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Abstract—Noting the overwhelming speed during software
development, and particularly in environments where rapid
delivery is the norm, the lack of accumulated technical debt
information could result in ineffective management. We in-
troduce technical debt propagation channels in this paper to
advance software maintenance research on two accounts: (1)
We describe the fundamental components for the channels,
allowing identification of distinct channels, and (2) we describe
a procedure to identify and abstract technical debt channels
in order to produce technical debt propagation models. Our
propagation models pursue automation of technical debt in-
formation maintenance with program analysis results, and
translation of the maintained information between existing–and
currently disconnected–technical debt management solutions.
We expect the immediate technical debt information to en-
hance applicability and effectiveness of existing technical debt
management approaches.
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I. INTRODUCTION

Sub-optimalities in the software emerge due to trade-offs,
oversight, or environmental changes, and they persistently
affect future iterations until seen to [1]. Technical debt
management pursues introducing structure and order into
these sub-optimalities so as to resolve them adequately
to the software development project. Prior research on
technical debt has successfully introduced technical debt
identification, estimation, and decision making approaches,
or described how solutions from other domains can be
adopted for these phases (e.g. [2], [3]). The majority of the
solutions however come with preset technology or project
contexts which is problematic. Indeed, Holvitie et al. [4]
have noted that technical debt is capable of propagating
between components that exist in different phases of the
software development life-cycle, and they have further pos-
tulated that technical debt is capable of leaving its original
technology context [5]. Since both the identification and
estimation phases are context dependent (assessed sub-
optimalities reside in predefined technology contexts like
source code implemented in the Java language), research
on how technical debt propagates within and between these
contexts is required, but currently absent.

Hence, in this paper we make the proposal for technical
debt propagation models, which are abstractions from tech-
nical debt propagation channels observed during software

development undertakings. The models contribute to tech-
nical debt management by explaining how technical debt
information transforms from one context to another.

II. RELATED WORK

A. Technical Debt Propagation and its Estimation

McGregor et al. [6] hypothesized that there are two
ways for technical debt to propagate within ecosystems.
Firstly, the debt of a new software asset equals “the sum
of technical debt incurred by the decisions made during the
asset’s development and some of the technical debt from
the assets that were integrated to it”. They also noted that
multiple implementation layers can diminish debt. Secondly,
they establish that the user of an asset did not accumulate
technical debt directly, but felt its effects indirectly. Finally,
they note that compounding debt may become larger than
the sum of its sources [6].

Schmid [7] provides a formal definition for technical debt
accumulation. An evolution step is defined as an externally
observable behavior change that introduces a characteristic
to a system. Technical debt accumulation (interpretable as
the cumulative effect of technical debt propagation) is de-
scribed as the difference in costs to implement a sequence of
evolutionary measures in the current system, in comparison
to an optimal system.

Regarding, especially value, estimation of identified tech-
nical debt, Zazworka et al. [8] note from their case-study that
principal and interest characteristics of technical debt are not
bound to the type of technical debt. Eisenberg [9] notes that
threshold based management approaches require defining the
cost associated with reducing each type of technical debt.
Falessi et al. [10] collect requirements for technical debt
tool support. For valuation of the debt’s interest, they note
that a single debt may affect diverse quality characteristics
differently. Falessi et al. also note McGegor et al.’s [6]
compound property.

B. Software Entity Interconnections

Kim et al. [11] discuss an approach for classifying soft-
ware changes. They first extract change history for projects
from software configuration management systems. The bug-
introducing changes are then identified and feature extrac-
tion is applied for them in order to produce a classifier.



Figure 1. Software entity relationship (red; top descriptions) with a super
imposed technical debt channel (blue; bottom descriptions)

Notably, bug-introducing changes are identified by back-
tracking from the bug-fixing change, and feature extraction
takes associated log messages into account [11].

The Software Process Engineering Metamodel (SPEM)
pursues formalization of software processes via definition of
process components, component relations, and the impulses
flowing within. Effects of the interconnections are not de-
scribed by the model, but Rochd et al.’s [12] work can be
seen explaining this via superimposing synchronization for
the modeled components.

III. TECHNICAL DEBT PROPAGATION CHANNELS

A. Channel Features

Our objective is to describe technical debt propagation
channels capturing the effects of sub-optimal software entity
alterations. The alterations correspond to software changes
as argued by Holvitie et al. [5]. These changes (entity
alterations) are captured here as Entity-Relationships (ER)
aligned with Kagdi et al.’s [13] definition of software change
as “the addition, deletion, or modification of any software
artifact such that it alters, or requires amendment of, the
original assumption of the subject system”.

As a technical debt channel captures a particular, dis-
tinct, instance of technical debt accumulation, the channel’s
definition is always comprised of a single entity-entity-
relationship. Their combination would correspond to an in-
stance of a synchronized SPEM (describing the propagation
process for—i.e. the channels available to—instances of
technical debt in the project specific context set).

Assume a collection of interconnected software entities
(e.g. variable declarations and calls in the implementation
technology’s context and their descriptions in the documen-
tation technology’s context) to form a graph. The potential
channels for software change is a super-set of the intercon-
nection graph since the definition for a software change also
considers assumptions (implicit channels in Section III-A1).

Figure 1 depicts one instance of a potential software
change. As per the previous description of a software change
between software entities, this directed relationship nay
house a technical debt channel. If so, the entity which
invokes a potential software change is the source of tech-
nical debt (entity on the left), the relation which delivers

the invocation corresponds to a channel medium, and the
entity in which the potential change will take place is the
destination of technical debt; further definition follows.

1) Medium: “a system with the capability of effecting
or conveying something” (c.f. “medium”, Merriam-Webster,
2016). In the technical debt context a medium is described
through the information that is carried and through the sys-
tem capable of conveying the information. The information
that is carried (1) describes changes within the source, and
(2) indicates changes in the destination.

Suovuo et al. [14] have argued that the medium is
either explicit or implicit. An explicit system relies on
pre-existing context semantics (e.g. dependency invocation).
Implicit channels do not have a formal counterpart and may
thus expand to areas that formality disallows, especially in
relation to unions of software contexts (e.g. developer’s con-
ceptualization between a component’s design documentation
and its implementation). Due to their unobtrusive nature,
implicit channels are difficult to observe [14].

2) Sources and Destinations: of a technical debt channel
capture the information producers and consumers of the
medium respectively. A source is an entity that exists in
a context. It produces information regarding changes in the
entity. The information regarding the change must be ob-
servable from outside the entity in order for the information
to ever reach the medium. Hence, a valid source entity is a
declaration type that can be referred. Thus, the source entity
types correspond to the hosting software entity’s context’s
referable type definitions.

Similarly, the destination exists in a context and is capable
of receiving and consuming information regarding the source
entity by way of being connected to it through a medium.
Hence, valid channel destination entity types are the software
entity’s context’s definitions capable of making references.
The source and destination entities can exist in different
contexts. The source entity can not be the destination entity
as the information would be consumed where produced with
no outside observable effects, deviating from the definition
of a software change(s) (c.f. [13]).

B. Information Properties

A technical debt instance has the following properties
[15], [2]: a location, a principal, an interest, and an interest
realization probability. The location property is directly re-
lated to the entities forming the sources and the destinations
of the technical debt channels. The rest of the properties are
related in the following.

1) Principal: A technical debt instance captures the in-
crease in effort caused by sub-optimalities in a particular
location within a software development project. The princi-
pal is the portion from the effort increase that corresponds
to bringing the initial accumulation point for the difference
to optimum [15], [2]. In Schmid’s formalization [7] (see
Section II) technical debt is accumulated when software



evolution consumes more resources than the optimal evolu-
tion would. Hence, the information carried by the technical
debt channel accumulates principal, for the instance, in
this entity if 1) the software change indicates additional
resource consumption and 2) the entity hosts the technical
debt instance’s initial accumulation point.

2) Interest: of a technical debt instance captures the extra
resources that are spent due to the principal’s existence, but
in entities that do not host the principal [1]. Thus, the in-
formation carried by the technical debt channel accumulates
interest, for the instance, in this entity if (1) the software
change indicates extra resource consumption, and (2) the
entity does not host the initial accumulation point of the
technical debt instance.

3) Realization Probability: of a technical debt instance
is the chance that further resource consumption is initiated
by this debt. From the perspective of propagation channels,
the realization probability is a measure of an entity-entity-
relationship’s existence. The source entity hosts technical
debt from the instance, the destination is an entity wherein
currently observed resource consumption has not yet taken
place, and the realization probability measure indicates the
chance of this system becoming a technical debt propagation
channel. By the definition of principal and interest informa-
tion, if the observed realization probability is lower than one
(i.e. certainty) the channel is not a technical debt propagation
channel as no technical debt information is delivered yet.

IV. TECHNICAL DEBT MODELLING

A. Process

Technical debt channels describe systems for accumulat-
ing technical debt. Operationalizing such a system should
hence dissipate technical debt. The software development
life-cycle has multiple implementations of these systems
(e.g. refactoring and -modelling) producing historical data.
This can be used to identify technical debt dissipation, and
be inverted in order to produce technical debt channels.

1) Fixing the Observation Level: of the historical soft-
ware change information is a prerequisite for identifying the
channels, as we must pinpoint, for each software entity, the
specific pieces of change information that describe evolution
solely for this entity. Formally, the observation level must
provide such time and partition granularity for the change
information that it allows identifying each software entity’s
e ∈ E evolution as a sequence of states e : (s1, s2, ..., sn).

2) Identifying Technical Debt Channels: Observing tech-
nical debt instances’ propagation, from historical data, cor-
responds to identifying cause-and-effect relations for the
software changes observed for the entities [5]. The relations
are captured for the entities’ state sequences as pairs

r = ((e1, si), (e2, sj)) ∈ R | (e1, si)→ (e2, sj). (1)

Pair r indicates that entity e1’s state si has caused sj in
another entity e2. Further, let d(e, s) be the time stamp that

relates to entity e’s state s, and De1,d0 = {s | d(e1, s) ≥ d0}
be entity e1’s group of states for which the time stamp is
greater than or equal to d0. Hence, the prerequisite for pair
r’s causality in Eq. 1 is that sj ∈ De2,d(e1,si).

As Section III-A2 describes the source and destination
entities of a technical debt channel as the information
producer and consumer respectively, we find the compo-
nents of a technical debt channel capturing r as follows.
The channel’s source entity es produces the information in
r = ((e1, si), (e2, sj)). Hence, from Eq. 1 we get es = e1.
Analogously for the destination, ed = e2. Last, the chan-
nel’s medium is described as carried information and thus
corresponds to the information realizing (es, si)→ (ed, sj).

Section III-B describes the properties for information that
corresponds to technical debt propagation. In associating
the information to entities, presence of these properties
should be ensured in order to only capture technical debt
propagation channels (not e.g. change propagation caused
by feature addition efforts).

Finally, it is evident that technical debt can exist without
related software changes. If an entity is created with prin-
cipal for a new technical debt instance, no changes record
alterations for this debt. Hence, arguably, identification of
technical debt propagation channels requires historical data
as it alone can record how the debt has realized.

3) Abstracting Channels to Models: corresponds to iden-
tifying a class T of technical debt channels t which have
identical propagation capabilities PT , and abstracting this
class to form a model M . Technical debt channel t has
a source sourcet = type(es), a destination destt =
type(ed), and an information type infot = type((es, si)→
(ed, sj)) which capture its propagation capabilities Pt =
(sourcet, destt, infot). Hence, t ∈ T ⇐⇒ Pt = PT .
For the software entities, the type was their context de-
pendent—referable or referring—type definition while the
content is the information type. Observation level fixing
ensures that the observed types adhere to these requirements.

Abstracting the model corresponds to removing all imple-
mentation specific details θ (e.g. names of specific methods)
from the technical debt channels forming a class (i.e. ∀t ∈
T ) to make the model applicable for all scenarios where the
observed propagation capabilities PT are identical. Hence,
the abstraction of M corresponds to a reduction: T 7→θ M .

B. Applying the Process

We provide initial validation for the technical debt mod-
elling process described in Section IV-A by applying it
to a technical debt instance: A bug from the Eclipse
IDE (#73950 examined in [5]). According to the process
description in Section IV-A, the first phase is observa-
tion level fixing. For the bug, we identify historical data
and software entities via the bug report (c.f. https://bugs.
eclipse.org/bugs/show bug.cgi?id=73950) and the corresponding fix
commit (c.f. https://git.eclipse.org/c/platform/eclipse.platform.debug.git/



  

@@ -344,4 +344,8 @@ public class AddMemoryBlockAction
extends Action implements IselectionListener
...
+ 
+   protected void dispose() {
+     DebugPlugin.getDefault().removeDebugEventListener(this);
+   }

@@ -75,7 +75,7 @@ public class MemoryView
extends PageBookView implements IDebugView, IMemoryBlock
    private TabFolder emptyTabFolder;
    protected Hashtable tabFolderHashtable;

-   private Action addMemoryBlockAction;
+   private AddMemoryBlockAction addMemoryBlockAction;
    private Action removeMemoryBlockAction;
    private Action resetMemoryBlockAction;
    private Action copyViewToClipboardAction;

@@ -621,6 +621,7 @@ public class MemoryView
extends PageBookView implements IDebugView, IMemoryBlock
    public void dispose() {
      removeListeners();
+     addMemoryBlockAction.dispose();

      // dispose empty folders
      emptyTabFolder.dispose();

42

(1)

3

(5)

(6)

Figure 2. Transcript from an Eclipse version commit, demonstrating
implicit and explicit technical debt propagation channels with directions

commit?id=9d0372b5e5159743ef53b2ec0ddaf1bfbb58a0ce). The com-
mit describes changes at the source code level, and this
allows us to observe evolution sequences e at the level of
single software entities.

The second phase identifies technical debt channels. Back-
tracking the dissipation, the iterative process of finding
producers and consumers should stop when software entities
that produce the information about changes which overcome
the root cause, the principal of the instance, are found.
For the bug in question, we associate the bug report’s
call for disposing MemoryBlockAction properly into
changes in the fixing commit. Figure 2 is a transcript of the
fixing commit. Lines in green and starting with a plus sign
indicate addition, while the ones in red and starting with
a minus sign indicate deletion. Numbered arrows indicate
identified technical debt propagation channels—forming the
propagation path for a technical debt instance—while the
arrow colors indicate classes of channels with possibly
similar propagation capabilities.

The Java context (c.f. https://docs.oracle.com/javase/specs/jls/se8/
jls8.pdf) applies for technical debt channel four (4). This
is a pair r = ((es, si), (ed, sj)) where for source en-
tity es addMemoryBlockAction.dispose() the type
sourcet = type(es) is a method invocation. The state si
statement creation is likely the first for es, and it has invoked
another statement creation state sj for the destination entity
ed dispose(), whose type destt = type(ed) is a method
declaration. The information type infot = type((es, si)→
(ed, sj)) is invocation of a non-existent method declaration
as the method is created in the commit. Channels from one
(1) to three (3) are implicit channels in Figure 2, and manual
analysis is required to indicate these relationships [14]. In
particular, the commit transcript cannot be solely used to
decide es and ed for channel three (3).

Table I. A TECHNICAL DEBT MODEL

Part Definition
Source entity Method Invocation
Destination entity MethodDeclaration
Information Invocation of a non-existent method declaration

The third phase of the process identifies a class of chan-
nels to abstract into a technical debt model. If we consider
the channel four (4) to be the sole representative for its class,
the abstraction results to a technical debt propagation model
displayed in Table I (where the context removal θ disregards
naming for es and ed).

We may review the information properties for the captured
model (see Table I). The common property for technical
debt channel information required that the software change
indicates additional resource consumption. The information
of the model adheres to this as the implementation of a
method declaration is indicated. The unique property of the
information described if it accumulated either principal or in-
terest for a technical debt instance. This required identifying
if the additional resource consumption occurred in an entity
that hosted the instance’s root cause. The model’s instances,
the unique technical debt propagation channels, must be
consulted for this. An argument for interest accumulation
can be made for channel four (in Fig. 2), if we interpret
channels one through three with their entities to precede it
in the instance’s propagation.

V. DISCUSSION

A. Strengths and Implications

The most important strength of the proposed approach is
the accumulated library of technical debt propagation chan-
nel classes. These models can be easily applied to estimate
the technical debt propagation capabilities of new projects
(i.e. we may assess models like the one in Table I for newly
encountered similar components). This allows the project to:
(1) expose possible propagation paths for newly developed
entities by relating them to known source types, (2) provide
enhanced explanation for problem targets by relating the
target entities to known destination types, and (3) expose
gaps in project communication by way of demonstrating the
possible ways of propagation between project entities as the
known information types. These strengths directly contribute
to ongoing research efforts (c.f. [15], [2]), and has potential
implication for practice.

The models also expose an interface that allows program-
matic evaluation of the representations; especially important
from the perspective of automating information maintenance
for constantly evolving projects. As models derived from
the explicit channels capture technical debt propagation in
contexts where the semantics are known, their evaluation can
be implemented by means of static program analysis. For
implicit channels, while the semantics can be unattainable



and thus posing a challenge to full automation, the proposed
approach collects the possible source and destination types
which should allow for programmatic identification of their
instances. Automation would arguably increase the effective-
ness of technical debt management frameworks [15], [2], and
pave way for more established evaluation methods [3].

Lastly, there is no foreseeable obstacle to associating the
models with value production (e.g. return-on-investment for
expedited reparation of instances of the model in Table
I). However, to associate the model with a cost value,
the historical data needs to include decomposable value
information (i.e. refactoring effort).

B. Potential Challenges

Firstly, determining directions for, especially implicit,
technical debt propagation channels can be difficult. As they
are directed by definition, it is possible to model them from
both directions (e.g. channel tree (3) in Fig. 2). Second,
the identification of classes as channels is based on type
libraries. Given that the amount of type defining contexts
is remarkable, the amount of possible channel classes is
numerous. To overcome this, arguably, a hierarchical channel
taxonomy is required where the grouping dimensions exploit
pre-existing taxonomies.

Third, two challenges relate to analyzing historical data
to produce technical debt channels. Firstly, channel iden-
tification relies on distinguishing technical debt inclined
change from the decomposed information. While the formal
description of technical debt provides a basis for this,
practical identification can be seen to rely on relating items
to previously described instances of technical debt which
is not exhaustive. Examination of common change inducers
could be a partial solution to this [14]. Second, the channels
can only be constructed from where historical data captures
technical debt dissipation. Hence, there can be channels that
accumulate debt, but for which no data exist or the debt
is never acted upon. The latter is arguably almost invisible
to the software project, but the former should be captured.
Tracking of software projects’ efficiency and addition of
suitable documentation procedures to capture the missing
evolution characteristics are avenues for pursuing this.

Finally, whilst two approaches [7], [6] addressed technical
debt propagation, we note that neither capture the various
forms and ways of technical debt propagation; focusing
rather on the propagation’s characteristics and capabilities.
This lack of differing approaches to technical debt modelling
is a challenge, as it hinders providing comparisons.

VI. CONCLUSION

This paper provided a theoretical description for technical
debt channels as information mediums with producers and
consumers. It also presented an approach for capturing
technical debt channels, identifying classes of channels, and
abstracting them into propagation models. In addition to

advancing the technical debt research with theoretical basis
for technical debt accumulation, the proposed method should
deliver programmatically assessible models for automating
the maintenance of manually identified technical debt infor-
mation.

Future work includes exploring mechanisms for identify-
ing taxonomies of technical debt information producers and
consumers. Such mechanisms would facilitate the production
of an accurate technical debt channel classification scheme.
A direct application of the scheme is the identification of
overlooked technical debt management areas, and indication
of enhancements for existing management solutions.
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