
 

Abstract—The stabilization of unstable non-linear compositions is 

an important and complex phenomenon across the worldwide. The 

purpose of this research is to model a robust control design for the 

stabilization of non-linear, unstable, and under actuated applications 

of Cyber Physical Systems (CPS) using the High Performance 

Sliding Mode Control (HPSMC) methodology, which has a 

negligible control errors (chattering) phenomenon. This study focuses 

on the designing of feedback controllers by means of HPSMC for 

two applications of CPS i.e., inverted pendulum system and mass 

spring damper system, both representing non-linear structures. The 

SMC procedure is based on saturated approximation of the control 

laws in order to obtain balanced and controlled behavior at, 1) 

minimum stabilizing time, and 2) unstable equilibrium points while 

producing negligible chattering occurrences. This technique provides 

a robust platform for the non-linear, unstable, and under actuated 

applications of CPS. The systems’ narrations, control objectives, and 

implementation results of robust feedback controllers are drawn 

attention to evaluate the reduced control error performance. 

 
Index Terms—Single Input Multiple Output Systems, Sliding 

Mode Control. 

 

I. INTRODUCTION 

HEN the physical processes, system’s parameters, and 

networking are integrated together, the system is known 

as Cyber Physical Systems (CPS) [1]. A CPS is usually 

composed of a central computational controller for controlling 

actuators; actuators for controlling operational physical 

devices; operational physical devices for affecting physical 

quantities and sensors for monitoring the physical quantities 

[2]. CPS has a huge number of applications (e.g. avionics, 

robotics, defense systems, communications systems, and 

medical devices etc.) for testing and manipulating the control 

algorithms. 

In the field of engineering, a considerable amount of 

literature has been published on stabilization of inverted 

pendulum however; one major issue in early research conduct 

is robustness. Some of the work is described here for reference 

purposes. 

In order to swing up the pendulum position, the author 

presented both a non-linear heuristic and an energy controller 

in [3]. To maintain the balance state at an upright location of 

the pendulum, its work introduces a linear quadratic regulator 

state feedback optimal controller. The outcome of heuristic 

controller is a repetitive signal at the appropriate moment. The 

optimal controller i.e. optimal state feedback controller is 

based on a model that is linearizable around the upright 

location, and is effective when the cart pendulum system is 

closed to the balanced state. Furthermore, [3] lacks the 

behavior of chattering reduction in the control signal. 

Nasir et. al. [4] compared the time specification 

performance between the conventional controller PID, and the 

modern controller SMC for the balancing of an inverted 

pendulum. In addition, the pendulum’s and cart’s settling time 

is slightly high. 

The responses of the control performances using three 

different controllers are proposed in [5]. The authors projected 

the scheming of PID, robust fuzzy logic, and the SMC 

controllers for controlling the speed of a nominal third order 

linear time-invariant model of a motor. The step response 

performance, applied to the nominal, and two perturbed motor 

plants of each controller are also discussed in this article. It is 

concluded from the output figures given in [5] that the SMC 

technique is more robust than either the fuzzy or the PID 

methodology. 

Yadav et. al. [6] illustrated the controlling techniques for 

the balancing of an Inverted Pendulum as, the conventional 

PID controller and some different type of fuzzy logic 

controllers. The pendulum angle is controlled in the upright 

position by the fuzzy controller. Comparisons of fuzzy PD and 

conventional PID controllers are also described.  It was 

noticed that a better performance is achieved using fuzzy 

PD+PID controller. Moreover, a slight perturbation can cause 

the poor system performance as, the fuzzy systems need prior 

knowledge and the controller would not work properly if a 

case was missed. 

The authors in [7] suggested a plan that reduces the 

chattering phenomenon of SMC by establishing a low pass 

filter in the control signal. The proposed solution can maintain 

the control accuracy with the use of a huge disturbance 

estimator gain. This paper also proves the robustness of the 

SMC practice. 

For the stabilization of the rotary inverted pendulum, Anvar 

et. al. [8] recommended a sliding mode feedback control 

scheme in which the genetic algorithm based state feedback 

control and SMC are combined. The pendulum can be 

stabilized using the proposed methodology. However, the 

chattering phenomenon is still visible in the control signals. 

High Performance Sliding Mode Control (HPSMC) is a 

particular sort of changeable structure control that is highly 

robust in nature [9, 10]. This technique is one of the leading 

schemes for the applications of CPS, and is used to manage 

highly non-linear, unstable, and under actuated systems [11, 

12].  
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The HPSMC scheme is tested on two CPS applications; 1) 

the inverted pendulum system, and 2) the mass spring damper 

system. This HPSMC technique can be applied to the linear, 

non-linear, continuous, and discrete systems, which are 

explored in the next work of [11, 12]. The main goals of this 

work are; 1) system description, 2) analysis of open loop 

system behavior (control objectives), 3) designing and 

verification of robust feedback controller using the proposed 

control methodology.  

The two electromechanical models i.e., inverted pendulum 

system, and mass spring damper systems are selected for 

testing due to the following main reasons. 

1. They are highly non-linear, unstable, and under 

actuated systems in nature. 

2. Easily available for laboratory usage (in most 

(academic institutions). 

3. Even though it is a non-linear system, it can be a 

linear system for quite a broad range of variation 

without much error. 

4. Provides good practice for forthcoming control 

engineers. 

This paper is divided into the following parts. Control 

designing is presented in section II. The methodology is 

applied on two cases for testing, i.e., inverted pendulum 

system, and mass spring damper system. The comprehensive 

inverted pendulum section is described in III. In section IV, 

control technique for mass spring damper system is proposed. 

In last, conclusions and future work are discussed in V.  

II. THE CONTROL DESIGN 

The HPSMC design approach consists of the following 

three modes: 

1. Designing of a switching or sliding function so that 

the sliding motion specifies the design specifications. 

2. Selection of an appropriate control law that will make 

the switching function attractive to the system state. 

3. Inserting a variable boundary layer width, as the 

function of the angle between the sliding surface and 

state trajectory. 

The investigated control law is given as [12], 

 

     ( / )u sat s             (1) 

 

Where, ω and Ω are control design parameters. ω is known 

as the equivalent control that dictates the motion of the state 

trajectory along the sliding surface. Ω is constant representing 

the maximum controller output. φ represents the boundary 

layer width. sat(s/φ) is a saturation function described as, 

1
( )

sgn( ) 1

s if s
sat s

s if s

 
 



                               (2) 

 

The design restrictions, reach-ability and sliding conditions 

are given in [12]. 

III. CASE  STUDY 1: INVERTED PENDULUM SYSTEM 

The Inverted Pendulum is a Single Input Multiple Output 

(SIMO) system. It is the best available electromechanical 

system for testing a broad category of control schemes. This 

type of SIMO has two degrees of freedom: (a) pendulum 

rotation, and (b) cart movement. Here the setup of one stage 

cart pole is considered [11]. 

 

 
Figure 1: Representation of the Inverted Pendulum 

 

The applied force on the cart is responsible for it’s back and 

forth movement, and the pendulum catches its upright position 

due to the cart’s shifting. 

Keeping the view of pendulum’s dynamics, the resulting 

non-linear sculpt, detailed mathematical modeling, and 

conventions are given in [11] for the inverted pendulum 

system. 

 

  2
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cos sin 0

m ml ml F
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x

x

   

  

    

  
          (3) 

 

The allotted values for the inverted pendulum system 

parameters are as follows, 

 
TABLE I 

SYSTEM PARAMETERS [11] 

Symbol Quantity Assigned Values a 

∂ cart mass 2.63 Kg 

m pendulum mass 0.162 Kg 

l pendulum rod length 0.255 m 

a gravitational force 9.8 m/s2 
a Units: Kg = Kilogram, m = meter, s = second. 

 

A. Control Design Objectives 

The Inverted Pendulum structure is a 4th order system and 

has four open loop poles. In order to check the whole behavior 

of the system, both linear as well as non-linear open loop 

analysis in this section were taken into account. For the linear 

system’s analysis, we first linearized the system at equilibrium 

point (𝜃, 𝜃̇) = (𝜋, 0) . 

The Routh’s Hurwitz criteria was then applied to check the 

system’s characteristics. In the meanwhile, the phase portrait 

analysis was used to describe the nature of non-linear system. 

Using Routh’s Hurwitz criteria, the tabulation has the form, 
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From above, it is clear that there is one sign change in the 

first column of Routh’s tabulation; one root of this system is 

present in the right-half of the s-plane that causes the system 

to be unstable. 

For a clear view point of the qualitative features of the 

pendulum’s angle trajectories, we used the technique of phase 

plane analysis. The phase portrait is shown in Figure 2. 

 

 
 

Figure 2: Phase Portrait of the Pendulum’s Angle 

 

The plot in Figure 2 illustrates that there exists a saddle 

point where one of the poles is < 0 and the second pole 

presents on > 0. Because of the second unstable pole, almost 

all of the system trajectories diverge to infinity. 

We checked the controllability of the system using 

controllability test to ensure whether the inverted pendulum 

system is controllable or not. The controllability matrix of the 

inverted pendulum is given in (5), 

 

0 1.4911 0

1.4911 0 0

0 0.3802 0

0.380

13.1327

13.1327

6.0760

6.072 0 060

S

 
 
 
 
 
 

    (5) 

 

The number of uncontrollable states are = 0. S is a non 

singular matrix, as its determinant is 16.5360, and its rank is 

equal to the system order. Therefore, the system is 

controllable. 

 

B. Control Design and Stability Analysis 

By taking the reference of the sliding surfaces and the 

control design parameters from [12] and [11] respectively, 
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We kept the state space representation of equation (3) in 

equation (1), we derived the following chattering free HPSMC 

control laws for balancing the pendulum in an upright position 

and cart position at a specified location; 

 

     ( / )u sat s              (6) 

 

     ( / )x x x xu sat s           (7) 

 

Equations (6) and (7) represent the control laws for the 

pendulum angle and cart position respectively. Figure 3 shows 

a block diagram of the control illustration for stabilization of 

the inverted pendulum system. 

 

 
Figure 3: HPSMC Controller for the Inverted Pendulum System 

 

In order to analyze the stability performance, the technique 

of Lyapunov’s Stability Analysis was used. Keeping the 

sliding surfaces in positive definite scalar functions, the 

resultant equations lead to the given form, 

  1 2 1coslq
s

V m n po uc
lq


           (8) 

 

 41
x

x xq rc p
q

s
V ao u           (9) 

After placing the control laws from equation (6), and (7) 

into (8), and (9) respectively, the following equation was 

obtained in both cases; 

 

0V s                 (10) 

 

Where, 𝜂 = 1. The system trajectories are guaranteed due to 

this positive constant 𝜂. These trajectories strike the sliding 

surface in finite time. Further, the sliding condition is verified 

by s. Thus, the behavior of the Inverted Pendulum system 

becomes stable.  

 

k1 ' = k2                                                                                      

k2 ' = ((g (sin(k1)) (M + m)) - (m l (k22) (sin(k1)) (cos(k1))))/(l (M + m - (m (cos(k1)2))))

l = 0.255

g = 9.8

M = 2.63

m = 0.162
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C. Results 

The results are accumulated on the initial condition of the 𝜋 

+ 0.01 radians to the pendulum. The model is implemented in 

Matlab® – Simulink® environment with the singular point 

(𝜃, 𝜃̇) = (𝜋, 0). 

 

 
 

Figure 4: Regulation Result of Pendulum Angle 

 

Figure 4 depicts the settled behavior of the Inverted 

Pendulum at an upright position for approx. after 2 seconds.  

 

 
 

Figure 5: Regulation Result of the Cart Position 

 

The cart position stabilizes at a preferred location in Figure 

5 in about 2 seconds. 

 
 

Figure 6: Inverted Pendulum Control Signal 

 

Figure 6 illustrates that for the balancing of the inverted 

pendulum system, approximately 0.1347 Newton force needs 

to be applied to the plant. 

 

 
 

Figure 7: Pendulum Model Sliding Surface 

 

Figure 7 describes the performance of switching surfaces 

for the pendulum control. 

 

 
 

Figure 8: Cart Model Sliding Surface 

 

The performance of switching surfaces for the cart control is 

shown in Figure 8. 

IV. CASE STUDY 2: MASS SPRING DAMPER SYSTEM 

A 2nd order non-linear mass spring damping system is 

considered and illustrated in Figure 9 [13, 14], 

 

 
Figure 9: Mass Spring Damper System 

 

The forces of a spring and viscous damper are directly 

proportional to the displacement and velocity of the mass 

respectively. Both forces are in the negative x direction due to 

the opposing effect of the motion of the mass. When the 

spring is unscratched then the position of the mass is zero. F 

represents the input force to the system. This system is also 

known as the Vander Pol Oscillator, and the governing 

equation of the mass spring damping system is given as [13]. 
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The allotted values for the mass spring damping system 

parameters are given in Table II. 

 
TABLE II 

SYSTEM PARAMETERS [9] 

Symbol Quantity Assigned Values a 

M mass 1 Kg 

B damper x2 – 1  

K spring constant 1 
a Units: Kg = Kilogram. 

 

A. Control Design Objectives 

In this section, linear and non-linear system’s analysis 

techniques are presented. The mass spring damping system 

has two open loop unstable poles as, 

 

0.5 0.866 i               (12) 

 

According to Hurwitz criteria, the tabulation has the form, 

 
2

1

0

1 1

1 0

1 0

s

s

s

             (13) 

 

There are two sign changes in the first column of the 

Routh’s table, so there are two roots present in the right half of 

the s plane. Hence, the system is unstable. The phase portrait 

of the mass spring damping system has the following 

graphical representation, 

 

 
 

Figure 10: Phase Portrait of the Mass Spring Damper System 

 

The phase portrait shows that the trajectories diverge to 

infinity except the origin point at (0, 0). 

The controllability test is applied to this system and, the 

controllability matrix is given as, 

 

0 1

1 1
S

 
  
 

               (14) 

The number of uncontrollable states are = 0. S matrix is a 

non singular matrix, as its determinant is -1, and its order is 

equals to the system order. Therefore, the system is 

controllable. 

 

B. Control Design and Stability Analysis 

The equation (1) of chattering free HPSMC control law is 

applied to the mass spring damping system, in order to balance 

the system behavior. The following equation was obtained, 

 
2

1 2 1 2 1 2c x x x x x              (15) 

 

The block diagram of the controlling strategy is given as, 

 

 
Figure 11: HPSMC Controller for the Mass Spring Damper System 

 

For stability analysis, the resultant Lyapunov’s Stability 

Analysis equation leads to the given form, 

 
2

1 2 1 2 1 2( )V s c x x x x x u            (16) 

 

After putting together the control laws from equation (1), 

and in (16), the same equation as in (10) was obtained. Hence, 

the system behavior is stable. 

 

C. Results 

The model is implemented in the Matlab® – Simulink® 

environment with an initial condition of the 1 meter. 

 

 
 

Figure 12: Position Regulation Result 

Figure 12 depicts that the position is regularized in about 

3.5 seconds. 

 

x1 ' = x2                    
x2 ' = - x1 + x2 - (x1 x1 x2)
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Figure 13: Velocity Regulation Result 

 

The velocity of the system tends to zero in 4.5 seconds in 

Figure 13. 

 

 
 

Figure 14: Control Signal 

 

A 1.1199 N force is applied at the maximum to the mass 

spring damping system for regulated behavior as shown in 

Figure 14. 

 

 
 

Figure 15: Sliding Surface 

 

Figure 15 shows that in a controlled phenomenon, the 

sliding surface becomes zero in approx. 2.5 seconds. 

V. CONCLUSION 

The detailed description, analysis, and results shown in this 

paper define that HPSMC is a good robust technique for 

stabilization of non-linear CPS models. This technique is 

successfully implemented and tested on two mechanical 

models, i.e., (1) the inverted pendulum system, and (2) the 

mass spring damper system. Chattering free and stable 

performances, as well as minimum settling time behaviors are 

achieved using HPSMC control laws. Stability analysis of the 

robust feedback controller is also discussed. Lastly, the 

implementation results using Matlab® – Simulink® are 

highlighted. 
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