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Abstract

Nonparametric regression subject to convexity or concavity constraints is increasingly
popular in economics, finance, operations research, machine learning, and statistics.
However, the conventional convex regression based on the least squares loss function
often suffers from overfitting and outliers. This paper proposes to address these two
issues by introducing the convex support vector regression (CSVR) method, which ef-
fectively combines the key elements of convex regression and support vector regression.
Numerical experiments demonstrate the performance of CSVR in prediction accuracy
and robustness that compares favorably with other state-of-the-art methods.
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1 Introduction

Convex regression (CR) is a classic approach to nonparametric regression that builds upon

global concavity or convexity of the regression function (Hildreth, 1954). Since the explicit

piecewise linear characterization of the multivariate model proposed by Kuosmanen (2008),

CR has become an active research field with an increasing number of applications in eco-

nomics, statistics, operational research and related fields (see, e.g., Guntuboyina & Sen,

2018; Johnson & Jiang, 2018). Recent methodological advances in CR include extensions to

quantile-based approaches such as convex quantile regression (Wang et al., 2014; Kuosmanen

et al., 2015) and convex expectile regression (Kuosmanen et al., 2020; Kuosmanen & Zhou,

2021). There has been significant development in the computational tools and algorithms

(see, e.g., Lee et al., 2013; Mazumder et al., 2019; Dai, 2022; Lin et al., 2022).

Overfitting is a longstanding issue in nonparametric methods, including CR. The sub-

gradients fitted by CR can be very large near the boundary of the convex hull of the design

points (Seijo & Sen, 2011; Chen et al., 2020), which can seriously hamper the out-of-sample

predictive power. To alleviate overfitting, (Lim 2014) has proposed to restrict the domain

of the convex hull by imposing additional constraints on the subgradients of the regression

function. Another approach bound subgradients is to impose regularization either in objec-

tive function or constraints, such as the L2-norm Lipschitz regularization (Mazumder et al.,

2019) or the L∞-norm Lipschitz regularization (Balázs et al., 2015).

In the literature on machine learning, support vector regression (SVR) is a well-known

approach firstly introduced by Vapnik (1999). SVR deviates from the linear regression in

that it introduces an ε-insensitive loss function instead of the commonly used L2-norm loss

function, which helps to improve its out-of-sample performance (Vapnik, 1999). Therefore,

SVR has been considered as a robust alternative against outliers and to reduce overfitting

in the context of linear regression.

Thus far, only few studies extend SVR to the context of shape-constrained regression or

frontier estimation. The pioneering work by Wang & Ni (2012) was the first one to consider

nonparametric convexity-constrained support vector regression (henceforth NCCSVR). In

this approach, the Hessian matrix of a nonparametric representor function is constrained to

be positive semidefinite in each observation. The authors transform the shape-constrained
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SVR into a semidefinite programming problem, assuming the regression function to be con-

tinuous and twice differentiable throughout its domain. One notable limitation of NCCSVR

is that it is not applicable for the univariate CR with a single regressor.

Recently, Valero-Carreras et al. (2021) and (Valero-Carreras et al. 2022) relax continu-

ity and convexity assumptions, adapting SVR to the nonparametric estimation of frontier

production and cost functions that envelop all observations. A notable limitation of their

approach is the deterministic nature of the data generating process, which assumes away

any noise in data. This observation motivates us to combine the key elements of both CR

and SVR in a unified framework.

The main objective of the present paper is to improve the out-of-sample predictive power

of CR by alleviating overfitting. To this end, we combine the key characteristics of both

CR and SVR in a new approach referred to as convex support vector regression (CSVR). A

notable difference between NCCSVR by Wang & Ni (2012) and the proposed CSVR approach

concerns the implementation of the convexity constraints: NCCSVR imposes constraints on

the Hessian matrix, whereas CSVR makes use of the inequality constraints known as the

Afriat inequalities (see Kuosmanen, 2008). Using Monte Carlo simulations and two real-

world examples, we show that the proposed CSVR approach yields a smaller mean squared

error (MSE) than other state-of-the-art methods, including the NCCSVR method.

Our secondary objective is to outline how the proposed CSVR approach can be extended

to facilitate the automatic variable selection in applications with high dimensionality. In-

spired by such works as (Bradley & Mangasarian 1998), (Zhao et al. 2009) and (Negahban

& Wainwright 2011), two alternative formulations of LASSO CSVR are considered (LASSO

refers to the least absolute shrinkage and selection operator). This extension further enhances

the linkages between SVR and LASSO that originated in the machine learning literature and

CR that has emerged in econometrics and statistics.

The rest of this paper is organized as follows. Section 2 briefly reviews classical statistics

and machine learning methods for regression problems. We then introduce the new shape-

constrained SVR method, extend it to the Lasso version, and present a graphical illustration

in section 3. Section 4 presents some evidence from Monte Carlo simulations. In the section

5 we experimentally compare CSVR against competing methods on two real-world datasets.

Section 6 presents our concluding remarks.
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2 Preliminaries on regression

2.1 Convex regression

Considering a general nonparametric regression model with a set of observations {(xi, yi)}ni=1

satisfying

yi = f(xi) + εi, for i = 1, . . . , n, (1)

where x ∈ Rd is an observed vector of predictors, yi ∈ R is the response variable, and εi is a

random noise with zero mean. The regression function f : Rd → R in Eq. (1) is unknown but

satisfies certain shape restrictions such as monotonicity, concavity, and homogeneity (see,

e.g., Kuosmanen & Johnson, 2010; Yagi et al., 2020). In this paper we focus exclusively on

the class F of concave function f , that is

F :=
{
f : Rd → R | ∀x1,x2 ∈ Rd, τf(x1) + (1− τ)f(x2) ≤ f(τx1 + (1− τ)x2)

}
.

The basic idea of CR is to find the best fitting function f from a family of continuous

and concave functions F by minimizing the sum of squares of the residuals

min
1

2

n∑
i=1

(yi − f(xi))
2 (2)

s.t. f ∈ F

While problem (2) is the infinite-dimensional multivariate convex regression problem, it

can be equivalently represented by a finite-dimensional quadratic programming (QP) prob-

lem. Following Kuosmanen (2008), we consider the following least squares estimator as the

operational multivariate convex regression model

min
β,α,ε

1

2

n∑
i=1

ε2i (3)

s.t. yi = αi + β
′

ixi + εi ∀i

αi + β
′

ixi ≤ αh + β
′

hxi ∀i, h

where β
′

indicates the transpose of β, and its subscript h is any index of data point not

equal to i. The first constraint of (3) simply restates the regression equation (1) in terms

of a piecewise linear approximation of the true but unknown regression function f , and the
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second constraint enforces concavity of the piecewise linear regression function (reversing

the sign of the inequality imposes convexity). Note that additional monotonicity constraints

could be implemented by restricting the sign of β (e.g., β ≥ 0 for monotonic increasing

and β ≤ 0 for monotonic decreasing functions). Further, imposing α = 0 imposes linear

homogeneity (constant returns to scale). See Kuosmanen et al. (2015) for more detailed

discussion.

Given the optimal solutions (α̂i, β̂i) to problem (3), we can reconstruct the explicit

representor function f̂CR(x) as (Kuosmanen, 2008)

f̂CR(x) = min
i=1,...,n

{
α̂i + β̂

′

ix
}

(4)

However, the estimated coefficients β̂i could be arbitrarily large, particularly near the

boundary of the convex hull of the covariate domain, due to the fact that the feasible set

of problem (3) can be unbounded (see, e.g., Mazumder et al., 2019; Chen et al., 2020).

This may lead to potential overfitting and deteriorate the out-of-sample performance of the

estimated function. Even for the univariate case, the estimated β̂i are also unbounded at

the boundary (Ghosal & Sen, 2017).

To alleviate the overfitting problem in convex regression (3), (Mazumder et al. 2019)

apply the L2-norm Lipschitz regularization on subgradients with a known bound L > 0

to reduce overfitting. For a prespecified L > 0, the class of FL of concave functions with

Lipschitz regularization

FL := {f : Rd → R|f is concave; sup
x∈Rd

‖∂f(x)‖ ≤ L}.

where ‖∂f(x)‖ is the maximum of ‖ · ‖2-norm of vectors in ∂f(x). The corresponding

Lipschitz convex regression (LCR) is then formulated as

min
β,α,ε

1

2

n∑
i=1

ε2i (5)

s.t. yi = αi + β
′

ixi + εi ∀i

αi + β
′

ixi ≤ αh + β
′

hxi ∀i, h

‖βi‖2 ≤ L ∀i

Note that the estimated function f̂LCR can be obtained by inserting the optimal α̂i and

β̂i from (5) to the equation of explicit representor function (4). We can also resort to other
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Lipschitz norms (e.g., ‖ · ‖∞-norm) to address the overfitting problem in convex regression

(Lim, 2014; Balázs et al., 2015). Following (Mazumder et al. 2019), ‖ · ‖2-norm is more

effective than ‖ · ‖∞-norm in avoiding overfitting. However, when the data with high noise,

the outliers and the large variance in the error term could weaken the effectiveness of the

Lipschitz norm approaches in reducing overfitting. Such a gap also motivates this paper

to propose a new convex support vector regression approach and empirically compare the

proposed method with other related approaches in terms of finite sample performance.

2.2 Support vector regression

Support vector regression (SVR) belongs to the class of support vector machines. As a

regression method, it aims to estimate a function f(x) that follows the structural risk min-

imization principle grounded on the statistical learning theory. It gives good generalization

capacity by minimizing the upper bound of the risk (Vapnik, 1999).

SVR has excellent potential to reduce overfitting because the structural risk minimiza-

tion principle makes a trade-off between the prediction accuracy and the complexity of the

regression function. When some unwanted data exit, some parameters in the conventional

regression models may become large to accommodate such outliers. Thus, these models

may suffer from overfitting, while the SVR has good generalization performance as its opti-

mization object function guarantees the flatness of the regression function. Flatness in the

regression model means that one minimizes vector β. Taking into account data errors, one

can introduce the slack variables ξ and ξ∗ and penalty term C. The slack variables can be

used to allow some errors that lie on the outside of the margin ε which refers to soft margin

(Cortes & Vapnik, 1995). Hence we can obtain the regression function by solving the follow-

ing optimization problem

min
β,α,ξi,ξ∗i

1

2
‖β‖22 + C

n∑
i=1

(ξi + ξ∗i ) (6)

s.t. yi − α− β
′
xi ≤ ε+ ξi ∀i

α + β
′
xi − yi ≤ ε+ ξ∗i ∀i

ξi ≥ 0, ξ∗i ≥ 0 ∀i

where C is a prespecified parameter that determines the trade-off between the complexity

of regression function f(x) and the prediction accuracy ε. This corresponds to the most
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commonly adopted ε-insensitive loss function |ξ|ε described by

|ξ|ε =

{
0, if |ξ| ≤ ε;

|ξ| − ε, otherwise.
(7)

for a user-determined nonnegative number ε. A potential benefit of using ε-insensitive loss

function is robustness to outliers because it is less sensitive to noisy inputs. In practice,

the penalty constant C and parameter ε can be chosen based on the user’s experience. It

can also be determined by cross-validation, a standard model selection technique in machine

learning. Furthermore, the estimated support vector function is simply f̂SV R(x) = α+ β
′
x.

3 Combining CR and SVR

3.1 Convex support vector regression (CSVR)

To address the overfitting problem and improve the model robustness, we blend the key ele-

ments of CR and SVR and propose the convex support vector regression (CSVR) approach.

Consider the following quadratic programming problem

min
βi,α,ξ,ξ

∗

1

2

n∑
i=1

‖βi‖22 + C
n∑
i=1

(ξi + ξ∗i ) (8)

s.t. yi − αi − β
′

ixi ≤ ε+ ξi ∀i

αi + β
′

ixi − yi ≤ ε+ ξ∗i ∀i

αi + β
′

ixi ≤ αh + β
′

hxi ∀i, h

ξi ≥ 0, ξ∗i ≥ 0 ∀i

where the first two constraints restrict the error terms into a specified margin, noted as the

maximum error (ε), and consider the possible outliers with the deviation from the margin

as ξi. The third constraint, a system of Afriat inequalities, guarantees the concavity of the

unknown function f . Compared to problem (6), problem (8) is a shape constrained extension

by means of Afriat inequalities. Note that the coefficients βi represent the subgradient of

the concave function f at point xi.

To further investigate the relationship between the CSVR and regularized function esti-
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mation, we rewrite problem (8) as the following equivalent formulation

min
βi,α

n∑
i=1

|yi − αi − β
′

ixi|ε +
A

2

n∑
i=1

‖βi‖22 (9)

s.t. αi + β
′

ixi ≤ αh + β
′

hxi ∀i, h

where A is the tuning parameter, playing a similar role as C. The function | · |ε indicates the

ε-insensitive loss function described by equation (7). Note that the objective function has a

form of loss+penalty ; hence, the parameter A controls the trade-off between loss and penalty.

The standard cross-validation techniques can be used to determine the tuning parameter.

The penalty term in problem (9) is a L2-norm of the subgradient vector, the same as

the penalized convex regression using the norm of the subgradients (Aybat & Wang, 2014;

Lim, 2014; Dai et al., 2022). The ridge penalty shrinks the subgradients towards zero, which

means the regression function will be as flat as possible. This shrinkage can control the

variance of the subgradients, thus helping to alleviate the overfitting problem via the bias-

variance trade-off, especially when many highly correlated variables exist. We will further

study the effect of regularization in the following section.

Using the ε-insensitive loss function also enables a sparse set of support vectors to be

obtained. That is, the number of support vectors increases more slowly than linearly. As an

extended SVR model, the CSVR approach retains this advantage of sparsity. Moreover, the

ε-insensitive loss function is less sensitive to outliers than the quadratic loss function used

in problem (5). CSVR is more robust than conventional CR when there are outliers in the

dataset, therefore, leading to a smaller prediction error than the usual CR; see Section 4 for

simulation evidence. When ε = 0, we can obtain a special case of L1 loss function in problem

(9). Note that the L1 loss function is relatively more robust to outliers than the quadratic

loss function (Alquier et al., 2019).

To derive a similar version to problem (5), letting φε(·) be the ε-insensitive loss function,

problem (9) can be rewritten as fully constrained optimization problem as follows

min
βi,α

n∑
i=1

φε(yi − f(xi)) (10)

s.t. αi + β
′

ixi ≤ αh + β
′

hxi ∀i, h
n∑
i=1

‖βi‖2 ≤ C
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where
∑n

i=1 ‖βi‖2 ≤ C is a L2-norm penalty, and C is a nonnegative tuning parameter. We

note here that the L2-norm penalty used in this study differs from the L2-norm Lipschitz

regularization in (Mazumder et al. 2019). (Mazumder et al. 2019) consider a least square

estimator over a set of convex functions that are uniformly Lipschitz with a known bound (see

problem (5)), whereas problem (10) is ridge regularized. Also, note that we use a different

loss function, whose insensitivity may contribute to the performance of CSVR.

3.2 Lasso CSVR

In addition to L2-norm, we could introduce other regularization methods such as L1-norm to

extend the present CSVR approach. The L1-norm support vector machine was first proposed

by (Bradley & Mangasarian 1998) for solving classification problems. Inspired by this idea,

we briefly describe an extension of CSVR: the Lasso CSVR model for the variable selection

regression analysis. This extension provides an alternative path of extending CSVR to select

variables automatically. The first version of Lasso CSVR replaces the L2-norm penalty in

problem (9) with L1-norm penalty

min
βi,α

n∑
i=1

|yi − αi − β
′

ixi|ε +
A

2

n∑
i=1

‖βi‖1 (11)

s.t. αi + β
′

ixi ≤ αh + β
′

hxi ∀i, h

Similar to the L2-norm penalty, the L1-norm penalty can control the variance of the esti-

mation and improve prediction accuracy. Moreover, the Lasso performs automatic variable

selection, which is not the case for the L2-norm penalty. Although the performance of Lasso

does not uniformly dominate the ridge regression (Tibshirani, 1996), the L1-norm CSVR

appears very promising because the variable selection is increasingly important in modern

data science.

The variable selection aspect of the L1-norm CSVR approach is useful for regression

analysis in the case that there exist no highly correlated variables (see the limitations of L1-

norm penalty in Zou & Hastie, 2005). While the L1-norm penalty can shrink the subgradients

of the function and make the subgradients of irrelevant variables small, it cannot reduce them

to zero exactly. The reason is that selecting variables by regularizing the subgradient βi in

problem (11) with a group sparsity penalty is not an effective way due to the existing of

Afriat inequalities (Xu et al., 2016; Dai, 2022). That is, the small changes to βi in each
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Afrait inequality αi+β
′

ixi ≤ αh+β
′

hxi may not violate the concavity assumption. Therefore,

the L1-norm CSVR approach can make certain coefficients very small but not be zero, and

thus does not necessarily make the representor function (4) sparse.

This motivates us to consider a L∞-regularized Lasso CSVR. As shown in (Zhao

et al. 2009) and (Negahban & Wainwright 2011), the L∞-norm taking the maximum en-

courages all d components of the subgradient βi to be zero simultaneously or to be nonzero

simultaneously. The second version of Lasso CSVR can be formulated as the following

optimization problem

min
βi,α

n∑
i=1

|yi − αi − β
′

ixi|ε +
A

2

n∑
i=1

‖βi‖∞ (12)

s.t. αi + β
′

ixi ≤ αh + β
′

hxi ∀i, h

Compared to the L1-norm penalty, the L∞-norm penalty restricts each subgradient βj,i

with a fixed bound instead of all d components of the subgradient βi. Furthermore, the

L∞-regularized Lasso approach is a special case of the block L1/L∞-regularization when the

number of blocks is n in (Negahban & Wainwright 2011).

3.3 Illustrative example

We proceed to demonstrate how the fitted functions estimated by CSVR and convex regres-

sion are different and illustrate the potential advantages of CSVR in reducing overfitting via

an artificial example. In so doing, we generate 50 observations with yi = 3 + ln(xi) + εi,

where xi is randomly drawn from U(1, 10) and the error term εi is generated independently

from N(0, 0.72). To search the optimal hyperparameters, we resort to the standard fivefold

cross-validation approach (see, e.g., Mazumder et al., 2019; Dai, 2022).

Fig. 1 depicts the fitted functions estimated by CSVR and convex regression. We observe

that both shape-constrained approaches yield piecewise concave lines and can capture the

shape of data points. The fitted convex regression function appears to be more sharper,

while the fitted CSVR functions seem to be relatively smooth, implying the difference in

the loss function. When comparing the approximation errors, CR has a smaller in-sample

error (i.e., MSE = 0.44) in comparison with CSVR. However, a smaller training error may

lead to a larger test error, suggesting that CR is hampered by overfitting, and CSVR can

effectively avoid this problem.
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y

True function
CSVR
CR

Fig. 1. Illustration of the fitted functions estimated by CSVR and convex regression.

We then illustrate the robustness of the estimated CSVR function to the choice of the

tuning parameter C. In Fig. 2, the hyperparameter ε is fixed at 0.1 and C is tuned over

5 values from the set {1, 2, 4, 6, 10}. Note that the optimal hyperparameter C∗ = 6 is

determined by the standard cross-validation approach. It is evidently from Fig. 2 that the

parameter C can reshape the estimated CSVR functions but produce very similar estimated

piecewise-linear curves.

2 4 6 8 10
x

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

y

C = 1
C = 2
C = 4
C * = 6
C = 10

Fig. 2. Illustration of the estimated CSVR functions with different values of C.
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4 Monte Carlo study

Having illustrated the estimated CSVR function, we proceed to investigate the finite sample

performance of the CSVR, CR, SVR with radial basis function kernel, and LCR approaches

in the controlled environment of Monte Carlo simulations. The main objective of our simu-

lations is to examine whether the proposed CSVR approach can better fit the true function

by addressing the overfitting problem.

4.1 Setup

Consider the following data generating processes (DGP) (see, e.g., Valero-Carreras et al.,

2021)

1) DGP I: y = 3 + x0.51 + ε

2) DGP II: y = 3 + x0.21 + x0.32 + ε

3) DGP III: y = 3 + x0.051 + x0.152 + x0.33 + ε

where x1, x2, and x3 are independently and randomly sampled from the uniform distribution

U [1, 10] and the error term ε is drawn from N(0, σ2). For each DGP, we consider 12 different

scenarios with different number of observations (n = 50, 100, 200, 500) and the levels of

noise (σ = 0.5, 1, 2). Each scenario is replicated 50 times to calculate the in-sample and

out-of-sample performances with the mean squared error (MSE) statistic.

Regarding the tuning parameter selection, the optimal hyperparameters (i.e., C and ε)

are determined in the SVR and CSVR approaches by using the fivefold cross-validation

method. Following (Valero-Carreras et al. 2021), the tuning values C and ε are varied from

the multiplier sets {0.1, 0.5, 1, 2, 5} and {0, 0.001, 0.01, 0.1, 0.2}, respectively. For the LCR

approach, as in Mazumder et al. (2019), we employ the one standard error rule in cross-

validation to search the optimal Lipschitz parameter L.

In the following experiments, we resort to the pyStoNED package (Dai et al., 2021) with

the standard solver Mosek (9.2.44). All computations are performed on Aalto University’s

high-performance computing cluster Triton with Xeon @2.8 GHz processors, 1 CPU, and 8

GB RAM per task. The simulation code and data are available at the GitHub repository

(https://github.com/ds2010/CSVR).
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4.2 In-sample performance

We first compare the in-sample performance of CSVR with alternatives. Table 1 reports

the MSE statistic of each approaches with n ∈ {50, 100, 200, 500}, d ∈ {1, 2, 3}, and σ = 1.

Note that the MSEs of NCCSVR in the univariate cases are missing due to the fact that

the NCCSVR approach requires the multidimensional data space (i.e., d ≥ 2) (Wang & Ni,

2012). The optimal hyperparameters in LCR, CSVR, and NCCSVR are prespecified via the

standard cross-validation technique.

Table 1 indicates that CSVR exhibits the lowest values of MSE in almost all scenarios.

Compared to CSVR, LCR has competitive performance in the univariate case (i.e., DGP I),

but its performance deteriorates in multivariate cases.

Compared to the regularized approaches, the traditional CR approach performs poorly

in the multivariate cases (i.e., DGP II and III), even though it is actually quite competitive

in the univariate setting. After restricting the subgradients in CR, the performance in fitting

the true function will be improved as the optimal subgradients cannot take any values for

given feasibility. As expected, the performance of each approach deteriorates as more input

variables or smaller sample sizes are introduced.

Table 1. MSE comparison of different approaches with σ = 1.

DGP n CSVR SVR CR LCR NCCSVR
I 50 0.0644 0.1099 0.0838 0.0673 –

100 0.0384 0.0694 0.0427 0.0377 –
200 0.0209 0.0403 0.0252 0.0192 –
500 0.0086 0.0152 0.0107 0.0080 –

II 50 0.0771 0.1125 0.2193 0.1674 0.1085
100 0.0386 0.0696 0.1270 0.0904 0.0596
200 0.0271 0.0400 0.0829 0.0536 0.0300
500 0.0083 0.0188 0.0341 0.0222 0.0123

III 50 0.0758 0.0994 0.4189 0.3198 0.1543
100 0.0556 0.0788 0.2765 0.2124 0.0883
200 0.0365 0.0484 0.1855 0.1276 0.0453
500 0.0184 0.0274 0.0974 0.0599 0.0188

To assess the robustness of the CSVR approach, we next consider scenarios with different

levels of error variance (i.e., σ) using a fixed sample size n = 500 (see Table 2). As expected,

we observe that the MSE values increase for all methods as the data noise variance increases.
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However, the proposed CSVR approach has the smallest MSEs in all cases and is robust to

the increasing noise. Note that those methods that use the regularization techniques are

more robust to noise than the original CR approach. Overall, CSVR maintains its good

performance in different levels of data noise and dimensions.

Table 2. MSE comparison of different approaches with n = 500.

DGP σ CSVR SVR CR LCR NCCSVR
I 0.5 0.0030 0.0043 0.0031 0.0025 –

1 0.0086 0.0152 0.0107 0.0080 –
2 0.0257 0.0522 0.0392 0.0271 –

II 0.5 0.0038 0.0076 0.0090 0.0066 0.0043
1 0.0083 0.0188 0.0341 0.0222 0.0123
2 0.0214 0.0482 0.1341 0.0755 0.0494

III 0.5 0.0077 0.0114 0.0248 0.0185 0.0070
1 0.0184 0.0274 0.0974 0.0599 0.0188
2 0.0493 0.0642 0.3874 0.1862 0.0671

Compared to other regularized approaches, CSVR is relatively more robust when the

data noise varies from 0.5 to 2 (see Table 2). While the LCR approach can benefit from

the Lipschitz regularization and avoid overfitting, it still uses the squared L2 norm loss

function and thus tends to be sensitive to outliers and heteroscedasticity. However, the CSVR

approach introduces the ε-insensitive loss function inherited from SVR to increase robustness.

For smaller σ values, as shown in Table 2, it seems that NCCSVR may outperform the

proposed CSVR method (i.e. DGP III, σ = 0.5).

Recall that (Wang & Ni 2012) have proposed a similar NCCSVR approach, where they

introduce convexity/concavity into SVR by using the Hessian matrix and then transform it to

a semidefinite programming problem. In contrast, our CSVR approach resorts to the system

of Afriat inequalities to ensure the fitted function to be convex/concave. Moreover, the

NCCSVR approach can be applied to the multivariate cases only (i.e., d ≥ 2) and requires

one more tuning parameter. To further understand the performance difference between

these two similar approaches, we implement the following additional experiment to report

the prediction accuracy.

In previous experiments, we have observed that the variation of the noise σ has a signifi-

cant impact on the MSE values, especially in the cases with small σ. Here we investigate the
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impact of noise variation on these two models’ performance. Fig. 3 depicts the performance

of CSVR and NCCSVR when n = 500, d = {2, 3}, and σ varies from 0.2 to 3. Fig. 3 a)

indicates that the performance of CSVR dominates NCCSVR, whereas Fig. 3 b) shows that

there are tiny differences in the finite sample performances between NCCSVR and CSVR,

but increasing larger differences occur as σ grows. This might suggest that imposing the

Hessian matrix is not as efficient as the system of Afriat inequalities in terms of overfitting

reduction.
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Fig. 3. Illustration of the impacts of noise variation on MSE.

We further investigate the impact of outliers. The additional five outliers are drawn from

the uniform distribution U [90, 100], and the other normal observations are also drawn from

U [1, 10]. For the sake of illustration, we simply consider the instances with n ∈ {50, 100},
d ∈ {2, 3}, and σ = 1. The in-sample MSEs of each scenario are averaged in a total of 50

replications. As expected, Table 3 shows that the CSVR approach performs best among all

compared approaches in terms of prediction accuracy. The Lipschitz norm convex regression

approach described in Mazumder et al. (2019) can also control the impact of outliers and, in

this case, outperforms the conventional SVR approach, which would have better performance

if there were no additional outliers. Furthermore, compared to results reported in Table 1,

the results shown in Table 3 imply that the additional outliers can lead to worse accuracy

for all methods. We also observe that the performance of NCCSVR varies sharply with

the parameters, but this does not happen in CSVR. Moreover, the choice of its kernel

parameter is highly dependent on the values of input data, which might lead to a limitation
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in practical applications. Thus it could be hurt for practitioners to decide the range of the

three parameters used in NCCSVR.

Table 3. MSE comparison of different approaches with additional five outliers.

DGP n CSVR SVR CR LCR NCCSVR
II 50 0.0979 0.1900 0.1948 0.1477 0.1096

100 0.0563 0.1175 0.1154 0.0879 0.0595
III 50 0.0996 0.2251 0.4093 0.1034 0.1556

100 0.0658 0.1115 0.2074 0.0897 0.1065

4.3 Out-of-sample performance

We proceed to investigate out-of-sample performance by considering six scenarios with

d ∈ {2, 3}, σ ∈ {0.5, 1, 2}, and n = 500 for the training set and another 1000 hold-out

observations for the test set. We then replicate each scenario 50 times to obtain an empirical

distribution of the out-of-sample MSE statistic. Note that the in-sample overfitting may

result in low prediction accuracy of the out-of-sample model, and if an estimator is likely

to overfit in multidimensional data space, then it will have a smaller in-sample MSE and a

larger out-of-sample MSE.

The boxplots in Figs. 4 and 5 illustrate the distributions of out-of-sample MSE. When

comparing traditional CR with regularized alternatives, we observe that CR has a relatively

large out-of-sample MSE, which is far more than that of the other regularized approaches.

For instance, the values of out-of-sample MSE for CR are 0.121(±0.342), 0.454(±1.192), and

1.705(±4.300) respectively with d = 2 and σ ∈ {0.5, 1, 2}. To facilitate a comparison of the

most competitive alternatives, we exclude the MSE results for CR from Figs. 4 and 5.
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Fig. 4. Out-of-sample MSE of the four methods with d = 2 and σ ∈ {0.5, 1, 2}.

CSVR performs better than other methods in alleviating the overfitting problem. Com-

pared to the LCR, the three SVR-based approaches seem to perform better in alleviating the

overfitting problem. The ε-insensitive loss function used in SVR-based approaches is more

robust to outliers and large errors than the least squares loss function, which, in turn, helps

to build a robust prediction model as demonstrated in Fig. 5. In the experiments, we also

find that the out-sample-sample performance of LCR deteriorates rapidly as the data noise

increases.
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Fig. 5. Out-of-sample MSE of the four methods with d = 3 and σ ∈ {0.5, 1, 2}.
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5 Experiments with real data

In this section, we apply the proposed approach to two real-world datasets: the Boston

housing data and the NBER-CES manufacturing industry data. Those real datasets have

been used extensively in various fields of economics, econometrics, statistics, and machine

learning for different purposes such as new models test or algorithms benchmarking (see,

e.g., Lin et al., 2011; Wang & Wang, 2013). In both examples below, all hyperparameters

are tuned over from 50 candidate values via the fivefold cross-validation technique, and the

in-sample MSE and out-of-sample MSE for each approach are calculated to compare the

effectiveness in reducing overfitting.

5.1 Boston housing data

This dataset contains housing price information in the Boston area collected from the StatLib

archive.1 The data includes 13 variables with 506 observations.2 Following the commonly

used setting, the variable MEDV is taken as the response variable of interest, and others are

the explanatory variables. The descriptive statistics for all variables are presented in Table

A1.

Table 4 reports the descriptive statistics for the estimated coefficients (i.e., α̂i and β̂i)

of CSVR, LCR, and CR. We omit SVR and NCCSVR here due to the incomparable dual

variable (i.e., β̂i) (see Smola & Schölkopf, 2004). As shown in Table 4, all values of β for

CSVR and LCR lie roughly between -0.5 and 0.5, whereas those values for CR lie in a larger

interval, which can be a symptom of overfitting. We also note that although both CSVR

and LCR have small β, LCR obtains coefficients even a bit smaller than CSVR. Further-

more, LCR produces a more flat function f , but that does not mean a better performance

automatically.

To evaluate the prediction accuracy, we divide the 506 samples randomly into 405 training

samples and 101 test samples and then compute the in-sample and out-of-sample prediction

error in terms of MSE. The calculated in-sample and out-of-sample MSEs and estimated

standard deviations are demonstrated in Table 5. Overall, as expected, we observe that

1StatLib–Datasets Archive: http://lib.stat.cmu.edu/datasets/boston.
2Note that the dummy variable (i.e., CHAS ) is excluded from the dataset for the sake of simplicity.

Note that CR can handle contextual variables, but this falls beyond the scope of this paper; cf. Johnson &
Kuosmanen (2012), for further details.
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the CSVR method achieves the best prediction performance. The results show that the

restriction on the subgradients or regularization described in Section 3 leads to a flatter es-

timated function that can overcome overfitting. Although LCR is also developed for solving

overfitting problems, our approach still outperforms the LCR method. A possible expla-

nation is that owing to the structure of the SVR-based approaches, CSVR can achieve a

good bias-variance trade-off. Compared to the non-regularized method (i.e., CR in Table 5),

all methods benefit from additional regularization in terms of the out-of-sample prediction

accuracy. However, note that CR yields the lowest in-sample MSE in this empirical data.

Table 4. Descriptive statistics for estimates of all explanatory variables.

CSVR LCR CR
Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

β̂CRIM 0.08 0.17 -0.01 0.08 2.66 10.47

β̂ZN 0.12 0.15 0.07 0.06 0.80 9.22

β̂INDUS -0.02 0.22 -0.03 0.11 2.59 12.29

β̂NOX 0.00 0.04 0.00 0.02 147.61 963.24

β̂RM 0.19 0.34 0.05 0.10 11.10 64.63

β̂AGE -0.02 0.19 -0.01 0.08 -0.39 2.87

β̂DIS -0.17 0.34 -0.04 0.10 -0.60 48.50

β̂RAD 0.09 0.26 0.06 0.10 -5.01 20.08

β̂TAX -0.01 0.05 -0.01 0.02 0.09 0.85

β̂PTRATIO -0.18 0.33 -0.06 0.11 1.89 42.85

β̂B -0.21 0.26 -0.08 0.10 -0.25 0.88

β̂LSTAT -0.42 0.29 -0.28 0.12 0.24 7.68
α̂ 132.61 103.68 69.44 39.31 276.42 1264.22

Table 5. In-sample and out-of-sample MSEs: Boston housing data.

MSE CSVR SVR CR LCR NCCSVR
Out-of-sample MSE 38.44(5.04) 64.00(14.28) 2334.17(933.04) 43.72(6.47) 42.72(9.28)
In-sample MSE 21.43(0.86) 62.57(2.90) 1.41(0.33) 35.05(1.52) 40.17(2.05)

Note: standard deviation in parentheses.
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5.2 NBER-CES manufacturing industry data

The data consist of 473 manufacturing industries (the 1997 6-digit NAICS codes) and are

collected from the NBER-CES Manufacturing Industry Database.3 In this application, we

apply the present approaches to estimate the production function, where, as in Wang & Ni

(2012), the input includes the capital (INVEST), labor (PAY), and raw materials (MAT-

COST), and the output is the value added (VADD). Furthermore, the training and test set

are 376 and 97 observations, respectively.

CSVR’s in-sample and out-of-sample MSEs are 0.53 × 107 and 0.99 × 107 (see Table

6). While the in-sample MSE value of CSVR is not the lowest in comparison with other

shape-constrained approaches, the out-of-sample MSE remains the lowest. This is perhaps

due to the fact that there is a good trade-off between model performance and overfitting

alleviation.

Table 6. In-sample and out-of-sample MSEs (×107): NBER-CES manufacturing industry
data.

MSE CSVR SVR CR LCR NCCSVR
Out-of-sample MSE 0.99 3.96 74.78 1.09 1.83
In-sample MSE 0.53 3.94 0.37 0.91 1.01

It is worth noting that CR has the best in-sample fit in the applications but not in the MC

simulations. It is because the MSE is measured differently. In the simulations, we measure

the deviation between the estimated function f and the true function F . In the applications,

the true function f is unknown, and we thus measure the deviation of the predictions from

the observed y. This is not the same MSE because y = f(x) + ε also includes the noise. CR

will always minimize the MSE wrt y, but due to overfitting not wrt f(x).

In conclusion, both simulations and real-world applications demonstrate that all regu-

larized shape-constrained methods have a superior ability to control overfitting, but CSVR

would be more appealing than other regularized shape-constrained methods because of its

simplicity, capacity for univariate regression, and robust performance.

3NBER database: https://www.nber.org/research/data/nber-ces-manufacturing-industry-database.
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6 Conclusions

Overfitting is a commonly seen phenomenon in nonparametric regression. To mitigate the

effects of overfitting, we have introduced a new approach called convex support vector re-

gression, which effectively combines the key elements of support vector regression and convex

regression. The paper investigates the finite sample performance of the developed CSVR ap-

proach in contrast to other state-of-the-art regression methods through Monte Carlo simula-

tions. Additional two real-world datasets are also used to test and compare the performance

of these approaches. We hope that the proposed approach can help to further bridge the

gaps between the data-driven estimation approaches known in econometrics and statistics,

machine learning, and operations research and management science.

The evidence from the simulations indicates that CSVR performs at least as well as LCR

and much better than SVR and traditional convex regression. Two real-world applications

also show that our approach outperforms other state-of-the-art regression methods. The

regularized convex regression model can help to alleviate the overfitting problem, also owing

to its insensitive loss function and robustness in the presence of outliers.

In this paper, we have restricted attention to regularizations known in the literature,

but there could be more efficient ways to restrict the domain of subgradients (e.g., weight-

restricted regression). Another promising future research direction is developing the simple

and fast algorithmic framework of convex support vector regression. The main bottleneck of

CSVR is that the full problem (8) has n(n−1) constraints and thus becomes computationally

inefficient for more than a few thousand observations. Furthermore, we have deliberately

kept away from statistical inferences, and further work in this direction, e.g., exploring the

asymptotic property of CSVR, would be needed.
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Appendix

Table A1. Descriptive statistics of all variables: the Boston housing data.

Variable Description Mean Std. Dev. Min. Max.
CRIM per capita crime rate by town 3.61 8.60 0.01 88.98
ZN proportion of residential land zoned 11.36 23.32 0.00 100.00
INDUS proportion of non-retail business acres per town 11.14 6.86 0.46 27.74
NOX nitric oxides concentration 0.55 0.11 0.36 0.87
RM average number of rooms per dwelling 6.28 0.70 3.56 8.78
AGE proportion of owner built prior to 1940 68.57 28.15 2.90 100.00
DIS weighted distances to city centres 3.80 2.11 1.13 12.13
RAD index of accessibility to radial highways 9.55 8.71 1.00 24.00
TAX full-value property-tax rate per $10,000 408.24 168.54 187.00 711.00
PTRATIO pupil-teacher ratio by town 18.46 2.16 12.60 22.00
B black proportion of population 356.67 91.29 0.32 396.90
LSTAT proportion of population that is lower status 12.65 7.14 1.73 37.97
MEDV median value of owner-occupied homes 22.53 9.20 5.00 50.00
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