 2-[2-(benzylamino)ethoxy]ethanol (2) and the corresponding modified
oligonucleotides ON1b, ON2b, ON3b and ON4b. Reagents and conditions: a) Li2PdCl4, MeCN, H2O,
25 ◦C, 16 h.

2.3. Oligonucleotide Synthesis

The sequences of the oligonucleotides used in the present study are summarised in Table 1.
Synthesis of the modified oligonucleotides ON1b, ON2b, ON3b and ON4b, having a 5′-terminal
benzylamine moiety, was carried out on an automated DNA synthesizer using conventional
phosphoramidite strategy. Treatment with concentrated aq. ammonia was employed for removal
of the base and phosphate protections and release of the oligonucleotides from the solid support.
Cyclopalladation of oligonucleotides ON1b, ON2b, ON3b and ON4b was carried out as described
above for the monomer 2 (Scheme 2), except that 2.0 equivalents of lithium tetrachloropalladate
was used. All modified oligonucleotides were purified by reversed-phase high performance liquid
chromatography (RP-HPLC), characterized by electrospray ionization mass spectrometry (ESI-MS)
and quantified by UV spectrophotometry.

Table 1. Oligonucleotides used in this study.

Oligonucleotide Sequence 1

ON1a 5′-AGCTCTGGC-3′

ON2a 5′-AGCTCTGG-3′

ON3a 5′-AGCTCTG-3′

ON4a 5′-AGCTCT-3′

ON1b 5′-BGCTCTGGC-3′

ON2b 5′-BGCTCTGG-3′

ON3b 5′-BGCTCTG-3′

ON4b 5′-BGCTCT-3′

ON1b-Pd 5′-BPdGCTCTGGC-3′

ON2b-Pd 5′-BPdGCTCTGG-3′

ON3b-Pd 5′-BPdGCTCTG-3′

ON4b-Pd 5′-BPdGCTCT-3′

ON5a 5′-GCCAGAGCTCG-3′

ON5c 5′-GCCAGCGCTCG-3′

ON5g 5′-GCCAGGGCTCG-3′

ON5t 5′-GCCAGTGCTCG-3′

1 B refers to unmetalated and BPd to cyclopalladated benzylamine residue. The residues varied in the hybridization
studies have been underlined.

2.4. Hybridization Studies

The impact of the 5′-terminal palladacyclic “warheads” on the hybridization properties of
short oligonucleotides was assessed by recording melting temperatures of duplexes formed by
oligonucleotides ON1b-Pd, ON2b-Pd, ON3b-Pd and ON4b-Pd with the natural counterparts ON2a,
ON2c, ON2g and ON2t. For reference, similar experiments were also carried out on respective
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duplexes formed by oligonucleotides ON1b, ON2b, ON3b, ON4b, ON1a, ON2a, ON3a and ON4a,
having either an unmetalated benzylamine or an adenine residue at their 5′-termini. In all assemblies,
the 5′-terminal residue was placed opposite to a thymine residue of a trinucleotide overhang of
the complementary oligonucleotide (Figure 1). A single base pair within the double helical region,
on the other hand, was varied to test the sensitivity of hybridization to a single-nucleotide mismatch.
All experiments were performed at pH 7.4 (20 mM cacodylate buffer) and ionic strength of 0.10 M
(adjusted with sodium perchlorate) and each sample was first annealed by heating to 90 ◦C and then
slowly cooling down to room temperature.

Int. J. Mol. Sci. 2018, 19, x 4 of 11 

 

duplexes formed by oligonucleotides ON1b, ON2b, ON3b, ON4b, ON1a, ON2a, ON3a and ON4a, 
having either an unmetalated benzylamine or an adenine residue at their 5′-termini. In all assemblies, 
the 5′-terminal residue was placed opposite to a thymine residue of a trinucleotide overhang of the 
complementary oligonucleotide (Figure 1). A single base pair within the double helical region, on the 
other hand, was varied to test the sensitivity of hybridization to a single-nucleotide mismatch. All 
experiments were performed at pH 7.4 (20 mM cacodylate buffer) and ionic strength of 0.10 M 
(adjusted with sodium perchlorate) and each sample was first annealed by heating to 90 °C and then 
slowly cooling down to room temperature. 

 
Figure 1. Outline of the hybridization assays used. X is either adenine or unmetalated or 
cyclopalladated benzylamine and Y is any canonical nucleobase. The bullets indicate Watson-Crick 
base pairing. 

The longest matched duplexes ON1x•ON5a all exhibited sigmoidal melting profiles, with Tm 
(melting temperature) values ranging from 36 to 41 °C (Figure 2A–C). The shorter duplexes did not 
fully hybridize even at the lowest temperature applicable (10 °C) but their Tm values could still be 
determined with reasonable accuracy as inflection points of the melting curves. The melting 
temperatures of the mismatched duplexes, on the other hand, were high enough to be determined 
reliably only in the case of the longest duplexes ON1x•ON5y. The A•C mismatch was particularly 
destabilizing and precluded determination of the Tm in all cases, regardless of the length of the 
duplex. Melting temperatures are summarized in Figure 2D for the longest duplexes and in the 
Supplementary Materials for all duplexes. 

Melting temperatures of the longest matched duplexes ON1a•ON5a, ON1b•ON5a and ON1b-
Pd•ON5a, were 40.4 ± 0.7 °C, 35.8 ± 0.6 °C and 41.0 ± 0.6 °C, respectively. In other words, the 
cyclopalladated benzylamine residue was modestly stabilizing relative to an adenine residue and 
strongly stabilizing relative to the unmetalated benzylamine residue. To explore the origin of this 
stabilization, the UV melting experiments were repeated in the presence of 2-mercaptoethanol (100 
µM). 2-Mercaptoethanol is a strong ligand for soft transition metal ions and would, hence, be 
expected to disrupt coordination of Pd(II) to nucleobases. If such coordination is important for duplex 
stability, a decrease in Tm on addition of 2-mercaptoethanol should be observed. 

Melting temperatures of the longest matching duplexes ON1x•ON5a in the absence and 
presence of 2-mercaptoethanol are presented in Figure 3 (all melting temperatures are presented in 
the Supporting Information). As expected, melting temperatures of duplexes ON1a•ON5a and 
ON1b•ON5a did not change appreciably on addition of 2-mercaptoethanol. With ON1b-Pd•ON5a, 
on the other hand, a clear drop in Tm was observed, consistent with stabilizing coordination of Pd(II) 
in the absence of competing ligands. 

5´-X G C T C T G G C-3´
• • • • • • • •

3´-G C T C G Y G A C C G-5´

5´-X G C T C T G G-3´
• • • • • • •

3´-G C T C G Y G A C C G-5´

5´-X G C T C T G-3´
• • • • • •

3´-G C T C G Y G A C C G-5´

5´-X G C T C T-3´
• • • • •

3´-G C T C G Y G A C C G-5´

ON1x

ON5y

ON2x

ON5y

ON3x

ON5y

ON4x

ON5y

Figure 1. Outline of the hybridization assays used. X is either adenine or unmetalated or cyclopalladated
benzylamine and Y is any canonical nucleobase. The bullets indicate Watson-Crick base pairing.

The longest matched duplexes ON1x•ON5a all exhibited sigmoidal melting profiles,
with Tm (melting temperature) values ranging from 36 to 41 ◦C (Figure 2A–C). The shorter duplexes
did not fully hybridize even at the lowest temperature applicable (10 ◦C) but their Tm values could
still be determined with reasonable accuracy as inflection points of the melting curves. The melting
temperatures of the mismatched duplexes, on the other hand, were high enough to be determined
reliably only in the case of the longest duplexes ON1x•ON5y. The A•C mismatch was particularly
destabilizing and precluded determination of the Tm in all cases, regardless of the length of the duplex.
Melting temperatures are summarized in Figure 2D for the longest duplexes and in the Supplementary
Materials for all duplexes.

Melting temperatures of the longest matched duplexes ON1a•ON5a, ON1b•ON5a and
ON1b-Pd•ON5a, were 40.4 ± 0.7 ◦C, 35.8 ± 0.6 ◦C and 41.0 ± 0.6 ◦C, respectively. In other words,
the cyclopalladated benzylamine residue was modestly stabilizing relative to an adenine residue
and strongly stabilizing relative to the unmetalated benzylamine residue. To explore the origin of
this stabilization, the UV melting experiments were repeated in the presence of 2-mercaptoethanol
(100 µM). 2-Mercaptoethanol is a strong ligand for soft transition metal ions and would, hence, be
expected to disrupt coordination of Pd(II) to nucleobases. If such coordination is important for duplex
stability, a decrease in Tm on addition of 2-mercaptoethanol should be observed.

Melting temperatures of the longest matching duplexes ON1x•ON5a in the absence and
presence of 2-mercaptoethanol are presented in Figure 3 (all melting temperatures are presented
in the Supporting Information). As expected, melting temperatures of duplexes ON1a•ON5a and
ON1b•ON5a did not change appreciably on addition of 2-mercaptoethanol. With ON1b-Pd•ON5a,
on the other hand, a clear drop in Tm was observed, consistent with stabilizing coordination of Pd(II)
in the absence of competing ligands.
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Figure 2. UV melting profiles for duplexes formed by ON5a with (A) ON1a (cyan circles),
ON2a (magenta triangles), ON3a (yellow squares) and ON4a (black diamonds); (B) ON1b (cyan
circles), ON2b (magenta triangles), ON3b (yellow squares) and ON4b (black diamonds) and (C)
ON1b-Pd (cyan circles), ON2b-Pd (magenta triangles), ON3b-Pd (yellow squares) and ON4b-Pd
(black diamonds); (D) melting temperatures of duplexes formed by ON1a, ON1b and ON1b-Pd
with ON5a (cyan), ON5g (magenta) and ON5t (yellow); pH = 7.4 (20 mM cacodylate buffer);
[oligonucleotides] = 3.0 µM; I(NaClO4) = 0.10 M. The error bars represent standard deviations of
three independent measurements.
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Figure 3. Melting temperatures of duplexes ON1a•ON5a, ON1b•ON5a and ON1b-Pd•ON5a in the
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To further elucidate the role of the palladacyclic “warhead”, a detailed thermodynamic analysis of
the hybridization of ON1a•ON5a, ON1b•ON5a and ON1b-Pd•ON5a was carried out as described
in the literature [33]. The resultant enthalpies and entropies of hybridization are presented in Table 2.
With ON1b-Pd•ON5a, both values were significantly more negative than with ON1a•ON5a or
ON1b•ON5a.

Table 2. Thermodynamic parameters of hybridization for ON1a•ON5a, ON1b•ON5a and
ON1b-Pd•ON5a; pH = 7.4 (20 mM cacodylate buffer); [oligonucleotides] = 3.0 µM; I(NaClO4) = 0.10 M.

Duplex ∆H◦/kJ·mol−1 ∆S◦/J·mol−1·K−1

ON1a•ON5a −200 ± 20 −530 ± 50
ON1b•ON5a −200 ± 10 −550 ± 40
ON1b-Pd•ON5a −250 ± 20 −670 ± 50

Secondary structure of duplexes formed by the cyclopalladated oligonucleotides was studied
CD spectropolarimetrically over a temperature range of 10–90 ◦C at 10 ◦C intervals. All the other
conditions were identical to those of the UV melting experiments. With the longest matched duplexes,
the spectra obtained at 10 ◦C were clearly characteristic of a B-type double helix, with prominent
negative and positive signals at 260 and 280 nm, respectively (Figure 4 for ON1b-Pd•ON5a, all spectra
are presented in the Supplementary Materials). Similar, but weaker, signals were observed with
the shorter and/or mismatched duplexes, reflecting their lower melting temperatures. In all cases,
the signals diminished on increasing temperature, consistent with unwinding of the double helix.

Int. J. Mol. Sci. 2018, 19, x 6 of 11 

 

To further elucidate the role of the palladacyclic “warhead”, a detailed thermodynamic analysis 
of the hybridization of ON1a•ON5a, ON1b•ON5a and ON1b-Pd•ON5a was carried out as 
described in the literature [33]. The resultant enthalpies and entropies of hybridization are presented 
in Table 2. With ON1b-Pd•ON5a, both values were significantly more negative than with 
ON1a•ON5a or ON1b•ON5a. 

Table 2. Thermodynamic parameters of hybridization for ON1a•ON5a, ON1b•ON5a and ON1b-
Pd•ON5a; pH = 7.4 (20 mM cacodylate buffer); [oligonucleotides] = 3.0 µM; I(NaClO4) = 0.10 M. 

Duplex ΔH°/kJ·mol−1 ΔS°/J·mol−1·K−1 
ON1a•ON5a −200 ± 20 −530 ± 50 
ON1b•ON5a −200 ± 10 −550 ± 40 
ON1b-Pd•ON5a −250 ± 20 −670 ± 50 

Secondary structure of duplexes formed by the cyclopalladated oligonucleotides was studied 
CD spectropolarimetrically over a temperature range of 10–90 °C at 10 °C intervals. All the other 
conditions were identical to those of the UV melting experiments. With the longest matched 
duplexes, the spectra obtained at 10 °C were clearly characteristic of a B-type double helix, with 
prominent negative and positive signals at 260 and 280 nm, respectively (Figure 4 for ON1b-
Pd•ON5a, all spectra are presented in the Supplementary Materials). Similar, but weaker, signals 
were observed with the shorter and/or mismatched duplexes, reflecting their lower melting 
temperatures. In all cases, the signals diminished on increasing temperature, consistent with 
unwinding of the double helix. 

 
Figure 4. CD (circular dichroism) spectra of ON1b-Pd•ON5a, recorded at 10 °C intervals between 10 
and 90 °C; pH = 7.4 (20 mM cacodylate buffer); [oligonucleotides] = 3.0 µM; I(NaClO4) = 0.10 M. 
Spectra acquired at extreme temperatures are indicated by thicker lines and thermal shifts of the 
minima and maxima by arrows. 

3. Discussion 

3.1. Duplex Stabilization by the Palladacyclic “Warhead” 

The sensitivity of the duplex stabilization by the cyclopalladated benzylamine moiety to the 
presence of 2-mercaptoethanol suggests direct coordination of Pd(II) to a base moiety of the 
complementary strand. The thymine base directly opposite to the palladacyclic residue appears as 
the most likely candidate but, given the length and flexibility of the diethylene glycol linker, 

220 240 260 280 300 320

-2.0x106

0.0

2.0x106

4.0x106

6.0x106

[θ
] /

 m
de

g·
M

-1
·c

m
-1

λ / nm

Figure 4. CD (circular dichroism) spectra of ON1b-Pd•ON5a, recorded at 10 ◦C intervals between
10 and 90 ◦C; pH = 7.4 (20 mM cacodylate buffer); [oligonucleotides] = 3.0 µM; I(NaClO4) = 0.10 M.
Spectra acquired at extreme temperatures are indicated by thicker lines and thermal shifts of the
minima and maxima by arrows.

3. Discussion

3.1. Duplex Stabilization by the Palladacyclic “Warhead”

The sensitivity of the duplex stabilization by the cyclopalladated benzylamine moiety to
the presence of 2-mercaptoethanol suggests direct coordination of Pd(II) to a base moiety of the
complementary strand. The thymine base directly opposite to the palladacyclic residue appears as the
most likely candidate but, given the length and flexibility of the diethylene glycol linker, coordination
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to other bases of the 3′-overhang cannot be ruled out. The most likely donor atoms within these bases
are the N3 of cytosine and thymine and the N1 of guanine [34–36].

Duplex stabilization by the cyclopalladated benzylamine moiety is rather modest when compared
to stabilizations achieved previously with metal mediated base pairing [37–46]. One should,
however, bear in mind that within a double helix the most stable metal mediated base pairs are
formed between two nucleosides or nucleoside analogues, preorganized to place the donor atoms
at appropriate positions. In the present case the flexible diethylene glycol linker first has to adopt
a conformation conducive to Pd(II) coordination, consistent with the observed highly negative entropy
of hybridization. As a result, the stabilizing enthalpic contribution by Pd(II) coordination is almost
entirely offset by the entropic penalty.

3.2. Impact of the Palladacyclic “Warhead” on Sequence Selectivity

Highly stabilizing modifications are known to be able to override sequence information and
allow hybridization of even highly mismatched oligonucleotides [47]. Even in the present case,
the mismatched duplexes were actually stabilized more than the matched ones by the cyclopalladated
benzylamine moiety. However, the difference in Tm between the matched and the most stable
mismatched duplex (ON1b-Pd•ON5a and ON1b-Pd•ON5g, respectively) was still nearly 18 ◦C,
translating into a 104-fold preference of ON5a over ON5g in hybridization with ON1b-Pd.

4. Materials and Methods

4.1. General Methods

NMR spectra were recorded on Bruker 500 NMR spectrometers (Bruker, Billerica, MA, USA)
and chemical shifts (δ, ppm) are quoted relative to the residual solvent peak as an internal standard.
Mass spectra were recorded on a Bruker Daltonics microTOF-Q mass spectrometer (Bruker, Billerica,
MA, USA). The solvents for organic synthesis were of reagent grade and dried over 4 Å molecular
sieves. For preparation of HPLC elution buffers, freshly distilled triethylamine was used. The other
chemicals, including unmodified oligonucleotides, were commercial products that were used
as received.

4.2. N-benzyl-2,2,2-trifluoro-N-[2-(2-hydroxyethoxy)ethyl]acetamide (3)

2-[2-(benzylamino)ethoxy]ethanol (2, 2.00 g, 10.2 mmol) was dissolved in MeOH (10 mL).
Et3N (2.90 mL, 20.4 mmol) was added and the resulting mixture stirred for 30 min at 25 ◦C.
Ethyl trifluoroacetate (1.46 g, 10.2 mmol) was then added and the reaction mixture stirred for 16 h
at 25 ◦C, after which it was evaporated to dryness to afford the desired product 3 as a mixture of
two slowly interconverting rotamers (2.98 g, near quantitative yield). 1H NMR (CDCl3, 500 MHz,
major rotamer): δ 7.19-7.48 (m, 5H), 4.80 (s, 2H), 3.40-3.70 (m, 8H), 2.82 (br, 1H). 1H NMR (CDCl3,
500 MHz, minor rotamer): δ 7.19-7.48 (m, 5H), 4.82 (s, 2H), 3.40-3.70 (m, 8H), 2.82 (br, 1H).
13C NMR (CDCl3, 125 MHz, major rotamer): δ 157.1 (q, J = 35.8 Hz), 136.3, 128.7, 127.7, 127.6,
116.8 (q, J = 285.9 Hz), 72.5, 67.6, 60.9, 50.3, 46.8 (q, J = 2.9 Hz). (CDCl3, 125 MHz, minor rotamer):
δ 156.9 (q, J = 35.8 Hz), 135.8, 128.8, 127.9, 127.2, 116.8 (q, J = 285.9 Hz), 72.4, 68.9, 61.0, 51.4 (q, J = 3.0 Hz),
46.0. HRMS (ESI+) m/z calcd 314.0974 obsd 314.0972 [M + Na]+.

4.3. 2-[2-(N-benzyl-2,2,2-trifluoroacetamido)ethoxy]ethyl 2-cyanoethyl N,N-diisopropylphosphoramidite (1)

N-benzyl-2,2,2-trifluoro-N-(2-(2-hydroxyethoxy)ethyl)acetamide (3, 670 mg, 2.30 mmol) and
Et3N (1.93 mL, 13.8 mmol) were dissolved in anhydrous CH2Cl2 (7 mL) under N2 atmosphere.
2-Cyanoethyl N,N-diisopropylchlorophosphoramidite (0.616 mL, 2.76 mmol) was added and the
resulting mixture stirred for 3 h at 25 ◦C, after which the reaction was quenched by addition of
saturated aq. NaHCO3 (100 mL). The phases were separated and the aqueous phase was extracted
with CH2Cl2 (100 mL). The combined organic phases were washed with saturated aq. NaHCO3
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(100 mL), dried over anhydrous Na2SO4 and evaporated to dryness. The crude product thus obtained
was passed through a silica gel column eluting with a mixture of EtOAc and hexane (1:1, v/v) to afford
the desired product 1 containing a major impurity of 2-Cyanoethyl N,N-diisopropylphosphonamidate
(859 mg, 72% yield based on 31P NMR). This material was used in oligonucleotide synthesis without
further purification. 1H NMR (CDCl3, 500 MHz, major rotamer): δ 7.22-7.48 (m, 5H), 4.80 (s, 2H),
3.36-3.89 (m, 12H), 2.66 (m, 2H), 1.20 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.8 Hz, 6H). 1H NMR (CDCl3,
500 MHz, minor rotamer): δ 7.22-7.48 (m, 5H), 4.82 (s, 2H), 3.36-3.89 (m, 12H), 2.66 (m, 2H),
1.20 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.8 Hz, 6H). 13C NMR (CDCl3, 125 MHz, major rotamer):
δ 157.1 (q, J = 36.0 Hz), 136.3, 128.7, 127.7, 127.6, 118.6, 116.8 (q, J = 288.2 Hz), 71.1 (d, J = 7.6 Hz), 67.8,
62.6 (d, J = 16.8 Hz), 58.4 (d, J = 19.2 Hz), 50.3, 46.7 (q, J = 2.9 Hz), 42.9 (d, J = 12.6 Hz), 24.0 (d, J = 7.2 Hz),
20.0. 13C NMR (CDCl3, 125 MHz, minor rotamer): δ 156.7 (q, J = 35.4 Hz), 135.7, 129.0, 127.9, 127.2,
118.0, 116.8 (q, J = 288.7 Hz), 71.0 (d, J = 7.7 Hz), 69.1, 62.7 (d, J = 17.1 Hz), 58.4 (d, J = 19.2 Hz),
51.5 (q, J = 3.2 Hz), 45.9, 42.9 (d, J = 12.6 Hz), 24.0 (d, J = 7.2 Hz), 20.0 (d, J = 6.9 Hz). 31P NMR (CDCl3,
202 MHz, major rotamer): δ 148.1. 31P NMR (CDCl3, 202 MHz, minor rotamer): δ 148.0. HRMS (ESI+)
m/z calcd 514.2053 obsd 514.2034 [M + Na]+.

4.4. Bis{N-[2-(2-hydroxyethoxy)ethyl]benzylaminato-C2,N} bis(µ-chloro) dipalladium(II) (4)

2-[2-(benzylamino)ethoxy]ethanol (2, 240 mg, 1.28 mmol) was dissolved in a mixture of H2O
(3 mL) and MeCN (3 mL). Li2PdCl4 (336 mg, 1.28 mmol) was dissolved in a mixture of H2O (10 mL)
and MeCN (10 mL) and the resulting solution was added to the solution of 2. After stirring for 16 h
at 25 ◦C, the reaction mixture was evaporated to dryness. The residue was purified by silica gel
column chromatography eluting with a mixture of EtOAc and hexane (8:2, v/v), affording the desired
product 4 as a mixture of cisoid and transoid stereoisomers (189 mg, 44% yield). 1H NMR (CDCl3,
500 MHz, major stereoisomer): δ 7.34-7.47 (m, 4H), 4.46 (ddd, J1 = 10.6 Hz, J2 = 10.4 Hz, J3 = 2.5 Hz,
1H), 4.28 (dd, J1 = 13.1 Hz, J2 = 6.7 Hz, 1H), 4.03 (m, 1H), 3.44-3.80 (m, 6 H), 3.02 (m, 1H), 2.38 (m, 1H).
1H NMR (CDCl3, 500 MHz, minor stereoisomer): δ 7.34-7.47 (m, 4H), 4.33 (m, 1H), 4.24 (dd, J1 = 13.0 Hz,
J2 = 7.6 Hz, 1H), 4.03 (m, 1H), 3.44-3.80 (m, 6 H), 3.02 (m, 1H), 2.38 (m, 1H). 13C NMR (CDCl3, 125 MHz,
major stereoisomer): δ 147.5, 135.0, 129.9, 129.7, 128.9, 128.6, 72.8, 67.8, 61.6, 57.35, 50.8. 13C NMR
(CDCl3, 125 MHz, minor stereoisomer): δ 142.7, 135.2, 129.9, 129.7, 128.9, 128.6, 72.8, 67.6, 61.4, 57.26,
51.5. HRMS (ESI+) m/z calcd 300.0216 obsd 300.0152 [M/2 − Cl]+.

4.5. Oligonucleotide Synthesis

The modified oligonucleotides ON1b, ON2b, ON3b and ON4b were assembled on an Applied
Biosystems 3400 (Applied Biosystems, Waltham, MA, USA) automated DNA/RNA synthesizer
using conventional phosphoramidite strategy. For the benzylamine building block 1, an extended
coupling time (600 s) was used. Removal of the base and phosphate protections and release of the
oligonucleotides from the solid support was accomplished by treatment with 25% aq. NH3 for 16 h
at 55 ◦C. The cyclopalladated oligonucleotides ON1b-Pd, ON2b-Pd, ON3b-Pd and ON4b-Pd were
prepared by incubating ON1b, ON2b, ON3b and ON4b (192, 260, 290 and 173 nmol, respectively) and
Li2PdCl4 (384, 520, 580 and 346 nmol, respectively) in a mixture of H2O (530 µL) and MeCN (30 µL)
for 16 h at 25 ◦C. All modified oligonucleotides were purified by reversed-phase high performance
liquid chromatography (RP-HPLC) on a Hypersil ODS C18 column (250 × 4.6 mm, 5 µm, Thermo
Fisher Scientific, Waltham, MA, USA) eluting with a linear gradient (0 to 30% over 25 min) of MeCN
in 50 mM aqueous triethylammonium acetate. The flow rate was 1.0 mL·min−1 and the detection
wavelength 260 nm. The purified oligonucleotides were characterized by electrospray ionization
mass spectrometry (ESI-MS) and quantified UV spectrophotometrically using molar absorptivities
calculated by an implementation of the nearest-neighbors method. Molar absorptivity of both free and
cyclopalladated benzylamine was assumed to be negligible.
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4.6. Melting Temperature Measurements

Melting profiles were recorded on a PerkinElmer Lambda 35 UV-Vis spectrometer equipped
with a Peltier temperature control unit (PerkinElmer, Waltham, MA, USA). Samples were prepared
by mixing the appropriate oligonucleotides (3.0 µM) in 20 mM cacodylate buffer (pH 7.4), the ionic
strength of which was adjusted to 0.10 M with NaClO4. When applicable, 2-mercaptoethanol was
used in 100 µM concentration and added after mixing of the oligonucleotides. Before measurement,
the samples were annealed by heating to 90 ◦C and gradually cooling to room temperature. UV melting
curves were acquired by monitoring the absorbance at λ = 260 nm over a temperature range of 10–90 ◦C,
sampling at 10 ◦C intervals. The melting temperatures were determined as inflection points on the UV
melting curves.

4.7. CD Measurements

CD spectra were recorded on an Applied Photophysics Chirascan spectropolarimeter equipped
with a Peltier temperature control unit (Applied Photophysics, Leatherhead, UK). Samples used in
the CD measurements were identical to those used in the UV melting temperature measurements.
CD spectra were acquired between λ = 200 and 400 nm over a temperature range of 10–90 ◦C,
sampling at 10 ◦C intervals. At each temperature, samples were allowed to equilibrate for 600 s
before acquisition.

5. Conclusions

Cyclopalladated benzylamine, tethered at a terminal position of a short oligonucleotide by
a flexible linker, promotes hybridization despite a significant entropy penalty for “freezing” the linker
in an appropriate conformation. Sensitivity to the presence of competing ligands suggests direct
coordination of Pd(II) to a nucleobase of the complementary strand as the origin of stabilization by the
palladacyclic moiety. In light of these results, oligonucleotides furnished with palladacyclic “warheads”
could prove useful as a sequence-selective alternative to current platinum-based anticancer agents.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/6/
1588/s1.
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