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Abstract—Contrast-enhanced magnetic resonance imaging
(MRI) is a promising method for estimating myocardial
blood flow (MBF). However, it is often affected by noise
from imaging artefacts, such as dark rim artefact obscuring
relevant features. Machine learning enables extracting impor-
tant features from such noisy data and is increasingly applied
in areas where traditional approaches are limited. In this
study, we investigate the capacity of machine learning,
particularly support vector machines (SVM) and random
forests (RF), for estimating MBF from tissue impulse
response signal in an animal model. Domestic pigs (n = 5)
were subjected to contrast enhanced first pass MRI (MRI-
FP) and the impulse response at different regions of the
myocardium (n = 24/pig) were evaluated at rest (n = 120)
and stress (n = 96). Reference MBF was then measured
using positron emission tomography (PET). Since the
impulse response may include artefacts, classification models
based on SVM and RF were developed to discriminate noisy
signal. In addition, regression models based on SVM, RF
and linear regression (for comparison) were developed for
estimating MBF from the impulse response at rest and stress.
The classification and regression models were trained on data
from 4 pigs (n = 168) and tested on 1 pig (n = 48). Models
based on SVM and RF outperformed linear regression, with
higher correlation (RSVM

2 = 0.81, RRF
2 = 0.74,

Rlinear_regression
2 = 0.60; qSVM = 0.76, qRF = 0.76,

qlinear_regression = 0.71) and lower error
(RMSESVM = 0.67 mL/g/min, RMSERF = 0.77 mL/g/
min, RMSElinear_regression = 0.96 mL/g/min) for predicting

MBF from MRI impulse response signal. Classifier based on
SVM was optimal for detecting impulse response signals with
artefacts (accuracy = 92%). Modified dual bolus MRI
signal, combined with machine learning, has potential for
accurately estimating MBF at rest and stress states, even
from signals with dark rim artefacts. This could provide a
protocol for reliable and easy estimation of MBF, although
further research is needed to clinically validate the approach.

Keywords—Magnetic resonance imaging, Myocardial perfu-

sion imaging, Modified dual bolus method, Machine learn-
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INTRODUCTION

Myocardial blood flow (MBF) is an important
parameter for diagnosing heart diseases or examining
the state of the myocardium. Positron emission
tomography (PET), the gold standard in the diagnos-
tics of the myocardial perfusion, uses radioactive water
(i.e., water including 15O) as a tracer for quantification
of absolute MBF.7 However, the disadvantages of PET
include radiation exposure and limited availability of
radioactive water. Although the risk posed by radia-
tion in PET is very often justified, minimizing the
radiation dose is always beneficial. The main motiva-
tion behind the present study is the limited accessibility
of PET. It is not accessible for all patients suffering
from myocardial infarction, whereas MRI scanners are
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much better available. In addition, compared with
PET, MRI provides more information during the same
imaging session. MRI offers an opportunity to inves-
tigate the anatomy and the pump function of the heart.
Certain MR imaging sequences yield parametric maps
(for example, T1- or T2-map), which enable tissue
characterization. MRI also offers the possibility to
follow-up of response to therapy or progresison of
disease. For example, change of lifestyle, medication
and/or interventions may influence LV characteristics
such as mass, volume, function and perfusion which all
can be monitored with MRI.19 Monitoring of human
patients is challenging with method that uses ionizing
radiation. Furthermore, AI provides a powerful and
fast method for analysis of MR images.9,15 The use of
AI in biomedical applications is under very active
research and it is becoming the standard in many (if
not all) medical image processing tasks.5 Therefore,
investigating the potential of AI for the present pur-
poses is well justified and timely.

One MRI-based method for assessing myocardial
perfusion is contrast agent-enhanced magnetic reso-
nance imaging (MRI), which allows determination of
parameters describing perfusion.14 While this method
is promising for determination of MBF, it suffers from
noise originating from imaging artefacts, potentially
impeding accurate estimation of MBF from the MRI
impulse response signal.4

To address this shortcoming, we employ machine
learning methods, for the first time, for estimating
MBF from MRI impulse response signal. Machine
learning is an application of artificial intelligence (AI)
where the aim is to enable a machine learning models
to learn automatically from data without human
intervention. The learning process begins with training
the machine learning models using certain learning
algorithms and data with known input and output
values. The learning algorithm then generates a set of
rules, based on inferences from the data. The result is a
model, which defines the relationship between input
and output. The model can then be used to predict
outputs from new inputs. In general, machine learning
represents a class of analytical and statistical methods
capable of extracting important features from multi-
variate input data, including artefact-induced noisy
data. In biomedicine, machine learning techniques may
provide solutions to complex problems, allowing ma-
chine learning models to make predictions from large
amounts of patient data. Clinical decision support
systems (DSS) are in widespread use in medicine.3 In
the field of medical imaging, machine learning has so

far been used mainly for automated segmentation of
images.15 More so, they are seeing increasing
biomedical applications in areas where traditional
approaches are limited, such as oncology,12 muscu-
loskeletal1 and neuroscience research.11 Methods such
as support vector machines (SVM) and random forest
(RF) are among the most popular machine learning
algorithms that have demonstrated potential for clini-
cal applications, such as disease screening and diag-
nosis.3,11 Machine learning enables fast analysis of
massive amount of data.

Support vector machine is a non-probabilistic ma-
chine learning method, which in contrast with proba-
bilistic techniques, such as the Naı̈ve Bayes, separates
data across a decision boundary (plane) determined
only by a small subset of the input data (predictors).
The subset of input data that supports the decision
boundary are the support vectors, and the remaining
input data do not have any influence in determining
the position of the decision boundary. Random forest
is a machine learning algorithm that consists of a large
number of individual decision trees operating as an
ensemble. As the basic construct of RF, a decision tree
allows observations to be split in a way that the
resulting groups are as different from each other as
possible, while the members of each subgroup are as
similar to each other as possible. Each individual tree
in the random forest outputs a prediction, e.g., class,
and the class with the most votes becomes the model’s
prediction.

In this study, we investigate and compare the
capacity of SVM and RF for estimating MBF from
tissue impulse response signal. For comparison, MBF
was also determined using traditional approach based
on linear regression. This study is based on the
hypothesis that machine learning methods are capable
of accurately estimating MBF from tissue impulse
response signals, even from signal with artefact-in-
duced noise, due to their capacity to extract relevant
features from predictors during analysis. To test this
hypothesis, we develop machine learning regression
and classification models for predicting MBF from
tissue impulse response signal and detecting samples
with artefacts from their impulse response signals,
respectively. In addition, we assess the relative effect of
artefact-induced noise on model performance for pre-
dicting MBF from the tissue impulse response.
Specifically, we applied these methods in a porcine
model of myocardial ischemia with modified dual-bo-
lus contrast agent-enhanced MRI examination.
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MATERIALS AND METHODS

Animal Model

All animal experiments were approved by the Na-
tional Animal Experiment Board (license n:o ESAVI-
2012-001932) and conform to the Directive 2010/63/
EU of the European Parliament. Five female domestic
pigs (age (mean ± SD) (3.5 ± 0.5) months and weight
(35.6 ± 7.4) kg), were examined with MRI and PET.
Local myocardial ischemia was induced using a con-
stricted bare metal stent.16 Pigs were imaged within 12–
24 days after the operation.

PET Imaging Protocol

PET and MRI imaging were performed during the
same session keeping the positioning unchanged
between the modalities. Philips Ingenuity TF PET/MR
(Philips, Amsterdam, the Netherlands) scanner was
used for both PET and MRI imaging. Animals were
anaesthetized, connected to a respirator and ventilated
mechanically. Anesthesia was maintained with an
intravenous infusion of Propofol (10 2 50 mg/kg/h,
Propofol Lipuro, B. Braun Melsungen AG, Melsun-
gen, Germany) combined with fentanyl 4 2 8 lg/kg/h
(Fentanyl-Hameln, Hameln Pharmaceuticals GmbH,
Hameln, Germany). Diastolic, systolic and mean
arterial pressure and heart rate (HR) were recorded
using a pressure transducer (TruWave, Edwards Life-
sciences Corp., Irvine, CA, USA) connected to an
anesthesia monitor (Datex Ohmeda S5, GE Healthcare
Finland Oy, Helsinki, Finland).

First, a myocardial perfusion PET study with [15O]-
water under pharmacologic stress was performed.
Pharmacologic stress was induced with intravenous
infusion of adenosine at a rate of 500 lg/kg/min,
(Adenosin Life Medical, Life Medical Sweden AB,
Stocksund, Sweden) combined with phenylephrine
5 lg/kg/min (Fenylefrin Abcur, Abcur AB, Helsing-
borg, Sweden) administered intravenously starting
2 min prior to PET imaging and continuing through-
out the stress study to induce myocardial hyperemia.
The [15O]-water (790 ± 74 MBq, range 628–879 MBq)
(Radiowater Generator, Hidex Oy, Turku, Finland)
was injected intravenously via the ear vein as a 15 s
bolus. The dynamic scanning started at the same time
as the injection. After that, the PET imaging was re-
peated at rest after the hemodynamics had returned to
the base level.

MR Imaging Protocol

For MRI, the pig was moved out from the PET
gantry, and four-lead electrocardiogram electrodes for

cardiac gating were attached. Subsequently, a cardiac
array surface coil was positioned over the chest, and
the pig was moved into the MRI scanner on the same
table. The pigs were ventilated normally during the
MR perfusion imaging. After the scout images were
acquired, four-chamber and two-chamber cinematic
series, perpendicular to each other, were acquired. The
cinematic series were used to prescribe the imaging
slices for first-pass contrast-enhanced myocardial per-
fusion imaging. Two parallel 8 mm slices with 16 mm
gap were placed on the short axis of the left ventricle
(LV), starting 16 mm from apex and continuing to
mid-ventricular level. 2D saturation recovery seg-
mented gradient recalled echo (T1-TFE) sequence was
used for perfusion imaging. Imaging parameters were:
flip angle = 20�, acquisition matrix = 92 9 128 and
field of view = 350 9 350 mm; the TR and TE of the
acquisition train were set to the shortest possible (1.6/
3.3 ms), and the scan repetition time (heart rate
dependent TR) was between 580 ms and 1380 ms,
depending on the heart rate. Saturation recovery time
was set to 150 ms. To correct the nonlinear relation-
ship between the contrast agent concentration in blood
and the MR signal intensity during the first-pass, a
0.05 mmol/kg tracer bolus of diluted contrast agent
(gadoteric acid, Dotarem, 0.5 mmol/mL Guerbet
LLC, Bloomington, IN, USA, dilution: 5 mL Dotar-
em + 100 mL 0.9% saline, concentration ratio: 5 mL/
105 mL = 1/21) was manually injected into the ear
vein as fast as possible, and thereafter 15 mL of saline
was injected manually for flushing. Dynamic MR
imaging was repeated continuously for every cardiac
cycle during 60 consecutive heartbeats. Thereafter, the
actual perfusion series was acquired in a similar fash-
ion except that the contrast agent was administered
without dilution. Dynamic imaging procedure,
including calibration and actual perfusion series, was
carried out for both stress and rest conditions similarly
to PET perfusion imaging procedure.

Image Analysis

Some of the perfusion data investigated in this study
has been previously analyzed using a model indepen-
dent deconvolution method and reported.6 In that
previous analysis, the signals containing dark rim in-
duced noise had to be excluded. To further enhance the
accuracy of estimation of MBF, the whole data
including also signals containing artefacts is re-ana-
lyzed in the present study using linear regression, RF
and SVM techniques. The procedure of the image
analysis and data processing is schematically presented
in Fig. 1.

Images were analyzed with the Carimas software
(Version 2.9, Turku, PET centre, Finland 2014).13 At
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first, PET and MR images were co-registered, and
regions of interest (ROIs) in the left ventricle and
myocardium were delineated in MR images. The apical
slice was divided into eight, and the mid-ventricular
slice into sixteen similarly sized regions (Fig. 2).

2D ROIs were converted into 3D volumes of
interest (VOI), and signal intensity (SI)–time curves for
each VOI were obtained. SI–time curves of MR images
were processed in Matlab (v. 2014b, The MathWorks,
Natick, MA, USA). Next, the VOIs in MR images
were copied into co-registered PET images, and values
of MBF for each VOI were determined from the PET
data.

PET data was analyzed using the Carimas software.
A ROI covering the whole LV was applied to the dy-
namic imaging series in order to obtain myocardial
time–activity curves (TAC). A cylindrical volume of
interest located in the basal portion of the LV was
applied for obtaining arterial input function. The seg-
mental average LV MBF was determined based on
[15O]-water images using the conventional single-com-
partment model.7

Some tissue enhancement curves of MR images had
to be excluded from further analyses: the stress study
of one pig (#3) failed technically and had to be re-
jected. Therefore, altogether 216 MR signals were in-
cluded in the study for further analysis. A total of 103
tissue enhancement curves (48%) were found to be
affected by dark rim artefact4 appearing usually in the
septum area. If the SI of tissue enhancement curve
dropped below the baseline at the arrival of the con-

trast agent (and subsequent increase of SI), the curve
was labeled as being artefacted.

Tissue Impulse Response

The tissue impulse response describes the ability of
the system to transfer the contrast agent from capillary
blood into the myocardium. The relationship between
contrast agent concentration in blood and myo-
cardium can be defined by convolution

CtðtÞ ¼ CbðtÞ � hðtÞ; ð1Þ

where Ct(t) is the MR contrast agent concentration in
tissue, Cb(t) is the contrast agent concentration in
blood (i.e., the AIF) and h(t) is the tissue impulse
response.2 Therefore, h(t) can be determined using
deconvolution

hðtÞ ¼ CtðtÞ
CbðtÞ

ð2Þ

The tissue impulse response for each tissue curve was
calculated using regularized model independent
deconvolution.8 T1- and T2*-effects cause distortion to
the arterial input function17 because of the nonlinear
relationship between signal intensity and high contrast
agent concentrations. This phenomenon occurs in AIF
during the first pass, causing a blunted peak. To avoid
errors in calculation of the perfusion parameters, cor-
rection procedure for the high concentration AIF was
performed. The modified dual bolus correction proce-
dure is fully described in our earlier paper.6

FIGURE 1. Procedure of the image analysis and data processing. First, PET and MR images were co-registered into same
orientation. Then the myocardium was divided into ROIs. MBF values of ROIs were obtained from the PET image. Same ROIs were
used to extract the SI–time curves of myocardium from MR images. The arterial input function (AIF) SI-time curve was acquired
from the left ventricle blood pool. Next, AIF and MRI myocardium data were used to calculate the tissue impulse responses for each
ROI. Data consists of all the tissue impulse responses and corresponding values of MBF from PET.
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Classification and Regression Models
and Hyperparameter Tuning

Prior to analysis, the full dataset at rest and stress
states, consisting of the tissue impulse response (pre-
dictors/independent variable), data integrity label
(class) and reference MBF (dependent variable) values,
was split into calibration and test sets, where the cali-
bration set consisted of data from 4 pigs (ntotal= 168,
nrest= 96, nstress= 72), and data from the remaining
pig was used as an independent test set (ntotal= 48,
nrest= 24, nstress= 24, � 22%) for evaluating model
performance (Fig. 3).

It is worth noting that data from the test set was not
involved in model training or hyperparameter tuning,
but only used for estimating model performance. The
criteria for selection of the test set was that the test set
variance does not exceed the variance of the calibration
set. Since tissue impulse response signal may include
artefact-induced noise, classification models based on
SVM and RF were developed to discriminate between
intact and artefact-induced noisy signal, that is, clas-
sifying the ‘‘good’’ (intact) or ‘‘bad’’ (artefacted). In
addition, regression models for estimating MBF from
tissue impulse response signals were developed using
SVM, RF and traditional approach based on linear
regression.

Since SVM and RF consist of multiple hyperpa-
rameters that define a model and affect its performance
on an independent data, e.g., affecting the decision
boundary of SVM, it is essential to find the best
combination of hyperparameters that maximizes the
relationship between the tissue impulse response and
label (for classification) or MBF (for regression), thus
optimizing model performance and generalization.10

To determine the optimal hyperparameter combina-
tion, a ‘fit’ and ‘score’ method was employed using the
grid search algorithm with 5-fold internal cross-vali-
dation. In this method, a parameter grid for each
estimator (SVM and RF) is first defined, a model is
fitted on a part of the calibration dataset using a
specific hyperparameter combinations, and then scored
on the remaining part of the dataset. This is repeated
for all possible combinations of the pre-defined
parameters. Thus, the algorithm performs an exhaus-
tive cross-validated search over the grid of specified
parameter values for each estimator, and a model is
fitted and scored for each specified parameter value.
For SVM, the relevant hyperparameters tuned include:
kernel, regularization constant (C), gamma (parameter
of a Gaussian Kernel) and degree, while for RF, the
hyperparameters include: number of estimators, crite-
rion, max depth (the depth of each tree in the forest),
and max features (the number of features to consider
when looking for the best split).

Based on the number of pre-defined hyperparame-
ters, a total of 2500 and 10800 models were fitted for
SVM and RF, respectively. This approach was adop-
ted for hyperparameter tuning in classification and
regression, and the best model was selected based on
the cross-validated score. After hyperparameter tuning
and model selection, model performance was evaluated
using the independent test dataset. For regression,
model performance was evaluated based on coefficient
of determination (R2) and Spearman’s rank correlation
coefficient (Spearman rho) between the predicted and
measured values. In addition, the error between both
values was estimated based on the root mean square
error (RMSE) mean absolute error (MAE). A model

FIGURE 2. Co-registered short axis MRI- and PET-images with ROIs (delineated with grey lines). (a) A mid-ventricular slice and (b)
an apical slice. Orientation of the MRI slices is presented in long axis images (inset in lower left corner). MRI images were acquired
using a T1-TFE sequence. Contrast agent can be seen in the right and left ventricles.
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that minimizes the error and maximizes the correlation
coefficients was selected as best. For classification,
model accuracy and confusion matrix, which gives an
indication of sensitivity and specificity of the model,
were evaluated. The classification model that maxi-
mizes test set prediction accuracy, sensitivity and
specificity was selected as the best model.

Machine learning analysis was conducted in Python
(ver. 3.6) using functions from the scikit-learn package
(ver. 0.21.3). Analysis was performed using the Goo-
gle’s Colaboratory platform, a freely available com-
pute facility with in-built Python 3 kernel and
machine/deep learning packages.

RESULTS

Regression

Regression model based on SVM (optimal param-
eters: C = 10, kernel = radial basis function, gam-
ma = 100) was found to be optimal, with the lowest
errors and highest correlations, for estimating MBF
from tissue impulse response. While RF performed
reasonably well in comparison with SVM, the model
based on linear regression produced the weakest esti-
mates of MBF. The performances metrics of the dif-

ferent regression algorithms for estimating MBF from
the tissue impulse response signal are presented in
Table 1 and visualized in Fig. 4. Remarkably high
residual of the linear regression model can be observed
in the calibration scatterplot of measured versus pre-
dicted MBF (Fig. 5c), particularly for samples with
dark rim artefact-induced noise. However, the effect of
artefact was minimal on the models based on SVM and
RF, as they yielded reasonably accurate estimates of
MBF also for samples with dark rim artefact (Figs. 5a
and 5b).

Classification

In addition to prediction of MBF, classifiers were
developed to evaluate the capacity of the SVM and RF
to recognize samples with dark rim artefact-induced
noise from their tissue impulse response. As in the
regression analysis, SVM was optimal (optimal
parameters: C = 1, kernel = radial basis function,
gamma = 100) for detecting samples with dark rim
artefacts based on their tissue impulse response signals
(Fig. 6). While RF was sensitive in detecting artefacted
signals, it misclassified 13 non-artefacted signals.
Conversely, SVM classified only 4 out of 48 signals
incorrectly as shown in the confusion matrices (Fig. 6).

FIGURE 3. Analysis of the data. First, data is split to calibration and training sets. Calibration set is used to train the model (SVM,
RF or linear regression). Test set is then used as a new input for testing the created model. Red data curves indicate the impulse
responses with dark rim artefact-induced noise, and green ones without this noise.
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DISCUSSION

In this study, we investigated the potential of ma-
chine learning methods for predicting myocardial
blood flow (MBF) from the time-dependent tissue
impulse response in a porcine model. The tissue im-
pulse responses were obtained by modified dual bolus
contrast agent-enhanced MRI examination.

In general, the machine learning methods (SVM and
RF) were found to give more reliable estimates of
MBF outperforming traditional linear regression
(Figs. 5c and 5f), with SVM presenting the optimal
model (Figs. 5a and 5d) for estimating the MBF from
the impulse response input signal. It is worth noting
that there was only slight difference in performance

between SVM and RF in estimating the MBF from the
impulse response input signal (Table 1 and Fig. 4). The
dark rim artefact is very common with high field
strengths and high contrast agent concentrations. This
was the case also in this work. Dark rim artefact
appeared as decreased SI in myocardium at the same
time with the arrival of the contrast agent in the left
ventricle. Distortion of the tissue enhancement curve
causes incorrect results when determining the values of
MBF in model independent deconvolution method,
which produced the estimates of MBF for linear
regression method. The model independent deconvo-
lution method gets its estimate of MBF from tissue
impulse response h(t = 0)8; however, the machine

TABLE 1. Performance metrics of the different regression algorithms evaluated for estimating myocardial blood flow (MBF) from
tissue impulse response.

Support vector machine Random forest Linear regression

Calibration

Spearman rho 0.924 0.925 0.611

R2 0.892 0.875 0.336

RMSE (mL/g/min) 0.55 0.59 1.35

MAE (mL/g/min) 0.33 0.40 1.00

Test

Spearman rho 0.756 0.764 0.711

R2 0.807 0.744 0.602

RMSE (mL/g/min) 0.67 0.77 0.96

MAE (mL/g/min) 0.55 0.65 0.85

ncalibration = 168 (nnon-artefact = 89 (53%), nartefact = 79); ntest = 48 (nnon-artefact = 25 (52%), nartefact = 23).

Spearman rho Spearman’s rank correlation coefficient, R2 coefficient of determination, RMSE root mean square error, MAE mean absolute

error.

FIGURE 4. Comparison of the regression algorithms. The machine learning algorithms SVM and RF are superior compared with
the linear regression method. Test set validation shows that SVM is the most accurate method to predict the value of MBF.
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learning methods use the whole h(t), which includes
multiple features, including noise introduced from
dark rim artefact.

There are also other factors inducing noise to the
tissue enhancement curve in clinical setting. For
example, arrhythmias are very common in several
myocardial diseases. Arrhythmias can disrupt the

ECG-gating, which is necessary in dynamic heart
imaging. Furthermore, dynamic imaging studies are
often performed during free breath. As a result, it is
possible that the heart moves during the dynamic
imaging series. However, modern algorithms are able
to correct the movements effectively. The uptake of
contrast agent declines in ischemic myocardium, giving

FIGURE 5. The calibration sets of (a) support vector machine, (b) random forest and (c) linear regression methods. The test sets
of (d) support vector machine, (e) random forest and (f) linear regression methods. Large variation in test set of linear regression
method can be seen. This is due to error, which is caused by dark rim artefact in numerous signals.

FIGURE 6. Confusion matrices showing the classification performance of (a) SVM and (b) RF for detecting if the tissue impulse
responses contains artefact-induced noise.
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rise to reduced signal intensity in the affected areas.
This leads to diminished signal-to-noise ratio of the
tissue enhancement curve. In addition, all implants
(coils, stents, etc.) in the heart may cause image arte-
facts, and thus noise to the tissue enhancement curve.

The relatively strong performance of SVM and RF
in the classification and regression tasks defined in the
present study, relative to linear regression, was ex-
pected, since these methods have previously demon-
strated superior capacity in other areas of
biomedicine.18 In addition, SVM and RF are capable
of determining the relative importance of features
within the input data, making them more robust and
less sensitive to artefact-induced noise in the tissue
impulse response input data. Therefore, machine
learning methods can enable creation of models that
are tolerant to artefact-induced noise. Thus, their
ability to predict MBF reliably, even for artefacted
parts of myocardium presents great clinical advantage.

As mentioned earlier, the image artefacts may lead
to incorrect estimation of MBF. Therefore, it could be
useful if the analysis method can recognize these dis-
tortions and inform the user. Machine learning meth-
ods, specifically SVM, was found to be sensitive (96%)
and specific (88%) in distinguishing between artefacted
and non-artefacted tissue impulse response input, with
an accuracy 92% (Fig. 6a), outperforming RF which
achieved a classification accuracy of 73% (Fig. 6b).
The ability to tune the hyperparameters of the machine
learning algorithms by automatically searching the
hyperparameter space for the optimal hyperparameter
combination allows tailoring of the algorithm to a
specific dataset, thus improving the models’ perfor-
mance. For example, while the linear kernel SVM is
the most common, we determined via grid search of the
hyperparameter search space that radial basis function,
a nonlinear kernel, was optimal for defining the rela-
tionship between the input and output in both the
classification and regression tasks.

In this study, MR and PET data collected from
healthy and ischemic myocardium was used to create
three different regression models. All the models
developed in this study were based on data collected
from pigs. Therefore, the method would need to be
further validated and optimized prior to use with
humans. The animal model of this study consisted only
of five pigs, and therefore do not represent the full
spectrum of myocardial conditions. Thus, we believe
that the reliability and accuracy of support vector
machine and random forest could be further improved
with a larger study population.

Although PET was used as a reference for the
contrast agent-enhanced MRI-based method, it should
be noted that PET and contrast agent-enhanced MRI
measure different things because, unlike radioactive

water, the extraction of gadoteric acid is not 100%.
However, the machine learning methods minimizes the
discrepancy between these methods, because the
developed machine learning models allows the predic-
tion of PET perfusion from the tissue impulse response
which is measured using gadoteric acid enhanced MRI.

In the future, PET will likely remain the gold stan-
dard. However, the availability of MRI is remarkably
better than that of PET. More so, when compared with
PET, MRI provides more information during the same
imaging session. For example anatomy, pump function
and tissue characteristics can be investigated during
same MR imaging session. Furthermore, AI is a
powerful and fast method for analysis of MR images.
Thus, due to ease of accessibility, the technique pre-
sented in the present study could provide a potential
alternative when PET is not available for all patients.

To conclude, machine learning methods enabled
reliable identification of noisy signals and accurate
estimation of MBF at rest and stress, even from noisy
signals. Clinically, this could provide a tool for quality
control in diagnostics and a protocol for easy estima-
tion of MBF. SVM was found to give the most accu-
rate estimates of MBF at both artefacted and non-
artefacted areas of the myocardium. SVM was also
optimal for detecting the artefacted data. The outcome
of this study could constitute a significant improve-
ment in the diagnosis of myocardial diseases. However,
although pig is considered as excellent animal model
for cardiology research, there are some anatomical
differences between pig and human heart. Therefore,
further research is needed to test the applicability of
this technique for clinical use with human patients.
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