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Simple Summary: Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is
overexpressed in prostate cancer and correlates with the aggressiveness of the disease. PSMA is a
promising target for imaging and therapeutics in prostate cancer patients validated in prospective
trials. However, the role of PSMA in prostate cancer progression is poorly understood. In this review,
we discuss the biology and scientific rationale behind the use of PSMA and other targets in the
detection and theranostics of metastatic prostate cancer.

Abstract: Prostate cancer is the second most common cancer type in men globally. Although the prog-
nosis for localized prostate cancer is good, no curative treatments are available for metastatic disease.
Better diagnostic methods could help target therapies and improve the outcome. Prostate-specific
membrane antigen (PSMA) is a transmembrane glycoprotein that is overexpressed on malignant
prostate tumor cells and correlates with the aggressiveness of the disease. PSMA is a clinically vali-
dated target for positron emission tomography (PET) imaging-based diagnostics in prostate cancer,
and during recent years several therapeutics have been developed based on PSMA expression and
activity. The expression of PSMA in prostate cancer can be very heterogeneous and some metastases
are negative for PSMA. Determinants that dictate clinical responses to PSMA-targeting therapeutics
are not well known. Moreover, it is not clear how to manipulate PSMA expression for therapeutic
purposes and develop rational treatment combinations. A deeper understanding of the biology
behind the use of PSMA would help the development of theranostics with radiolabeled compounds
and other PSMA-based therapeutic approaches. Along with PSMA several other targets have also
been evaluated or are currently under investigation in preclinical or clinical settings in prostate cancer.
Here we critically elaborate the biology and scientific rationale behind the use of PSMA and other
targets in the detection and therapeutic targeting of metastatic prostate cancer.

Keywords: castration resistant prostate cancer (CRPC); molecular imaging; positron emission to-
mography (PET); prostate-specific membrane antigen (PSMA); radionuclide therapy; therapeutic
antibodies
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1. Introduction

Prostate cancer is the second most commonly diagnosed cancer in men and the sixth
leading cause of cancer-related deaths among men worldwide although incidence and
mortality of prostate cancer vary depending on the country [1]. Incidence and mortality
rates have been on the decline or have stabilized recently particularly in high-income
countries. Although the prognosis for localized prostate cancer is good, with 5-year
survival rates above 90%, recurrence can occur after radical therapy, and many patients
have metastases at the time of primary diagnosis [2]. Conventional 99mTc-bone scintigraphy
and computed tomography (CT) showed limited diagnostic accuracy to detect and localize
disease or treatment response in many cases. In particular, they are insensitive in the event
of biochemical relapse with a rising prostate-specific antigen (PSA) after radical treatment,
presenting an unmet need for better methods.

The first-line treatment option for metastatic prostate cancer is androgen deprivation
therapy (ADT) that can be combined with docetaxel chemotherapeutic agent or drugs
interfering with androgen signaling in early castration naïve state, but eventually, the
lethal castration-resistant disease develops [2,3]. The therapeutic landscape of metastatic
prostate cancer has evolved during recent years to extend survival. Prostate-specific
membrane antigen (PSMA) is a promising clinically validated target for expression-based
imaging and therapies, but a deeper understanding of the underlying biology is needed to
optimize its use. Evidence from the first randomized phase III trial supports the benefit of
therapeutically targeting PSMA [4]. Here we will critically discuss the scientific rationale
behind the use of PSMA-directed molecular imaging and therapeutics and compare it
to other potential targets evaluated in imaging of metastatic prostate cancer to guide
management.

2. The Role of PSMA in the Biology of Prostate Cancer
2.1. Gene and Protein Structure of PSMA

PSMA, also known as glutamate carboxypeptidase II (GCPII), N-acetylaspartylglutamate
peptidase, and N-acetyl-L-aspartyl-L-glutamate peptidase I (NAALADase I), is a type II
transmembrane glycoprotein encoded by FOLH1 (folate hydrolase 1) gene mapped to
chromosome 11 short arm (11p11–11p12) and contains 19 exons, encoding a protein of 750
amino acids and a molecular weight of approximately 100 kDa [5,6].

PSMA contains a catalytic domain responsible for both NAALADase and folate hydro-
lase activity and belongs to the M28 metalloprotease family that contains aminopeptidases
and carboxypeptidases. PSMA protein has a large extracellular domain, a short transmem-
brane domain, and a short cytoplasmic tail [6–8]. The extracellular domain consists of three
subdomains: the protease, the apical domain, and the dimerization domain, which are
all necessary for substrate binding [9,10] (Figure 1A). In the binding cavity of PSMA, the
pharmacophore pocket stabilizes glutamate-like moieties using polar and van der Waals
interactions [11]. The active site of PSMA contains two catalytic zinc ions coordinated
by His377, His553, Asp387, Asp453, and Glu425 [10,12]. The short intracellular domain
contains an internalization motif and interacts with proteins, such as caveolin-1, clathrin,
and clathrin adaptor protein 2, enabling PSMA endocytosis via caveolae-dependent mech-
anisms and via clathrin-coated pits [13–15]. Additionally, an interaction between actin-
binding protein Filamin A (FLNa) and the cytoplasmic tail of PSMA has been shown to
decrease the internalization and the enzymatic NAALADase activity of PSMA in vitro [16].
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ies carrying microtubule-disrupting agents (Table 1). (E) Bispecific antibodies can be designed to 
target PSMA and simultaneously attach to CD3 or CD28 expressed by T cells. (F) Autologous or 
allogeneic T cells can be engineered to express PSMA-targeting CARs. Current clinical trials are 
also studying similarly engineered NK cells. CAR T or NK cells can be designed to ignore immu-
nosuppressive signals from the tumor microenvironment by making them insensitive to certain 
molecules e.g., PD-1. Abbreviations: PSMA = prostate-specific membrane antigen, NAAG = N-
acetylaspartylglutamate, ADC = antibody-drug conjugate, CD3 = cluster of differentiation 3, CD28 
= cluster of differentiation 28, CAR = chimeric antigen receptor, NK = natural killer cell, PD-1 = 
programmed cell death protein 1. 
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Figure 1. Structure of PSMA and PSMA-targeting therapeutical modalities. (A) The large extra-
cellular portion of PSMA contains the protease domain that cleaves glutamate from NAAG and
polyglutamated folates. The cytoplasmic tail interacts with several proteins some of which can induce
the endocytosis of PSMA. (B) A radionuclide capable of emitting ionizing radiation due to radioactive
decay can be combined with a PSMA-specific antibody to create a PSMA-targeting cytotoxic molecule.
(C) A similar function is gained when a small molecule, naturally bound by PSMA, is linked to
a radionuclide emitting ionizing radiation. (D) ADCs are altered antibodies carrying therapeutic
agents to the targeted protein. Current ADC trials are testing PSMA-targeting antibodies carrying
microtubule-disrupting agents (Table 1). (E) Bispecific antibodies can be designed to target PSMA
and simultaneously attach to CD3 or CD28 expressed by T cells. (F) Autologous or allogeneic T
cells can be engineered to express PSMA-targeting CARs. Current clinical trials are also studying
similarly engineered NK cells. CAR T or NK cells can be designed to ignore immunosuppressive
signals from the tumor microenvironment by making them insensitive to certain molecules e.g., PD-1.
Abbreviations: PSMA = prostate-specific membrane antigen, NAAG = N-acetylaspartylglutamate,
ADC = antibody-drug conjugate, CD3 = cluster of differentiation 3, CD28 = cluster of differentiation
28, CAR = chimeric antigen receptor, NK = natural killer cell, PD-1 = programmed cell death protein 1.

2.2. Expression and Function of PSMA in Normal Tissues

In general, only very low levels of PSMA protein expression have been detected
in healthy tissues such as the kidney, intestine, salivary glands, and brain, and it seems
that prostatic epithelium is the only tissue to express a significant level of PSMA [17,18].
Despite more than three decades of extensive research, the exact biological role of the
human PSMA protein is not fully understood. Several independent research groups have
inactivated the PSMA-encoding gene Folh1 in mice to understand the physiological role of
the mouse homolog of human PSMA [19–22]. In mice, PSMA is particularly expressed in
the brain and kidney according to the Northern blot analyses [23]. Bacich et al. [19] report
that PSMA null mice (intron-exon boundary sequences of exons 1 and 2 deleted and stop
codons inserted in exon 1 and 2) have similar N-acetyl-L-aspartyl-L-glutamate (NAAG)
levels in the brain as compared to wild-type (WT) mice, suggesting genetic redundancy.
The null mice developed normally to adulthood but in comparison to WT showed lower
susceptibility to peripheral neuropathies and traumatic brain injury [24]. In accordance,
Gao et al. [22] reported PSMA null mice (deletion of exons 3 to 5) with normal breeding
performance and no obvious phenotype. Vorlová et al. [25] produced PSMA deficient
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mice by inactivating (deleted exon 11) Folh1 gene using transcription activator-like effector
nuclease (TALEN)-mediated mutagenesis. They confirmed that PSMA protein was not
expressed and NAAG hydrolyzing activity was lowered, but the PSMA-deficient mice bred
and developed normally. They reported that PSMA-deficient aged mice might have an
increased propensity for enlarged seminal vesicles compared to WT, but no other obvious
phenotype in the urogenital system. In contrast, Tsai et al. [20] reported that PSMA null
mice (deletion of exons 9 and 10) died during embryogenesis. The same research group
later generated mice also by using the strategy reported by Bacich et al., and again reported
that PSMA knockout is embryonically lethal [20,21]. They suggest that PSMA expression
in embryonic stem cells might be important at very early stages of embryonic development,
but the reason for the discrepancy with other studies is not clear [21].

In humans, the functional role of PSMA is context-dependent and tissue-specific.
PSMA has an enzymatic activity to release glutamate from the substrate as a folate hy-
drolase and NAALADase [26–28]. In the intestine, PSMA detaches glutamates from the
C-terminal end of poly-γ-glutamate of the dietary folic-polyglutamates enabling absorp-
tion of monoglutamated folates into the enterocytes [29,30]. In the nervous system, PSMA
modulates neuronal signaling by catalyzing the hydrolysis of the neurotransmitter NAAG
yielding N-acetyl-aspartate (NAA) and free L-glutamate [31]. Glutamate is the major excita-
tory neurotransmitter in the nervous system. The released glutamate activates postsynaptic
metabotropic (mGluR) and ionotropic (iGluR) receptors of glutamate [32]. In conclusion,
although PSMA is a multifunctional protein expressed in some healthy tissues, the most
significant expression levels are found in humans in the prostatic epithelium.

2.3. Expression and Function of PSMA in Malignancies

PSMA was first characterized in 1986 by the murine monoclonal antibody 7E11, de-
livered from mice immunized with partially purified, cell membrane fractions isolated
from the human prostate adenocarcinoma cell line LNCaP [7]. Later PSMA has been
implicated a role in diseases, such as amyotrophic lateral sclerosis (ALS), schizophrenia,
multiple sclerosis, inflammatory bowel disease (IBD), and cancer [33–36]. In cancer, PSMA
expression has been detected on the endothelial cells of the neovasculature of several
solid tumors, such as renal, bladder, gastric, and colorectal cancer as well as prostate
cancer [17,37–39]. In prostate cancer, PSMA is highly overexpressed at the protein level
in cancer cells when compared to normal prostate tissue [40]. Expression level correlates
with the aggressiveness of the disease and high PSMA expression levels have been asso-
ciated with hormone-refractory and metastatic prostate cancer [18,40–44]. However, the
expression of PSMA in prostate cancer can be very heterogeneous, and some primary
tumors and metastases are negative for PSMA [7,18,40,45]. The use of different antibodies
in immunohistochemistry with different epitopes can also challenge the interpretation of
results [38]. Heterogenous expression of PSMA may be explained by regulation of PSMA
by local biological factors and tumor cell microenvironment.

Interestingly, by using a PSMA targeting antibody (YPSMA-1), an inhibitor of the
enzymatic activity (2-PMPA) or PSMA null mice as models, it was shown that PSMA
regulates endothelial cell invasion into the extracellular matrix without significantly af-
fecting viability, proliferation, or morphogenesis [46]. This suggests that PSMA regulates
angiogenesis depending on the enzymatic activity. Mechanistically, laminin-specific in-
tegrin β1 activation promotes activation of p21-activated kinase 1 (PAK) to interact with
FLNa, disrupting PSMA-FLNa interaction and the enzymatic activity of PSMA. Disrup-
tion of PSMA-FLNa interaction causes a reduction in both integrin β1 signaling and PAK
activation creating a negative feedback loop. Later, it was recognized that PSMA takes
part in a pathway producing pro-angiogenic fragments from extracellular protein laminin,
promoting angiogenesis by regulating integrin β1 signaling in endothelial cells [47]. In
conclusion, high PSMA expression levels have been detected specifically in prostate cancer
cells and in the neovasculature of some solid tumors, making it an attractive target for
molecular imaging and therapeutics.
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2.4. Functional Role of PSMA in Prostate Cancer

Although PSMA was originally identified in a prostate cancer LNCaP cell line and
early on linked to prostate cancer aggressiveness, PSMA is not expressed in many other
commonly used commercially available prostate cancer cell lines and preclinical publica-
tions have been in part contradictory, demonstrating inhibition of PSMA to either promote
or prevent invasion in vitro [48,49]. First, in 2005, Ghosh et al. [48] showed that transfect-
ing PSMA negative PC3 cells to overexpress wild-type PSMA reduced invasiveness and
knocking down endogenous PSMA in LNCaP cells increased invasiveness in the Matrigel
invasion assay. Later, they showed using the PSMA-overexpressing transgenic mouse
model, that PSMA overexpression increased prostate cancer cell growth in prostate recom-
binants [49]. Moreover, they repeated the Matrigel invasion assay using low levels of folate
and surprisingly observed that ectopic expression of PSMA induced invasiveness in PC3
cells, suggesting that folate levels might modulate the functional consequence to inhibition
of PSMA in prostate cancer cells—at least within in vitro. Colombatti et al. also suggested
that treating LNCaP cells endogenously expressing PSMA with antibodies against PSMA
induced proliferative MAPK pathway activation [50]. The abundance of PSMA in prostate
tissue allows increased hydrolysis of the polyglutamated folates yielding glutamate and
folate monoglutamate enabling the intake of folates into the cell via proton-coupled folate
transporters (PCFT), reduced folate carriers (RFC), or possibly by PSMA itself [51,52].
Folate is crucial for one-carbon metabolism and is involved in the synthesis of DNA and
RNA, and amino acid metabolism [51]. Some studies suggest that decreased folate levels
cause epigenetic changes, DNA breaks, translocations, and uracil misincorporation into
DNA suggesting a possible carcinogenic role for low folate levels [53–56] but the role of
folate in cancer seems complex and also conflicting results exist, suggesting that decreased
folate levels are a protective factor against prostate carcinogenesis [57]. Based on a meta-
analysis, high blood folate levels associate with increased risk of prostate cancer although
the increased dietary and total folate intake do not appear significantly to associate with
prostate cancer risk [53].

Folic acid is a synthetic, fully oxidized, monoglutamated version of folate—found
for example in vitamin supplements—that can directly be transported into cells while
polyglutamated folates have to be hydrolyzed into monoglutamates before being absorbed
in the digestive tract. It has been suggested that polyglutamated folate in turn could
become available as a substrate for PSMA in particular if intracellular molecules were
released by cancer cells undergoing necrotic cell death [58]. Interestingly, tumor necrosis in
radical prostatectomies was associated with aggressive features [59]. Treatment of LNCaP
cells endogenously expressing PSMA with folic acid induced activation of PI3Kβ-Akt
pathway, which was not observed in the presence of inhibitors of either PSMA, PI3Kβ, or
mGluRI activity [60]. This suggests that PSMA is capable of activating the PI3K-Akt cell
survival pathway in prostate cancer and surprisingly finds mGluRI as the major mediator
of folate-induced PI3Kβ-Akt pathway activation by PSMA. Glutamate is a necessary
metabolic precursor for other amino acids and nucleotides and is involved in a variety of
different transporter and receptor systems that activate proliferative signaling pathways.
Glutamate also mobilizes calcium from the endoplasmic reticulum via the activation of
mGluR [60]. Expression of glutamate transporters and many of the different iGluRs and
mGluRs have been reported in LNCaP and PC3 prostate cancer cell lines [61]. Glutamate
deprivation or blockade with mGluR1-antagonist results in significantly decreased cell
proliferation, migration, and invasion of prostate cancer cells, leading to apoptotic cell
death, demonstrating a potentially important role of glutamate pathway for prostate cancer
growth [62]. In prostate cancer patients, serum glutamate levels directly correlate with
Gleason Score and aggressiveness [62]. Moreover, high mGluR1 levels in primary and
metastatic prostate cancer tissue when compared to benign prostate tissue samples have
been detected by immunohistochemistry [62].

Caromile et al. [63] crossed PSMA null mice with a TRAMP transgenic mouse model to
investigate in vivo effects of PSMA in prostate carcinogenesis. Prostate cancer progression
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in a TRAMP transgenic mouse model was less aggressive in PSMA deficient background,
suggesting a direct role for PSMA in prostate carcinogenesis. PSMA positive tumors were
bigger and had a higher microvessel density when compared to tumors in the PSMA
knockout animals. Mechanistically, PSMA was shown to interact intracellularly with a
scaffolding protein receptor for activated C kinase 1 (RACK1) and disrupt the interaction
between insulin-like growth factor 1 receptor (IGF1-R) and integrin β1, resulting in a switch-
like change from activation of the proliferation-associated MAPK pathway to activation
of a cell survival-associated PI3K-AKT pathway. This suggested one mechanism of how
PSMA overexpression could drive prostate cancer growth and indicated that disrupting the
interaction between PSMA and the scaffold might have therapeutic potential for patients
with PSMA-positive prostate cancer. Mutations targeting phosphatase and tensin homolog
(PTEN) or other components of the PI3K-AKT pathway are often found in prostate cancer
and crosstalk between the PI3K-AKT pathway and AR signaling has been described [64,65].
This reciprocal feedback regulation may be involved in resistance to therapeutics resulting
in AR or PI3K-AKT inhibition, resulting in the activation of the other pathway when the
other one is inhibited [64,65]. The integrin β1-mediated mechanism linking PSMA to the
PI3K-AKT pathway may thus result in a similar reciprocal feedback regulation towards
AR signaling. Interestingly, RACK1 has also been shown to interact with AR and inhibit its
function, putatively also connecting PSMA to AR signaling [66].

In conclusion, recent studies using different model systems including transgenic
mouse models with PSMA null background have elucidated several distinct mechanisms
associating PSMA with survival-related signaling pathways with connections to the andro-
gen receptor (AR) signaling in prostate cancer (Figure 2). The newly discovered mecha-
nisms provide new context also for the earlier studies and cooperatively suggest a role for
PSMA as an important participant in multiple stages of prostate cancer progression.

2.5. Regulation of PSMA Expression and Activity in Prostate Cancer

PSMA expression is highly regulated in a prostate cell and prostate cancer cell-specific
manner [67]. A prostate tissue-specific PSMA enhancer (PSME) is involved in this pro-
cess [68], but surprisingly, little is known about transcriptional regulators in detail in
prostate tissue. PSMA expression is regulated by the NFATc1 transcription factor which
binds to PSME, activating the transcription of PSMA [69]. A SOX7 transcription factor
is another transcription factor shown to bind to PSME and in turn, negatively regulate
PSMA expression. However, the role of NFAT1c or SOX7 in regulating PSMA expression
in the prostate cancer context is not characterized. Interestingly, downregulation of SOX7
in prostate cancer has been found in castration-resistant prostate cancer (CRPC) [70].

Androgen signaling and subsequent AR activation is a hallmark of prostate cancer
progression and surprisingly has long been known to downregulate PSMA [18,71,72].
Androgens have been suggested to suppress the transcription of the PSMA gene acting via
both promoter and enhancer regions [71]. Interestingly, a fragment of FLNa can translocate
to the nucleus and repress the transactivator function of AR [73], suggesting that FLNa
might also be involved in the regulation of PSMA expression. FLNa has been found more in
the cytoplasm than in the nucleus in metastatic prostate cancer when compared to localized
prostate cancer, and cytoplasmic FLNa is linked to invasion [74]. Murga et al. [75] supported
the previous result by showing that castration in combination with AR signaling inhibitors,
such as enzalutamide upregulated PSMA expression in androgen-dependent LNCaP cells.
They also demonstrated that PSMA-targeting antibody-drug conjugate was synergistic
with AR signaling inhibitors. Hope et al. [76] reported first in human experience that
AR inhibition increases PSMA expression in prostate cancer metastases and increases the
number of lesions visualized on PSMA-based positron emission tomography (PET) imaging.
After that, many studies have reported the flare phenomenon increasing the expression
of PSMA after ADT [77]. The majority of studies suggest that short-term ADT induces
temporary up-regulation of PSMA expression but under prolonged androgen deprivation,
down-regulation of PSMA expression is detected and finally the androgen-resistant tumors
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have overexpression of PSMA [78–80]. It is thought that the expression of PSMA may
depend on the patient’s castration status. It is possible that the “MAPK/PI3K-Akt switch”
function of PSMA could help the prostate cancer cells to try to survive castration when AR
activation is suppressed.
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Figure 2. Function and regulators of PSMA in prostate cancer cells. PSMA is a transmembrane
protein expressed on the surface of prostate cancer cells. In the dimeric form, PSMA can enzymatically
hydrolyze glutamated folates producing glutamate and folates that can enter the cell through RFC or
PCFT. Activation of mGluR by glutamate induces the release of calcium from the ER and activates
cell survival associated with the PI3K-Akt pathway. In the absence of PSMA, Integrin β (Iβ) and
IGF1-1R interact intracellularly with a scaffold protein RACK1 leading to the activation of the MAPK
pathway. This interaction is disrupted by PSMA, changing the pathway activation from MAPK to
PI3K-Akt in a switchlike manner. DHT is the physiological activator of AR. PSMA transcription is
suppressed by AR after activation by DHT. Another potential repressor of PSMA transcription in
prostate cancer cells is SOX7, which has been shown to bind to PSME. Cytoskeleton-related protein
FLNa interacts with the intracellular domain of PSMA. FLNa interestingly also interacts with AR and
BRCA1, and BRCA2. Abbreviations: PSMA = prostate-specific membrane antigen, FLNa = filamin A,
G = glutamate, F = folate, RFC = reduced folate carrier, PCFT = proton-coupled folate transporter,
mGluR = metabotropic glutamate receptor, ER = endoplasmic reticulum, Iβ = integrin β, IGF-1R
= insulin-like growth factor 1 receptor, RACK1 = receptor of activated protein C kinase 1, MAPK
= mitogen-activated protein kinase, PI3K = phosphoinositide 3-kinase, Akt/PKB = protein kinase
B, DHT = dihydrotestosterone, AR = androgen receptor, PSME = PSMA enhancer, BRCA = breast
cancer type 1 or 2 susceptibility protein, SOX7 = SRY-Box transcription factor 7, Ca2+ = calcium ion.

Overexpression of PSMA has been associated with DNA repair defects in tumors [81].
However, the mechanisms behind the overexpression of PSMA in this context are likely
multifactorial involving several cellular processes and are not yet well understood. PSMA-
interactor FLNa interestingly also interacts with BRCA1 and BRCA2 which are among the
most frequently found DNA damage repair (DDR) genes mutated in metastatic prostate
cancer [82,83], suggesting one putative link between PSMA and DDR. Taken together,
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AR signaling is the best known clinically validated regulator of PSMA expression, but
relatively little is known of the regulation of PSMA expression on a molecular level.

3. PSMA as a Target for Imaging and Therapeutics in Prostate Cancer Patients
3.1. PSMA Based Imaging in Prostate Cancer

Conventional 99mTc bone scintigraphy and CT are insensitive to detect in particu-
lar early metastases and there has been an unmet medical need for improved sensitive
and specific imaging methods to guide treatment. Since the 1990s several PSMA based
imaging methods have been developed. Currently, to detect PSMA, 68Ga-PSMA-11 is
the most widely studied PET imaging ligand [84]. Several studies have been conducted
in prostate cancer patients with PSMA-detecting tracers for smaller patient cohorts and
meta-analyses of those studies support the potential for this imaging method in prostate
cancer [84,85]. In particular, PSMA-PET outperforms 99mTc bone scan in detecting bone
metastases [86]. Longed evidence-based data on carefully conducted large prospective
trials are now emerging. A prospective multicenter single-arm trial including 635 prostate
cancer patients demonstrated the accuracy of PSMA-PET in detecting prostate cancer le-
sions after recurrence after previous radical surgery or radiotherapy [87]. Histopathological
analysis of lesions in some patients was included to confirm the specificity of PSMA-PET to
detect prostate cancer. Figure 3A–C show local organ confined PSMA-positive recurrence
after definitive radiotherapy. In 2020, a prospective multicenter randomized proPSMA
trial including 302 patients demonstrated that PSMA PET-CT has significantly higher
accuracy when compared with conventional imaging in patients with prostate cancer with
high-risk features before surgery or radiotherapy [86]. In a prospective 79 patient study,
18F-PSMA-1007 PET-CT despite showing non-metastatic bone lesions, similarly showed
superior sensitivity when compared to conventional imaging with 14% of patients having
metastases only visible by PSMA PET-CT [88]. A small cohort study tested the hypothesis
of ADT enhancing the performance of PSMA PET-imaging [89]. Nine patients were imaged
using 68Ga-PSMA-11 PET-MRI once before and three times after the administration of
degarelix or firmagon. A heterogenous increase in the 68Ga-PSMA-11 uptake with a mean
standardized uptake value (SUVmax) increase of 77% (range 8–238%) more evident in the
bone metastases was observed 3–4 weeks post-ADT. The impact on performance was con-
sidered minor. One patient had more bone metastases visible due to the flare phenomenon
without changing his management and ADT was determined not to interfere with imaging
as no lesions disappeared within a month after initiation of ADT [89]. In parallel with PET,
99mTc-based SPECT (single-photon emission computed tomography)-compatible PSMA
ligands have been developed and are currently under clinical assessment [90]. 99mTc-PSMA-
SPECT-CT might have the potential to detect more aggressive prostate cancers, especially
if PSMA PET-CT is not available.

3.2. PSMA Targeted Therapy Using Radiolabeled Small-Molecule Ligands or Antibodies in
Prostate Cancer

PSMA can be targeted by small-molecule ligands and antibodies (Ab) labeled with
radionuclides [91] (Figure 1B,C). The most promising classes of PSMA inhibitors are urea-
based low molecular weight ligands [91]. Czerwińska et al. [92] have extensively reviewed
different radioligands evaluated in prostate cancer. Urea-based agents, such as PSMA-
617 and PSMA-I&T (I&T indicating imaging and therapy) radiolabeled with lutetium-177
(177Lu) have been evaluated as therapy ligands for metastatic prostate cancer patients. 177Lu
is a β--emitting radionuclide (half-life 6.7 days), which by emitting a beta particle (maximal
tissue penetration 2 mm, maximum energy 0.5 MeV), induces cell death by breaking double-
strand DNA [93,94]. The major dose-limiting organs for radiolabeled PSMA ligands seem
to be salivary glands and kidneys [95,96]. The high uptake of PSMA in salivary glands
does not seem to correspond to a high level of protein expression [97]. In salivary glands,
the mechanism of uptake of PSMA is poorly understood. A recent study showed focally
limited expression of PSMA to intercalated ducts in submandibular glands and concluded
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that high tracer accumulation must be mediated by a PSMA independent mechanism [97].
Although astrocytes express PSMA in the human brain [98], PSMA targeted imaging does
not show prominent brain uptake in a normal brain because radiolabeled PSMA ligands
do not cross an intact blood-brain barrier. Increased permeability of the blood-brain barrier,
e.g., due to benign pathologies or less frequent brain metastases of prostate cancer, can
lead to higher uptake of PSMA-radiotracer [99].

Cancers 2021, 13, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 3. Example showing the potential of PSMA PET-CT imaging in detecting local recurrence 
of prostate cancer. Coronal (A) and axial (B) views of 68Ga-PSMA PET-CT demonstrate a recurrent 
right peripheral Gleason 5 + 5 carcinoma in a previously irradiated prostate (white arrow). The 
bladder (yellow arrow) is well visible. T2-weighted magnetic resonance imaging (C) indicates the 
presence of a PI-RADS (Prostate Imaging Reporting and Data System) grade 5 lesion or clinically 
significant cancer (white arrow) in the same area. Image: H. Minn, Turku PET Centre. 

3.2. PSMA Targeted Therapy Using Radiolabeled Small-Molecule Ligands or Antibodies in 
Prostate Cancer 

PSMA can be targeted by small-molecule ligands and antibodies (Ab) labeled with 
radionuclides [91] (Figure 1B,C). The most promising classes of PSMA inhibitors are urea-
based low molecular weight ligands [91]. Czerwińska et al. [92] have extensively reviewed 
different radioligands evaluated in prostate cancer. Urea-based agents, such as PSMA-617 
and PSMA-I&T (I&T indicating imaging and therapy) radiolabeled with lutetium-177 
(177Lu) have been evaluated as therapy ligands for metastatic prostate cancer patients. 
177Lu is a β--emitting radionuclide (half-life 6.7 days), which by emitting a beta particle 
(maximal tissue penetration 2 mm, maximum energy 0.5 MeV), induces cell death by 
breaking double-strand DNA [93,94]. The major dose-limiting organs for radiolabeled 
PSMA ligands seem to be salivary glands and kidneys [95,96]. The high uptake of PSMA 
in salivary glands does not seem to correspond to a high level of protein expression [97]. 
In salivary glands, the mechanism of uptake of PSMA is poorly understood. A recent 
study showed focally limited expression of PSMA to intercalated ducts in submandibular 
glands and concluded that high tracer accumulation must be mediated by a PSMA inde-
pendent mechanism [97]. Although astrocytes express PSMA in the human brain [98], 
PSMA targeted imaging does not show prominent brain uptake in a normal brain because 
radiolabeled PSMA ligands do not cross an intact blood-brain barrier. Increased permea-
bility of the blood-brain barrier, e.g., due to benign pathologies or less frequent brain me-
tastases of prostate cancer, can lead to higher uptake of PSMA-radiotracer [99]. 

177Lu-PSMA-617 is a small molecule that binds with high affinity to the enzymatic 
site of PSMA enabling highly targeted delivery of β—radiation. 177Lu-PSMA-617 therapies 
seem promising to men with metastatic castration-resistant prostate cancer (mCRPC) (Fig-
ure 4A–D). A comprehensive meta-analysis of 16 studies, including a total of 671 mCRPC 
patients demonstrated the safety and efficacy of 177Lu-PSMA-617 [100]. The results 
showed that almost half (46%) of patients had over 50% reduction of PSA and the toxicity 
profile was acceptable. PSMA targeting radioligands are investigated in several ongoing 
trials (Table 1). Results of the randomized multicenter phase II trial TheraP show more 
PSA responses with 177Lu-PSMA-617 therapy when compared to cabazitaxel treatment in 
mCRPC [101]. Fewer grade 3 and 4 toxicities were observed with 177Lu-PSMA-617 therapy 
when compared to cabazitaxel treatment. Importantly, the first randomized phase III trial 

Figure 3. Example showing the potential of PSMA PET-CT imaging in detecting local recurrence of
prostate cancer. Coronal (A) and axial (B) views of 68Ga-PSMA PET-CT demonstrate a recurrent right
peripheral Gleason 5 + 5 carcinoma in a previously irradiated prostate (white arrow). The bladder
(yellow arrow) is well visible. T2-weighted magnetic resonance imaging (C) indicates the presence
of a PI-RADS (Prostate Imaging Reporting and Data System) grade 5 lesion or clinically significant
cancer (white arrow) in the same area. Image: H. Minn, Turku PET Centre.

177Lu-PSMA-617 is a small molecule that binds with high affinity to the enzymatic
site of PSMA enabling highly targeted delivery of β—radiation. 177Lu-PSMA-617 therapies
seem promising to men with metastatic castration-resistant prostate cancer (mCRPC)
(Figure 4A–D). A comprehensive meta-analysis of 16 studies, including a total of 671
mCRPC patients demonstrated the safety and efficacy of 177Lu-PSMA-617 [100]. The results
showed that almost half (46%) of patients had over 50% reduction of PSA and the toxicity
profile was acceptable. PSMA targeting radioligands are investigated in several ongoing
trials (Table 1). Results of the randomized multicenter phase II trial TheraP show more
PSA responses with 177Lu-PSMA-617 therapy when compared to cabazitaxel treatment
in mCRPC [101]. Fewer grade 3 and 4 toxicities were observed with 177Lu-PSMA-617
therapy when compared to cabazitaxel treatment. Importantly, the first randomized phase
III trial VISION now demonstrates both overall survival benefit and better radiographic
progression-free survival with 177Lu-PSMA-617 treatment when compared to the best
standard of care in mCRPC [4]. Many large, randomized phase III trials are currently
ongoing, both in hormone naïve and mCRPC to define the role of this therapy in prostate
cancer (Table 1). Given the crosstalk between PSMA and AR signaling pathways, an
interesting phase III PSMAddition trial is evaluating the combination of AR signaling block
(castration plus standard of care androgen receptor directed therapy) and 177Lu-PSMA-617
(6 cycles) as a first-line therapy for hormonal naïve metastatic prostate cancer (Table 1,
NCT04720157). Another interesting setting is an ongoing randomized multicenter phase II
trial investigating the efficacy of two cycles of 177Lu-PSMA-617 upfront after the initiation
of castration, followed by docetaxel chemotherapy in hormone naïve metastatic prostate
cancer patients (Table 1, NCT04343885).
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Table 1. Registered therapeutic interventional clinical trials targeting PSMA in prostate cancer.

Theranostics in Hormone Sensitive Prostate Cancer

Radioactive
Compound Ab/Ligand Regimen Combination Phase Enrollment NCT

Number
177Lu PSMA-I&T First Line Feasibility Trial 5 NCT04297410
64Cu DOTA-TLX592 First Line Early Phase I 15 NCT04726033
177Lu PSMA-617 First Line Phase I & II 20 NCT04430192
177Lu PSMA-I&T First Line Phase II 58 NCT04443062
177Lu PSMA-617 First Line Docetaxel Phase II 140 NCT04343885
177Lu PSMA-617 First Line Antiandrogen Phase III 1126 NCT04720157

Theranostics in Castrate-Resistant Prostate Cancer

Radioactive
Compound Ab/Ligand Regimen Combination Phase Enrollment NCT

Number
225Ac J591 Later Early Phase I 18 NCT04576871
225Ac Not Stated Later Early Phase I 20 NCT04225910
227Th PSMA-TTC Later Phase I 157 NCT03724747
177Lu PSMA-617 Later Olaparib Phase I 52 NCT03874884
177Lu EB-PSMA-617 Later Phase I 30 NCT03780075
225Ac PSMA-617 Later Phase I 30 NCT04597411
177Lu PSMA-617 Later Pembrolizumab Phase I 43 NCT03805594
177Lu CTT1403 Later Phase I 40 NCT03822871
225Ac J591 Later Phase I 31 NCT03276572
177Lu FC705 Later Phase I 30 NCT04509557
177Lu PSMA-617 Later Phase I & II 10 NCT03828838
177Lu PSMA-617 Later Pembrolizumab Phase I & II 37 NCT03658447
177Lu PSMA-617 Later Phase I & II 46 NCT03042468
177Lu PSMA-R2 Later Phase I & II 96 NCT03490838
225Ac J591 Later Phase I & II 105 NCT04506567
177Lu PSMA-I&T Post Doce or AA Phase II 30 NCT04188587
177Lu PSMA-617 Post Doce or AA Phase II 210 NCT03454750
177Lu PSMA-617 Post-Doce Phase II 201 NCT03392428
177Lu PSMA-617 Pre-Doce Phase II 200 NCT04663997
177Lu PSMA-617 Pre-Doce Enzalutamide Phase II 160 NCT04419402

131I MIP-1095 Pre-Doce Enzalutamide Phase II 175 NCT03939689
177Lu PSMA-617 Pre-Doce BS/BSOC Phase III 495 NCT04689828
177Lu PNT2002 Pre-Doce Phase III 415 NCT04647526

Bispecific Antibodies in Castrate-Resistant Prostate Cancer

Targets Combination Regimen Phase Enrollment NCT
Number

PSMA & CD3 Later Phase I 35 NCT02262910
PSMA & CD3 Later Phase I 72 NCT04740034

PSMA & CD3
Pembrolizumab, Etanercept,

Immunomodulating Agent or
Monotherapy

Later Phase I 288 NCT03792841

PSMA & CD3 Later Phase I 86 NCT04104607

PSMA & CD3 Enzalutamide, Abiraterone or AMG
404 (PD1-inhibitor) Pre-Doce Phase I 105 NCT04631601

PSMA & CD28 Cemiplimab Later Phase 1 & 2 123 NCT03972657

Chimeric Antigen Receptor (CAR) Cells in Castrate-Resistant Prostate Cancer

CAR Cells Regimen Targeting Phase Enrollment NCT
Number

PSMA-targeted CAR NK Later Prostate Cancer Early Phase I 9 NCT03692663
PD-1-insensitive PSMA-targeted CAR T Later Prostate Cancer Phase I 18 NCT04768608
TGFβ-insensitive PSMA-targeted CAR T Later Prostate Cancer Phase I 50 NCT04227275

PSMA-targeted CAR T Co-expressing LIGHT Later Prostate Cancer Phase I 12 NCT04053062
TGFβ-insensitive PSMA-targeted CAR T Later Prostate Cancer Phase I 18 NCT03089203

PSMA-targeted CAR T Later Prostate Cancer Phase I 13 NCT01140373
PSMA-targeted CAR T Later Prostate Cancer Phase I 40 NCT04249947

PSMA-targeted CAR T Later PSMA-positive
Solid Tumors Phase I 35 NCT04633148

PSMA-targeted CAR T Later PSMA-positive
Solid Tumors Phase I & II 100 NCT04429451
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Table 1. Cont.

Antibody Drug Conjugates in Castrate-Resistant Prostate Cancer

Molecule Regimen Phase Enrollment NCT
Number

PSMA-specific Antibody Linked to Monomethyl Auristatin E Later Phase I 10 NCT01414296
PSMA-specific Antibody Covalently Conjugated to Two

Microtubule Disrupting Toxins Later Phase I 76 NCT04662580

PSMA-specific PSMA Antibody Linked
to Monomethyl Auristatin E Later Phase II 9 NCT02020135

Vaccine

Description Regimen Phase Enrollment NCT
Number

RsPSMA Protein Vaccine with Alhydrogel Adjuvant Later Phase I 14 NCT00705835
TENDU Vaccine First Line Phase I 18 NCT04701021

Vaccine-based Immunotherapy Regimen (PrCa VBIR) Later Phase I 62 NCT02616185
PSMA Peptide-pulsed Autologous PBMC Vaccine Plus

Interleukin-12 Later Phase II 13 NCT00015977

AA = Antiandrogen, Ab = Antibody, BS/BSOC = Best supportive/Best standard of care, NCT Number = The National Clinical Trial number.
Information was compiled by searching the ClinicalTrials.gov. The search was conducted under ‘Condition or disease’ of ‘Prostate cancer’
using ‘PSMA’ as ‘Other terms’ on 7 March 2021. All interventional trials using PSMA as a therapeutic target with reported statuses ‘Active,
not recruiting’, ‘Not yet recruiting’, and ‘Recruiting’ are presented in the table.

Actinium-225 (225Ac), thorium-227 (227Th), and copper-64 (64Cu) are currently evalu-
ated in phase I trials as alternative isotopes for radiotherapy. As opposed to 177Lu, 225Ac,
and 227Th decay alpha particles with a shorter emission path of only a few cells and high lo-
cal cell kill caused by higher energy compared to β-emitting 177Lu and 64Cu [94]. Seventeen
chemotherapy-naïve mCRPC patients were treated with 225Ac-PSMA-617, resulting in a
≥90% decline in serum PSA in 82% of patients, including 41% of patients with undetectable
serum PSA who remained in remission 12 months after therapy [102]. In a pilot study
tandem therapy with low-activity 225Ac-PSMA-617 and full-activity 177Lu-PSMA-617 was
safe, generally well-tolerated, and showed efficacy in late-stage mCRPC patients after
insufficient response to 177Lu-PSMA-617 monotherapy [103]. Additionally, several small-
molecule ligand and antibody alternatives to PSMA-617 and PSMA-I&T are being tested
(Table 1). Moreover, other promising ligands and radionuclides that show potential to
attain greater efficacy are being presented or already have entered clinical trials [104–106].
A randomized phase II open-label study (Table 1, NCT03939689) is investigating a radio-
conjugate 131I-1095, for delivering iodine cytotoxicity selectively to the PSMA-expressing
prostate cancer cells, in combination with enzalutamide in patients with mCRPC. Eligible
criteria allow the inclusion of chemotherapy-naïve patients progressing under abiraterone.
Another interesting setting is evaluating the efficacy of 177Lu-PSMA-I&T as a first-line
treatment for oligometastatic prostate cancer relapse after prior surgery or external radical
radiotherapy for local disease (Table 1, NCT04443062).

Radiolabeled antibodies targeting PSMA, such as 177Lu-J591 have shown promising
activity in a phase II clinical trial [107]. Treatment with another antibody-based radioligand,
227Thorium-PSMA-TTC is currently in phase I (Table 1, NCT03724747). Ludotadipep
(177Lu-FC705) is currently in phase I and contains a PSMA binding motif as well as an
albumin-binding site that is thought to allow higher concentrations in the target tissue with
reduced systemic side effects (Table 1, NCT04509557).
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3.3. Other PSMA Targeting Therapeutic Strategies under Evaluation in Prostate Cancer

Several alternative approaches to treat prostate cancer by targeting PSMA have been
tested in preclinical models and early phase clinical trials. Docetaxel nanoparticles targeting
PSMA have been evaluated in a phase II study in chemotherapy naïve mCRPC patients,
and both the PSA responses and the measurable disease responses were observed [108]. A
prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent
sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphatase (SERCA) pump
inhibitor thapsigargin was promising in mouse xenograft models [109], but a thapsigargin-
based PSMA-activated prodrug evaluated in a phase I study showed only a modest
activity [110]. An antibody-drug conjugate (ADC) consisting of a humanized anti-PSMA
monoclonal antibody conjugated to a toxin disrupting microtubules has been evaluated
in a phase II study after progression with abiraterone or enzalutamide [111] (Figure 1D).
In patients, a decline of circulating tumor cells (CTCs; ≥50%) was seen in 78% of patients,
and a decline of PSA (≥50%) in 14%. Both CTC and PSA responses were more common in
patients with high PSMA measured from CTCs. Overall, 51.3% of the subjects reported at
least one serious adverse effect, the most common ones being dehydration, hyponatremia,
and febrile neutropenia [111].

Bispecific antibodies recognize tumor antigen and help T cell recognition by also
binding to CD3 on T cells (Figure 1E). Costimulatory CD28-bispecific antibodies can
further enhance the antitumor activity of CD3-bispecific antibodies [112]. In the first-
in-human study of a bispecific T-cell engager, PSMA and CD3 targeting pasotuxizumab
(AMG 212) generated dose-dependent PSA responses in the cohort receiving intravenous
administration [113]. The maximum tolerated dose was not determined because a sponsor
change stopped the intravenous cohort. Interestingly, 1 of the 2 long-term responders in the
16 subject cohort had received earlier 177Lu radioligand therapy with no response. Several
ongoing trials are now studying the role of bispecific antibodies that recognize PSMA and
CD3 or CD28 (Table 1).

Engineered immune cells have been developed to treat prostate cancer [114] (Figure 1F).
Early phase I trials have been reported as ongoing and are evaluating the safety and the
potential of chimeric antigen receptor (CAR) T cells [115] (Table 1). In a phase I dose-
escalation study, five mCRPC patients received chemotherapy conditioning and were
treated with PSMA-targeted CAR T cells with a continuous infusion of low-dose inter-
leukin 2 (IL-2) [116]. Two of the patients exhibited partial response along with 50% or
70% of PSA reduction and a third patient had a minor response. Plasma IL-2 levels were
depleted by engrafted T cells, and this was suggested to restrain responses. Anti-PSMA or
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anti-CAR toxicities were not observed [116]. In a phase I dose-escalation study (Table 1,
NCT04053062), the safety and efficacy of PSMA-CAR T cells are evaluated in 12 mCRPC
patients. Another single-arm phase I study (Table 1, NCT03089203) is evaluating the safety
and feasibility of dual PSMA-specific/TGF-resistant CAR-modified autologous T cells
(CART-PSMA-TGFβRDN cells) without (cohort 1 and cohort 2) and with (cohort 3) intra-
venous cyclophosphamide in 18 mCRPC patients. Cohorts 1 and 2 allow the maximum
tolerated dose of CART-PSMA-TGFβRDN cells to be identified, while cyclophosphamide
in cohort 3 before CAR T cells is used as conditioning chemotherapy. New approaches
to design CAR T cells might increase possibilities to develop efficient PSMA-based T cell
therapies [117].

TARP is a nuclear protein expressed in prostate and breast cancer cells [118]. In a
pilot study, 29 subjects were assigned to receive three different doses of a PSMA and TARP
peptide vaccine with poly IC-LC adjuvant [119]. No adverse effects of grade 3 or higher
were observed and as a secondary objective, PSA doubling did not occur during the mean
458-day follow-up for 10 out of 29 subjects [119]. Including more than one target antigen in
one cancer vaccine may be a valid approach due to the heterogeneity of prostate cancer. In
conclusion, several PSMA targeted approaches in addition to radioligands to treat prostate
cancer have been tested preclinically and shown promise in early phase clinical trials,
but randomized clinical data supporting efficacy is still pending. In future, one potential
approach to better treatment outcomes could be to combine PSMA ligand therapy with
other therapies that do not have co-toxicity.

3.4. Determinants of Sensitivity and Resistance to PSMA Targeting

Finding predictive factors for the sensitivity and resistance for PSMA-directed tar-
geting is important. Patients treated with 177Lu-PSMA-617 with low PSMA expression
by imaging have shorter survival compared to ones without PSMA-low metastases, sug-
gesting that PSMA expression may predict response and be associate with outcomes in
patients receiving 177Lu-PSMA-617 therapy [120]. However, many patients with PSMA-
positive prostate cancer do not respond to 177Lu-PSMA-617. Recently, several studies have
demonstrated that some patients with prostate cancer have germline and/or somatic muta-
tions in DDR genes in their tumors [121–123], most commonly targeting the BRCA2 gene,
which associates with poor prognosis and more aggressive disease [124,125]. Other most
frequently mutated DDR genes in prostate cancer are CHEK2, ATM, and BRCA1 [121–123].
The prevalence of germline DDR mutations in primary prostate cancer is approximately
11% [121], whereas in mCRPC above 20% of patients have either germline or somatic DDR
mutations in their tumors [122,123]. DDR is an essential pathway for the survival of both
malignant and normal prostate cells after DNA damage. Paschalis et al. [81] reported
that deleterious DDR aberrations are associated with the increased expression levels of
PSMA in mCRPC patients. This suggests that the biological consequences of deleteri-
ous aberrations in DDR genes may promote, as one factor, the overexpression of PSMA,
and putatively regulate sensitivity to PSMA-targeting therapeutics. Mechanisms behind
the putative crosstalk between DDR pathways and PSMA are not well understood and
warrants further mechanistic studies. Preclinical in vivo data suggests some candidate
mediators of resistance to PSMA-targeting radioligands [126], but the role of these and
other putative factors in patients should be investigated. Moreover, prospective studies
evaluating the association between genomic changes in DDR genes and putative other
factors in the connection with PSMA expression as well as in the connection with sensitivity
to PSMA-targeting theranostics are needed.

4. Other Radioligands and Targets in Prostate Cancer in Comparison with PSMA
Based Targeting
4.1. Radioligands Detecting Dependencies on Metabolic Pathways

Altered glucose metabolism, including increased uptake of glucose and a preference
for aerobic glycolysis instead of oxidative phosphorylation even in the presence of oxygen,
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is considered one of the most extensively characterized metabolic hallmarks of many
cancers [127]. However, 18F-fluorodeoxyglucose (18F-FDG) shows typically only a low
uptake in prostate cancer due to slow tumor growth especially in the early stages of the
disease [128]. Interestingly, PSMA-low prostate tumors with neuroendocrine features
have been suggested to express high levels of glucose transporters and hexokinases, and
due to increased uptake of glucose, 18F-FDG-PET could be an efficient imaging method
for these prostate cancers [129–132]. The same phenomenon is seen in neuroendocrine
tumors of gastrointestinal origin when they show aggressive growth patterns and thus they
warrant more studies to evaluate the potential of 18F-FDG for detecting some subtypes of
prostate cancer. 18F-FDG might also have a role together with PSMA-imaging in selecting
patients for PSMA targeted therapy. MCRPC patients with discordant imaging findings
in metastases with high 18F-FDG uptake with low or non-existent PSMA-uptake are not
considered candidates for molecular radiotherapy [133].

Radiolabeled choline was until recently the most studied PET-CT tracers before PSMA
became in Europe the predominant choice for molecular imaging of prostate cancer. Choline
PET-CT imaging demonstrated its clinical value by showing a high accuracy for restaging
patients with biochemical relapse after radical prostatectomy. Choline PET-CT imaging
is based on detecting increased lipid biosynthesis and expression of choline in prostate
cancer cells [134]. Choline is an essential nutrient for all cells as well as prostate cancer
cells because choline has a function in the biosynthesis of the membrane phospholipids. In
a meta-analysis of 609 patients, 18F-choline PET-CT showed a pooled sensitivity of 0.62,
and specificity of 0.92 for detecting pelvic lymph node metastases, and more patients had
positive findings in comparison to bone scintigraphy [135]. The specificity for primary
staging was not optimal due to high tracer uptake in prostate hyperplasia [136]. However,
68Ga-PSMA-PET-CT has overall better detection rates in prostate cancer patients compared
to 18F-choline or 11C-choline PET-CT [137–140].

11C-acetate is a PET tracer that exploits the upregulation of fatty acid synthase in
prostate cancer. Acetate is a naturally occurring substrate for fatty acid synthesis in
acetyl-CoA form. Watt et al. [141] have showed increased fatty acid uptake and significant
lipidomic remodeling in human prostate cancer. Their results confirmed previously showed
findings that changes in fatty acid uptake are explained, at least in part, by upregulation of
the fatty acid transporter CD36, which could be a potential target in prostate cancer. Lipid
metabolism has also been suggested to play a crucial role in the metastasis process [142].
However, in prostate cancer patients the diagnostic performance was better for 68Ga-PSMA-
11 PET than 11C-acetate PET in detecting metastatic lesions [143].

Recent research suggests that alterations in and increased dependency on glutamine
metabolisms might be an important hallmark of certain cancers [127]. Glutamine tracers
11C-Glutamine and 18F-fluoroglutamine have shown potential for human use in cerebral
gliomas [144]. Cohen et al. [145] demonstrated PET imaging of glutamine metabolism in a
clinical trial of metastatic colorectal cancer using 11C-Glutamine and 18F-FSPG (18F-(S)-4-(3-
fluoropropyl)-L-glutamic acid) in four patients without toxicity or observed adverse events.
Park et al. [146] published the clinical evaluation of 18F-FSPG for PET imaging in 10 patients
with newly diagnosed and 10 patients with recurrent prostate cancer demonstrating that
18F-FSPG is a promising tumor imaging agent for PET with high a detection rate and a
favorable biodistribution. It has been suggested that targeting the glutamine metabolism
might also be a potential treatment for numerous types of cancers, including prostate
cancer [147], but more understanding of glutamine metabolism in the context of prostate
cancer is needed. Amino acid metabolism and transport systems, such as ASCT2 or LAT
transporter, are also upregulated in prostate cancer [148–150]. Both synthetic and natural
radiolabeled amino acids have been utilized for prostate cancer imaging. One of the
most extensively investigated for prostate cancer is FACBC (Fluciclovine; anti-1-amino-
3-18F-fluorocyclobutane-1-carboxylic acid) which is a synthetic analog of the amino acid
L-leucine transported into cells via amino acid transporters [150,151]. However, it seems
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that PSMA-PET is superior compared to 18F-fluciclovine-PET for detecting biochemical
recurrence in prostate cancer [152].

18F-NaF PET/CT has shown promise in detecting bone metastases and has been
suggested to, e.g., have a role in the follow-up of therapy responses in bone predominant
metastatic disease, but the obvious disadvantage is that its diagnostic power is limited to
bone metastases only [153]. Uptake in non-cancer lesions in bone and lack of added clinical
value compared to bone scintigraphy may limit the use of 18F-NaF PET/CT in clinical
practice [154]. Some discordance of metastatic bone lesions have been noted between PSMA
and NaF-imaging and might be related to the progression of the disease from castration
sensitive to resistant forms of the disease [155,156]. Currently, it is not known whether
metastatic prostate cancer patients have significant clinical benefit from NaF-imaging
e.g., in case of oligometastatic disease or in cases of false-positive rib findings commonly
occurring in PSMA imaging. Zhou et al. [157] showed in a meta-analysis that PSMA
PET/CT performed insignificantly better in per-patient sensitivity and specificity in the
detection of bone metastases compared to NaF PET/CT but NaF was superior to PSMA-
PET/CT in per-lesion specificity. In conclusion, PSMA-PET seems superior compared
to many metabolic radioligands tested in prostate cancer although the potential of some
ligands such as 18F-FDG-PET should be evaluated in some subtypes of prostate cancers
and PSMA-low prostate tumors.

4.2. Other Radioligands and Theranostics Targeting Cell Surface Molecules or Receptor Functions
in Tumor Microenvironment or in Cancer Cells

Bombesin receptors (gastrin-releasing peptide receptors, GRPRs) are G-protein cou-
pled receptors that are highly overexpressed in several human tumors, such as prostate
cancer, lung cancer (small-cell and non-small-cell), breast cancer, and renal cancer [158], in
line with PSMA are amenable for theranostic use [159]. Bombesin increases the growth of
human prostate cancer cells and activates AR [160,161]. Kähkönen et al. [162] have demon-
strated that 68Ga-labeled bombesin (68Ga-RM2; BAY86-7548) had high cancer-binding
specificity and significantly higher uptake in prostate cancer than benign tissue. 68Ga-RM2
was also well-tolerated. 68Ga-RM2 was also promising in detecting biochemical recur-
rence [163]. However, high interindividual variability of agreement between the uptake of
this radioligand and histopathology has been observed [164]. In a study comparing 68Ga-
PSMA-11 with 68Ga-RM2, no PSMA-negative patients showed RM2-accumulation [165].
Both 68Ga-PSMA-11 and 68Ga-RM2 identified the same cases of local recurrence, but 68Ga-
RM2 scans were negative in some of the patients with PSMA-positive bone or lymph
node metastases. 68Ga-RM2 scans did reveal some additional metastatic bone lesions
but did not affect the line of treatment [165]. Theranostic 177Lu-RM2 therapy was well
tolerated in mCRPC patients with the pancreas being the critical organ [166]. Interestingly,
heterodimeric 177Lu-radiopharmaceuticals simultaneously targeting PSMA and Bombesin
(Lu-DOTA-iPSMA-Lys-BN) have been synthesized and shown to be taken up by human
PC3 and LNCaP prostate cancer cells [167]. Dual targeting might be valuable due to the
heterogenic nature of metastatic cancers.

Cancer-associated fibroblasts (CAFs) are important non-mutated cellular components
of the tumor microenvironment modulating angiogenesis, cancer metastasis, and therapy
responses [168]. CAFs express fibroblast activation protein (FAP) that can be targeted
with 68Ga-radiolabeled quinoline-based inhibitors of FAP (FAPI) [169,170]. 68Ga-FAPI
has shown promise in detecting metastasis of various cancer types, including PSMA-
negative prostate cancer metastases [169,170]. In conclusion, the potential of 68Ga-RM2
and 68Ga-FAPI in detecting PSMA-negative prostate cancer warrants further research.

5. Conclusions and Future Perspectives

Improved molecular imaging methods for prostate cancer have now emerged to
guide treatment. First larger prospective clinical trials have been reported and support
the use of PSMA-based PET imaging to detect prostate cancer metastases, resulting in
FDA approval of 68Ga-PSMA-11 for this indication at the end of 2020. Future challenges
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with imaging approaches to optimize molecular therapies include uneven distribution and
implementation of technologies, lack of proper validation, and inconsistent terminology
in quantitative imaging biomarkers [171]. Tumor-specific (epi)genetic cues likely modify
the dependencies of cancer cells on particular metabolic and other pathways, suggesting
that optimal use of imaging ligands can depend on individual factors of the tumor. Thus,
future studies should include the analyses of (epi)genetic and proteomic information of
individual tumors when evaluating imaging ligands.

Results of a recently reported randomized phase III trial of 177Lu-PSMA-617 compared
to the standard of care prove the efficacy of PSMA-targeting in metastatic prostate cancer
and highlight the potential of PSMA as a target for molecular radiotherapy [4]. A variety
of different therapeutic approaches based on PSMA have been tested. However, they all
more or less rely on the same rationale that PSMA specifically tags malignant prostate cells,
and this can be exploited by guiding anti-tumor agents or cells to the PSMA expressing
cancer cells. The correlation between PSMA expression and tumor grade as well as preclin-
ical evidence hints that PSMA has tumorigenic functions, but it is not known how much
the inhibition of PSMA function accounts for the effects observed with PSMA-targeted
therapeutics, including radioligands and toxins, in patients. Nevertheless, mechanisms
described earlier reveal several other potential therapeutic targets in prostate cancer, in-
cluding inhibition of enzymatic activity or downstream targets of mGluRs, or PI3K-Akt
signaling. AR signaling and PSMA-connected PI3K-AKT signaling may also upregulate
each other when inhibited [64]. Combining androgen blockade with simultaneous targeting
of PSMA-associated Akt activation should intercept one path to survival and castration re-
sistance. Currently known cytoplasmic protein interactions of PSMA have also interesting
interconnecting mechanisms that may present future targets and search for other putative
novel interactors and molecular mechanisms regulated by PSMA in prostate cancer context
is warranted. Co-operating factors and targetable vulnerabilities in PSMA-positive cell
models could be searched after with CRISPR-Cas9 knockout screens, for example.

DDR aberrations are associated with higher PSMA expression levels in prostate can-
cer [81]. Poly (ADP-ribose) polymerase (PARP) inhibitors target the cancer cells with DDR
mutations and subsequent accumulation of double-stranded breaks, and simultaneous
radioligand treatment could have a synergistic effect [172]. Some PSMA antibodies are
endocytosed and may release a linked therapeutic agent to the cytoplasm, which could
allow the transport of larger molecules or simply reduce systemic effects. Alternatively, a
PSMA-antibody-PARP conjugate could reduce the systemic adverse effects of conventional
therapy and allow for higher concentrations in the target cells. Beneficial synergism may
also occur when some other components of the DDR pathway are inhibited in combination
with radioligand irrespectively of DDR mutation status of the tumor.

ADT upregulates PSMA expression [76]. The scheduling of PSMA homing therapies
should be considered based on PSMA regulation and possibly androgen blockade lead-in
doses could enhance the efficacy of PSMA targeting. A better understanding of inter- and
intratumor heterogeneity of PSMA expression is important for the successful development
of therapeutics targeting PSMA and developing optimal combinations. More detailed
characterization of the regulators of PSMA expression and biological functions in prostate
cancer is also of utmost importance for designing rational combination therapies. The first
PSMA-based therapeutics are now likely to soon enter as a treatment option included in the
standard clinical care of metastatic prostate cancer. The first phase III level evidence shows
efficacy with 177Lu-PSMA-617 for heavily pretreated mCRPC patients [4], but the ongoing
trials are evaluating PSMA-targeting theranostics for castration naïve metastatic prostate
cancer compared to the current standard of care and may bring these agents into use as
first-line therapy (Table 1). A deeper understanding of the determinants of sensitivity and
mechanisms of resistance to the PSMA-based therapeutics is pivotal to improve the efficacy
of these promising therapeutics. Recent advances in imaging and therapies put us a step
closer to the chances of curing metastatic prostate cancer.



Cancers 2021, 13, 2244 17 of 24

Author Contributions: Writing—original draft preparation, A.H., V.V., M.S.; writing—review and
editing, J.K., H.M., T.J.G.; visualization—Figures 1 and 2, V.V.; Figures 3 and 4, H.M., J.K.; supervision,
H.M., M.S.; project administration, M.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by grants for M.S. from the Academy of Finland and Finnish
Medical Foundation; and V.V was funded by the Turku Doctoral Programme of Molecular Medicine
TuDMM.

Conflicts of Interest: A.H., V.V. and T.J.G. have nothing to disclose. H.M. has received research
grants from Blue Earth Diagnostics, Philips, Merck and Roche and consultant fees from MSD Finland,
Merck, Janssen Finland, and BMS. M.S. has received support to participate in educational events and
conferences from Novartis, BMS, Pierre Fabre, Lilly and Roche; and received consultant fees from
MSD, BMS, Roche and Ipsen. M.S. is a Scientific Advisor for AQSENS.

References
1. Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent Global Patterns in Prostate Cancer Incidence and

Mortality Rates. Eur. Urol. 2020, 77, 38–52. [CrossRef]
2. Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate cancer: ESMO Clinical

Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1119–1134. [CrossRef]
3. Sartor, O.; de Bono, J.S. Metastatic Prostate Cancer. N. Engl. J. Med. 2018, 378, 1653–1654. [CrossRef]
4. Novartis Announces Positive Result of Phase III Study with Radioligand Therapy 177Lu-PSMA-617 in Patients with Advanced

Prostate Cancer. Available online: https://www.novartis.com/news/media-releases/novartis-announces-positive-result-phase-
iii-study-radioligand-therapy-177lu-psma-617-patients-advanced-prostate-cancer (accessed on 24 March 2021).

5. O’Keefe, D.S.; Su, S.L.; Bacich, D.J.; Horiguchi, Y.; Luo, Y.; Powell, C.T.; Zandvliet, D.; Russell, P.J.; Molloy, P.L.; Nowak, N.J.; et al.
Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene. Biochim. Biophy.
Acta 1998, 1443, 113–127. [CrossRef]

6. Israeli, R.S.; Powell, C.T.; Fair, W.R.; Heston, W.D.W. Molecular Cloning of a Complementary DNA Encoding a Prostate-specific
Membrane Antigen. Cancer Res. 1993, 53, 227–230.

7. Horoszewicz, J.S.; Kawinski, E.; Murphy, G.P. Monoclonal Antibodies to a New Antigenic Marker in Epithelial Prostatic Cells and
Serum of Prostatic Cancer Patients. Anticancer. Res. 1987, 7, 927–935.

8. Rawlings, N.D.; Barrett, A.J. Structure of Membrane Glutamate Carboxypeptidase. Biochim. Biophys. Acta Protein Struct. Mol.
Enzymol. 1997, 1339, 247–252. [CrossRef]

9. Mindy, I.D.; Melanie, J.B.; Leonard, M.T.; Pamela, J. Bjorkman Crystal Structure of Prostate-Specific Membrane Antigen, a Tumor
Marker and Peptidase. Proc. Natl. Acad. Sci. USA 2005, 102, 5981–5986. [CrossRef]

10. Mesters, J.R.; Barinka, C.; Li, W.; Tsukamoto, T.; Majer, P.; Slusher, B.S.; Konvalinka, J.; Hilgenfeld, R. Structure of Glutamate
Carboxypeptidase II, a Drug Target in Neuronal Damage and Prostate Cancer. EMBO J. 2006, 25, 1375–1384. [CrossRef]
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