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ABSTRACT

Context. Given their uniqueness, the Ulysses data can still provide us with valuable new clues about the properties of plasma pop-
ulations in the solar wind, and especially about their variations with heliographic coordinates. In the context of kinetic waves and
instabilities in the solar wind plasma, the electron temperature anisotropy plays a crucial role. To date, two electron populations (the
core and the halo) have been surveyed using anisotropic fitting models, limited in general to the ecliptic observations.
Aims. We revisit the electron data reported by the SWOOPS instrument on board the Ulysses spacecraft between 1990 and early
2008. These observations reveal velocity distributions out of thermal equilibrium, with anisotropies (e.g., parallel drifts and/or differ-
ent temperatures, parallel and perpendicular to the background magnetic field), and quasi-thermal and suprathermal populations with
different properties.
Methods. We apply a 2D non-linear least squares fitting procedure, using the Levenberg–Marquardt algorithm, to simultaneously fit
the velocity electron data (up to a few keV) with a triple model combining three distinct populations: the more central quasi-thermal
core, the suprathermal halo, and a second suprathermal population consisting mainly of the electron strahl (or beaming population with
a major field-aligned drift). The recently introduced κ-cookbook is used to describe each component with the following anisotropic
distribution functions (recipes): Maxwellian distribution, regularized κ-distribution, and generalized κ-distribution. Most relevant are
triple combinations selected as best fits (BFs) with minimum relative errors and standard deviations.
Results. The number of BFs obtained for each fitting combination is 80.6% of the total number of events (70.7% in the absence of
coronal mass ejections). Showing the distribution of the BFs for the entire data set, during the whole interval of time, enables us to
identify the most representative fitting combinations associated with either fast or slow winds, and different phases of solar activity.
The temperature anisotropy quantified by the best fits is considered a case study of the main parameters characterizing electron pop-
ulations. By comparison to the core, both suprathermal populations exhibit higher temperature anisotropies, which slightly increase
with the energy of electrons. Moreover, these anisotropies manifest different dependences on the solar wind speed and heliographic
coordinates, and are highly conditioned by the fitting model.
Conclusions. These results demonstrate that the characterization of plasma particles is highly dependent on the fitting models and
their combinations, and this method must be considered with caution. However, the multi-distribution function fitting of velocity
distributions has a significant potential to advance our understanding of solar wind kinetics and deserves further quantitative analyses.

Key words. plasmas – Sun: heliosphere – solar wind – methods: data analysis

1. Introduction

The solar wind is a hot and dilute plasma that constantly streams
from the Sun and fills interplanetary space (Marsch 2006;
Lazar 2012). Its collision-poor nature allows for departures
from thermal (Maxwellian) equilibrium (Kasper et al. 2006;
Štverák et al. 2008; Wilson et al. 2019b, 2020), which persist,
being most probably maintained by the resonant interaction
with wave turbulence and fluctuations (Bale et al. 2009; Yoon
2011; Alexandrova et al. 2013). In situ observations regularly
reveal typical non-thermal characteristics in the particles’ veloc-
ity distributions including the following: (i) enhanced suprather-
mal tails caused by an increased number of particles in the
high-energy regime of the distribution (Maksimovic et al. 1997;
Štverák et al. 2008; Mason & Gloeckler 2012); (ii) temperature
anisotropies (different temperatures parallel and perpendicu-

lar to the ambient magnetic field; Kasper et al. 2006; Marsch
2006; Štverák et al. 2008); and (iii) anti-sunward field-aligned
beams (also called strahls; Pilipp et al. 1987c; Pierrard et al.
2001; Wilson et al. 2019a).

In the electron distributions up to a few keV, three prominent
components can be identified (Pierrard et al. 2001; Wilson et al.
2019a). First, the core of the distribution is represented by
a quasi-thermal component, with up to 80–90% of the total
particle number density, and well described by a Maxwellian
distribution. Second, with about 5–10% of the total number
density, a suprathermal component, commonly referred to as a
halo, contributes to an enhancement of the distribution tails and
can be modelled by an Olbertian Kappa (or κ-) power-law dis-
tribution function. Third, a further constituent termed a beam
or strahl can be found and has a noticeable field-aligned drift
(or relative beaming speed; Pilipp et al. 1987c; Marsch 2006).
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The number density of the strahl population is even less than
that of the halo, and can also be described by a (drifting)
κ-distribution (Wilson et al. 2019a). While these three compo-
nents can individually be described by the mentioned distri-
bution functions, different combinations are employed for an
overall fit. If the beam has a very low density, a dual model
can be used to fit the core and halo (Lazar et al. 2017). Oth-
erwise, if the beam appears more clearly, a triple model that
includes the strahl can be invoked (Wilson et al. 2019a). In
closed magnetic field topologies such as coronal loops where
double strahls (two counterbeaming strahls) have been observed
(see Lazar et al. 2014 and references therein), a quadruple model
can be applied (Macneil et al. 2020). Sometimes a superhalo
component is mentioned (Yoon et al. 2013), but these popula-
tions may enhance the higher energy tails above 10 keV (Lin
1998). Thus, with the electron data up to a few keV, and exclud-
ing those associated with closed magnetic field lines of coronal
mass ejections, the present study is limited to a triple model (see
Sect. 2).

Particles in heliospheric plasmas such as the solar wind
are subject to processes involving non-thermal acceleration.
Their distribution tails then no longer exhibit a Maxwellian
(i.e., exponential) cutoff, but often a decreasing power law.
These non-equilibrium distributions are well parameterized by
the Kappa distribution, introduced empirically by Olbert (1968),
and published for the first time by Vasyliunas (1968) as a
global fitting model that does not distinguish between core and
halo. More rigorous analyses involve a combination of multiple
(anisotropic) distribution functions, including Maxwellian and
Kappa distributions (Pilipp et al. 1987a,b,c; Maksimovic et al.
2005; Štverák et al. 2008). The Kappa distribution proved to be a
powerful tool for modelling non-thermal distributions, and also
became notorious for its critical limitation in defining macro-
scopic physical properties by the velocity moments, for example
of order l, which diverge for low power exponents κ < (l + 1)/2
(Lazar & Fichtner 2021). For this reason, a generalization of the
(isotropic) standard Kappa distribution has recently been intro-
duced by Scherer et al. (2017), termed the regularized Kappa
distribution, for which all velocity moments converge. An exten-
sion to the anisotropic regularized Kappa distribution has been
presented in Scherer et al. (2019). The mathematical definitions
of these distribution functions are given in Sect. 2.

The present paper aims at a re-evaluation of the Ulysses
electron data obtained between 1990 and 2008, and is build-
ing on the work in Scherer et al. (2021). For a realistic analy-
sis, we incorporated the anisotropic nature of the distributions
by applying a 2D fitting method. In order to take potential sin-
gle components of the distributions into account, we use a triple
model including a quasi-thermal core, a suprathermal halo, and a
suprathermal strahl component. For the model distributions, we
chose the anisotropic bi-Maxwellian, the regularized bi-Kappa,
and the generalized anisotropic regularized Kappa distribution,
which was introduced in an attempt to unify the various com-
monly used Kappa distributions (Scherer et al. 2021). By estab-
lishing conditions defining good fits (GFs) and best fits (BFs), in
Sect. 2 we describe their distributions for the entire data set, and
separately for each year. Section 3 contains a breakdown of the
Ulysses data according to latitude and solar wind speed, which
establish a connection to the point in the solar cycle at that time.

After introducing formulas used to compute the electron
parameters (e.g., temperature anisotropies), in Sect. 4, we con-
sider temperature anisotropy as a case study, and identify corre-
lations between temperature anisotropy and other quantities such

as the solar wind speed, parallel plasma beta, and other param-
eters more specific to distribution models. The paper ends with
conclusions in Sect. 5.

2. The models

We fit the Ulysses electron data from the SWOOPS instrument
(Bame et al. 19921) (in ‘Additional datasets’) by assuming that
up to three electron populations exist: a core component (sub-
script c), a halo component (subscript h), and a strahl compo-
nent (subscript s). The total combined distribution function and
its moments are indicated by the subscript t:

ft = fc + fh + fs. (1)

The distribution functions fi, i ∈ {c, h, s} are described below.
Our aim is to satisfy the condition

nc > nh > ns, (2)

with ni denoting the corresponding number densities.
The distribution function fi can be an anisotropic

Maxwellian distribution (AMD), a regularized anisotropic
Kappa distribution (RAK), or a generalized anisotropic Kappa
distribution (GAK). These types of distributions can be
described by the recipes introduced in Scherer et al. (2020),
where the general recipe (η‖, η⊥, ζ, ξ‖, ξ⊥), abbreviated already
with GAK, is given by

fGAK(η‖, η⊥, ζ, ξ‖, ξ⊥) = n0 NGAK (3)

×

(
1 +

(v‖ − u)2

η‖Θ‖2
+

v⊥
2
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)−ζ
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(
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where v‖ and v⊥ are the parallel and perpendicular velocity com-
ponents, respectively, with respect to the magnetic field, and u
is a parallel drift speed. The parameters η‖, η⊥, ζ, ξ‖, ξ⊥ are con-
stants with respect to velocity, space, and time, and Θ‖ and Θ⊥
normalize the velocity components and often are termed thermal
speeds. The normalization constant of the distribution function
in Eq. (3) reads

N−1
GAK =

√
π3Θ‖Θ⊥

2η‖
1
2 η⊥ (4)

×

1∫

0

U
(

3
2
,

5
2
− ζ, ξ⊥η⊥ + (ξ‖η‖ − ξ⊥η⊥)t2

)
dt,

with U(a, b, x) being the Kummer-U function. The AMD is then
given by the recipe (1, 1, 0, 1, 1), while the RAK is represented
by (κ, κ, κ + 1, ξ‖, ξ⊥). To these free parameters come in addition
the dependent variables n0,Θ‖,Θ⊥, and u. Thus, for the AMD we
have to fit four parameters, for the GAK 9 and for the RAK 7.
We allowed that the number of data points equals the number
of free parameters, which is rarely the case. Usually there are
more than 60 data points to be fitted. If there are fewer points,
the mean error and the standard deviation are larger than 0.3 (see
below).

For the total combined distribution function we introduce the
generic notation ft = fi jk, where this time the indices i, j, and k
indicate the fitting models. Thus, to avoid further clumsy nota-
tion, we use the index 1 for the AMD, 2 for the GAK, and 3
for the RAK, while 0 indicates that no model is used for the

1 http://ufa.esac.esa.int/ufa/#data
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Fig. 1. Histogram of the GFs of the entire data set for each fitted (total)
distribution fi jk. The blue boxes show the additional GFs for the events
during CMEs. See Table 1 for the corresponding values.

respective component (i.e., for single or double fitting models).
We write, for example, for a distribution function

f123 = fc,1 + fh,2 + fs,3, (5)

which means that f123 has an AMD core, a GAK halo, and
an RAK superhalo/strahl. We used the fitting method described
in Scherer et al. (2021), which is similar to that applied by
Wilson et al. (2020). The data were fitted with the following
combinations of distribution functions: f100, f200, f300, f110, f120,
f130, f111, f112, f113, f121, f122, f123, f131, f132, f133. For double or
triple combinations, we always assume that the core distribution
is Maxwellian.

To check the quality of the fits we define the relative error

Ei =
| ffit,i − fobs,i|

fobs,i
(6)

for each data point i, and the mean relative error 〈E〉 and its stan-
dard deviation σ as

〈E〉 =
1
N

N∑

i=1

Ei, (7)

σ =

√√√
1

N − 1

N∑

i=1

(〈E〉 − Ei)2. (8)

For a GF (see Fig. 1) we require that 〈E〉 ≤ 0.3 and σ ≤ 0.3
(Scherer et al. 2021). The events that do not obey this condition
or condition (2) for the number densities are rejected. Further-
more, we define the BF (see Fig. 2) as the minimum of 〈E〉 and
σ of all GFs.

Our analysis covers the Ulysses data from the launch in late
1990 to early 2008. In total, there are 324 450 events, includ-
ing 30 558 events during coronal mass ejections (CMEs), which
are taken from Richardson (2014). During CMEs (reduced in
number, below 10% of the number of events of a certain rele-
vance) the electrons may exhibit a double strahl or two beam-
ing components, sunwards and anti-sunwards, moving along the
closed magnetic field topology. Thus, a double strahl (more or
less symmetric) is not reproduced by our models, but it can
mimic a suprathermal component with an excess of tempera-
ture anisotropy in the direction parallel to the magnetic field. To
avoid such a confusing interpretation, the events during CMEs
are counted separately in our present analysis. In addition, we
rejected 2139 events that violated condition (2). The total num-
ber of bad fits is about 20%. Ideally, a data set consists of
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Fig. 2. Histogram for the BFs of the entire data set. The green boxes
show the BFs without CMEs; the blue boxes show the additional BFs
with CMEs. See Table 1 for the corresponding values.

Table 1. Number of events (in %) corresponding to the BFs and to the
GFs of all combinations of distribution functions in Figs. 1 and 2.

fi jk BF w/o CMEs BF GF w/o CMEs GF

f100 0.0 0.0 0.0 0.0
f200 0.3 0.3 3.2 0.3
f300 0.1 0.1 3.9 4.2
f110 0.0 0.0 1.5 1.7
f120 7.1 8.2 37.7 42.7
f130 1.7 1.9 22.4 25.2
f111 21.2 23.9 69.9 78.9
f112 0.2 0.2 5.8 6.5
f113 0.1 0.1 2.6 2.9
f121 19.1 21.9 53.9 61.4
f122 3.2 3.8 37.7 43.2
f123 1.1 1.3 35.6 40.4
f131 12.1 13.6 44.3 49.8
f132 3.8 4.5 39.5 44.9
f133 0.7 0.8 28.8 32.7

400 data points with finite values, but most of the time there are
much fewer such points, due to the missing data. If the number
of these points is too low, the fits become unreliable, as indi-
cated by the mean error and the standard deviation in the case
of rejected fits. The data set is given in keV without any error
estimates, thus we were not able to weight the data according
to their observational errors, and therefore the weight is always
unity.

In Fig. 1 we show the distribution of GFs for all individ-
ual distributions functions fi jk. The most reduced relevance can
be attributed to single fits, like f100, f200, or f300, with less than
4% of the total events, and those reproducing the halo with a
Maxwellian and the strahl with GAK ( f112 with GFs <7%) or
RAK ( f113, with GFs <3%); see Table 1. The highest peak is
given by a standard combination of three AMDs, that is, the f111
combination, with the ability to provide GFs for about 70% of
the total data (in the absence of CMEs, in green). However, GFs
are also obtained with all the other combinations involving GAK
or RAK for describing the suprathermal populations. These com-
binations dominate the histogram with representations between
20% and more than 50% of the total number of events: f130
with ∼22.5%; f133 with ∼29%, f120, f122, f123, and f132, each
approaching 40%; f131 with ∼45%; and f121 with ∼54% (see
Table 1).
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Fig. 3. Correlating the mean error of GFs of the f121 distribution and
the mean error of GFs of the f131 distribution. The red line indicates the
threshold for a GF.

These results are refined in Fig. 2, which shows the distri-
bution of the BFs for the entire data set (in green for the events
without CMEs). The number of BFs (in %) obtained for each
combination of distribution functions is given in Table 1, and
together sum up to 80.6% of the total number of events (70.7%
without CMEs). Thus, each valid event is assigned one of these
fitting combinations fi jk. It can be seen that 21.2% of the events
without CMEs are best fitted by the f111 combination. This is
closely followed by f121 with 19.1%, and then by f131 with
12.1%, f120 with 7.1%, f132 with 3.8%, f122 with 3.2%, and f130
with 1.7%. Remarkably, there are dual core–halo distributions
(in the absence of strahl, i.e., f120 and f130), with almost 9% of
the relevant events. BFs around 1% are obtained for combina-
tions like f123 and f133, while single distributions using GAK
(i.e., f200) or RAK (i.e., f300) have a very reduced presence, with
0.3% and 0.1%, respectively. Fitting models involving general-
ized Kappa distributions, like GAK or RAK, total 56.7% of the
events (49.5% without CMEs). It is noteworthy that 59.4% of the
events (52.4% without CMEs) have the strahl component best
reproduced by an AMD, while halos are described by a GAK in
about 35% of the events (30.5% without CMEs), and by an RKD
in about 21% of the events (18.3% without CMEs). We also note
that the most prominent fit combines three AMDs, for 24% of
all events (21.2% without CMEs).

In order to check if the more complicated GAK–halo distri-
bution ( f121) could be replaced by a simpler RAK–halo distribu-
tion ( f131), we compare the BFs of the f121 distribution with the
GFs of the f131 distribution. Figure 3 displays the mean error of
the BFs of the f121 distribution against the mean error of GFs of
the corresponding f131 distribution. It can be seen that about half
of the f121 distributions can be replaced by the f131 distribution
and still obtain a GF. In total, we have 63 821 f121 BF events,
which can be replaced by 37 263 GF events of the f131 distribu-
tion. Thus, about 58% of the f121 distribution could be replaced
by the f131 distribution. This can be helpful in analytic studies
of dispersion relations. Nevertheless, we still have about 42%
(26 558) events of the f121 distribution for which the fits of the
f131 distribution give only bad results.

The total number of bad fits is about 19.4% or 62 843 events,
together with 2139 rejected events (0.66%). These data shall
be handled individually (about 20%) because the fit procedure
needs to start with a different initial guess, the data sets are too
spare to be fitted, or the data cannot be fitted with the above com-

binations of distribution functions. In the present analysis, from
the total number of events we consider the remaining majority
of 80%, or 259 365 events. In the following we discuss the cor-
relation between macroscopic parameters, and concentrate only
on the BFs that are unique. We mainly refer to the most repre-
sentative combinations (e.g., f111, f121, and f131), although the
analysis may also take into account the less prominent examples
(e.g., f120, f122, or f132).

3. Time and speed variations

We recall the time and latitude dependence of the solar wind
speed along the Ulysses trajectory (McComas et al. 2008),
and again present in Fig. 4 the angular distribution from
McComas et al. (2008). It can be seen that during the first and
third latitude scan there are low solar wind speeds below ≈35◦

latitude and high speeds above ≈35◦ latitude, and almost no
intermediate speeds. This is different during a more active Sun
in the second scan, when the speeds scatter over all latitudes.

The difference in solar wind speeds depending on the latitude
is also evident in Fig. 5, which shows the histograms of the num-
ber of events (in %) as a function of the solar wind speed. We
split the figure into a part for low latitudes <30◦ (upper panel)
and a part for high latitudes >40◦ (lower panel). This time the
events (and the corresponding values) without CMEs are given
in black, while those during CMEs in blue. The gap at inter-
mediate speeds, with about 2.5% of events, is obvious around
≈650 km s−1. These histograms also show that the low speeds
cluster around 450 km s−1 at low latitudes near the ecliptic (upper
panel), while the high speeds cluster around 750 km s−1 at high
latitudes towards the poles and coronal holes (lower panel).
Thus, high speeds are mainly observed during solar minimum
(see also McGregor et al. 2011).

In Fig. 6 the histogram of Fig. 2 is divided into individual
years. This helps us to find the combinations of distribution func-
tions relevant for each orbit of the Ulysses missions, and implic-
itly for different solar activities. These combinations are also
indicated in Fig. 4, in order of their relevance as follows: [ f111,
f121, f131, f120] for the first and third orbits, and [ f121, f111, f131,
f120] for the second orbit. Instead, the f111 and f131 distributions
have a dip around the years 1996–2000, which is the ascend-
ing phase of solar cycle 23 (see Fig. 4), while the f121 and f122
distributions show a maximum. Unfortunately, this is the only
ascending phase covered by the Ulysses mission. Therefore, we
can only guess that during the ascending phases of a solar cycle,
the f121 ( f122) distributions are more appropriate. In two declin-
ing phases (that of solar cycles 22 and 23) the distribution func-
tions f111 and f131 give the most relevant BFs, although f121 is
also well represented in this case. Thus, in a declining phase of
a solar cycle, the electron distributions are better reproduced by
three Maxwellians, meaning that they are, individually, closer
to thermal equilibrium. Contrarily, in the rising phase, when the
solar activity increases, the halo distribution is not well fitted by
Maxwellians, meaning that the particles are no longer in ther-
mal equilibrium. The above also holds true for the period around
2002, where the f111 and f131 distributions have a minimum, and
later at 2007 show a maximum (and vice versa for the f121 and
f122 distributions). However, because this is at the end of the mis-
son and no further data are available, we cannot safely conclude
that this time dependence is verified by observations. The reason
is that the time series only covers parts of a solar Hale cycle, but
at least a few such cycles were needed. From a theoretical point
of view the time dependence can be explained by the changing

A67, page 4 of 11



K. Scherer et al.: Revisiting Ulysses electron data with a triple fit of velocity distributions

Fig. 4. Ulysses solar wind speeds over time, adapted from McComas (2008). The three upper panels show the solar wind proton speed as a function
of heliographic latitude in a polar coordinate system, during solar minimum (upper right panel), solar maximum (upper centre panel), and again
solar minimum (upper left panel). The corresponding sun spot number (solar activity) is shown in the lower panel, where the black line gives the
sunspot number and the red line the tilt angle. Indicated in the lower inset are the dominant distribution functions during that period to illustrate
the solar cycle dependence of the electron distribution functions shown in Fig. 6.

magnetic field in the rising phase and the beginning of the solar
activity. Thus, the non-equilibrium distributions f121 ( f122) can
be caused by an enhanced flare activity. This proposed context
needs a more detailed analysis including all spacecraft and solar
data, which is far beyond the topic of this work.

4. Case study: Temperature anisotropy

We define the four temperature anisotropies as

Ai =
T⊥,i
T‖,i

=
P⊥,1
P‖,i

, i ∈ {t, c, h, s} (9)

and we define the parallel plasma beta as

β‖,i =
8πP‖,i

B2 , i ∈ {t, c, h, s}, (10)

with magnetic field magnitude B. The β⊥ can be defined, but
is not discussed here. See Appendix A for further information
including the representation method in Figs. 7–10. Furthermore,
we only discuss the events without CMEs, and the distributions
in the CMEs will be left for future work. We display the total
number of events on a multi-coloured scale, while the number of
core events is displayed on a red scale, that of the halo on a blue
scale, and that of the strahl on a green scale.

4.1. Temperature anisotropy and solar wind speed.

Figures 7 and 8 display the colour-coded binned number of
events N i

vA, i ∈ {t, c, h, s} (see Appendix A.1), in a plot with the
solar wind speed versus the temperature anisotropy (Eq. (9)).
In Fig. 7 we correlate temperature anisotropy and solar wind
speeds for the total distribution function of all events (upper left
panel), and only for the core (upper right panel), for the halo
(lower left panel), and for the strahl (lower right panel). In the
upper left panel, four maxima in the number of all events N t

vA
can be identified: the first between vsw = 300−500 km s−1 and an

anisotropy of A ≈ 1, the second between vsw ≈ 700 km s−1 and
vsw ≈ 800 km s−1 and A ≈ 1, and the third and fourth at about the
same solar wind speeds, but at lower temperature anisotropies
A ≈ 0.5. The core distribution contributes mainly to the first and
second maxima (upper right panel), while the halo distribution
determines the third and fourth maxima, and contributes also to
the first and second maxima (lower left panel). The strahl distri-
bution (lower right panel) contributes primarily to the first and
second maxima. This implies that the temperature anisotropy
is mainly caused by the halo and strahl components, while the
core distribution is well fitted with an isotropic (A = 1) temper-
ature distribution function. The dip at solar wind speeds about
vsw ≈ 650 km s−1 is due to the fact that these speeds are rare (see
Figs. 4 and 5).

Figure 8 is structured similarly to Fig. 7, and shows a com-
parison of fall with f111, f121, and f131 (from left to right) by plot-
ting N i

vA of the corresponding total, core, halo, and strahl dis-
tributions. It can be seen that the f111 distributions have max-
ima at temperature anisotropies around A = 1 for all four plots:
total, core, halo, and strahl. The f121 distribution has two maxima
along A ≈ 1 and A ≈ 0.5, where the former is mainly the con-
tribution from the core, while the latter are contributions from
the halo and the strahl. The core of the f121 distribution has a
behaviour similar to that of f111 distribution, that is, it scatters
mainly around A = 1. A similar behaviour shows the f131 dis-
tribution, except that the halo does not scatter as much as the
halo of the f121 distribution. In addition, the total anisotropy
is smoother for the f131 distribution. The total anisotropy for
the f111 distribution scatters only around A = 1 (temperature
isotropy), while the total of the f121 distribution has two max-
ima around A = 1 and A = 0.5, similar to the f131 distributions,
except that the second maximum around A = 0.5 is not very pro-
nounced. The dips are again explained by the absence of speeds
about vsw ≈ 650 km s−1 (see above).

The f121 distribution shows the strongest scattering in the
halo and superhalo component. Nevertheless, because this is the
BF, it indicates that there might be another distribution func-
tion involved not covered by the fitted AMD, RKD, or GAK
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Fig. 5. Histograms of the number of events depending on solar wind
speed during the Ulysses mission, from low latitudes <30◦ (upper
panel) and from high latitudes >40◦ (lower panel).

distributions. The scattering in the fitted halo by the f121 distri-
bution might also occur due to the general nature of the GAK.
We do not make a closer inspection here, but state that the bulk
of the data is in the maximum of the f121 distribution, so that the
GAK can be used for fitting.

To conclude this section, we point out that the core has in
this analysis a bi-Maxwellian distribution, which can be replaced
by an isotropic Maxwell distribution, while the halo and super-
halo/strahl are best fitted with anisotropic distributions (here an
RAK or GAK). In many cases we can also replace the GAK by
the RAK (see the discussion in Sect. 2).

4.2. Temperature anisotropy and parallel plasma beta

Figure 9 displays the temperature anisotropy as a function of
the parallel plasma beta. In the top panel of first column the
total temperature anisotropy of all events is shown. For all dis-
tributions, the core events (second row) show small deviations
from isotropy and distribute regularly, approximately parallel to
the x-axis. The halo events (first column, third row) predomi-
nantly show an excess of parallel temperature T‖,h > T⊥,h, reveal-
ing a mushroom-like shape, with the ‘stalk’ at β‖ ≈ 0.1, and
the ‘cap’ widely ranging from very low to high values of β‖,h:
10−4 < β‖,h < 50. The strahl events (first column, fourth row)
are similar, but spread at slightly lower values of β‖,s < 1. The
distributions of these data are very similar to those obtained by
Štverák et al. (2008) with the ecliptic electron data.

The second, third, and fourth columns of Fig. 9 display the
events fitted by f111, f121, and f131, respectively. It can be seen
that the f111 distribution has a very weak scattering in all com-
ponents and is quite similar to the above-mentioned plots by
Štverák et al. (2008). This is also true for the core events of all
other distributions (second row). However, the halo events of the
f121 and f131 distributions show much stronger scattering (third
row). Although more constrained, the strahl component (fourth
row) shows the same variation. For all distributions, the stalk is
thus a feature mainly resulting from the other distributions not
shown here (e.g., the f120 and f122 distributions).

4.3. Temperature anisotropy and κ, η‖, η⊥, and ζ parameters

In Fig. 10 we show the correlation between parameters of the
halo components of the f131 and f121 distributions with the tem-
perature anisotropy. The color-coding is given at the top of each
panel. In the upper left panel the scattering of the κ values of
the f131 distribution is shown. We can see that κ has only val-
ues between 0 and about 2.5. It is also evident that the lower
the κ values, the lower the halo temperature anisotropy; in other
words, the perpendicular temperature is much higher than the
parallel temperature. The reason for κ values only below 2.5
can be due to the fact that for higher κ values the distribu-
tion is comparable to a Maxwellian, and thus the distribution
f121 approaches f111. However, this statement requires more
research.

For the f121 distribution, the scattering of the η‖, η⊥, and ζ
parameters is similar to the scattering of the κ values in the f121
distribution, except that η‖ has higher values (up to 5, see upper
right panel), while the η⊥ values are in a range similar to that
of κ (left lower panel). The ζ parameter (right lower panel) is
similar to the η⊥ parameter. The f131 halo component also shows
an increased scattering in the anisotropy around η‖ = 0, η⊥ = 0,
and ζ = 0, which can be caused by the fitting procedure due to
the small values of the corresponding parameters.

We computed a linear regression for the data shown in
Fig. 10 via

A(x) =
T⊥h

T‖h
= ax + b, (11)

where x ∈ {κ, η‖, η⊥, ζ}. The values for the fits are listed in
Table 2. The linear regression is quite good for A(κ), but for A(η‖)
and A(η⊥) the events form a curve asymptotically approach-
ing A = 1. The fit for A(ζ) runs through a cloud, which clus-
ters around the linear regression and scatters towards higher
anisotropies. Nevertheless, the simplified regressions can help us
to study the temperature anisotropy in the halo with increasing
values of κ, η‖, η⊥, and ζ.

5. Conclusions

In the present work we used a 2D fitting method, which
accounts for different temperatures, parallel and perpendicular
with respect to the background magnetic field, to fit the elec-
tron velocity distributions obtained during the Ulysses mission.
In doing so, we used a triple model to fit the core, halo, and
superhalo/strahl populations within the total distribution. As
model functions we applied an anisotropic Maxwellian distri-
bution (AMD), a generalized anisotropic Kappa (GAK), and a
regularized anisotropic Kappa (RAK) distribution. Our findings
indicate a time dependence of the electron distributions on the
solar cycle. Unfortunately, the data series is not long enough
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1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008

year f120 f111 f121 f122 f131 Sum
1990 0.00 0.32 0.06 0.01 0.05 0.39
1991 0.38 1.90 1.13 0.15 0.93 3.72
1992 1.16 0.63 1.53 0.31 0.53 3.94
1993 0.55 0.74 1.26 0.20 0.68 2.96
1994 0.05 2.08 0.96 0.07 1.55 3.24
1995 0.24 2.97 0.95 0.09 1.11 4.33
1996 0.76 0.90 1.76 0.26 1.08 3.95∑1996

1990 3.14 9.54 7.65 1.87 5.94 22.44
1997 0.83 0.38 2.48 0.64 0.45 4.98
1998 0.96 0.67 2.68 0.55 0.49 5.41
1999 0.89 1.00 1.83 0.37 0.70 4.46
2000 0.52 2.21 1.38 0.19 1.13 4.48∑2000

1997 3.20 2.64 8.37 1.75 2.77 19.33
2001 0.12 3.52 0.67 0.10 1.06 4.50
2002 0.52 1.75 1.28 0.24 1.02 4.01∑2002

2001 0.64 5.27 1.95 0.34 2.08 8.51
2003 0.73 1.34 1.76 0.30 0.88 4.43
2004 0.35 0.56 1.10 0.25 0.26 2.52
2005 0.00 0.00 0.00 0.00 0.00 0.00
2006 0.11 0.24 0.30 0.03 0.22 0.70
2007 0.05 2.63 0.68 0.07 1.37 3.51
2008 0.00 0.09 0.03 0.00 0.05 0.13∑1008

2003 1.24 4.86 3.87 0.65 2.78 11.29

Fig. 6. Histogram and table of relative numbers given on a yearly basis. Left panel: histogram for the BFs of individual years. Inside a distribution
function fi jk each bar represents the events per year, from 1990 to 2008. The data for 2005 are missing. The data for 1990 at the beginning of the
mission are very sparse, which is also the case towards the end of the mission (after 2005). Right panel: relative number of events by the BFs of
the five most representative distribution functions. For each intermediate row,

∑yy
yy gives the sum of the years above, and the last column (‘Sum’)

gives the sums of each row. The sum of the last column is 61.57%. Thus, with these five distribution functions we cover approximately 62% of all
events (70.7% events without CME).

Fig. 7. Correlating the solar wind speed (x-
axis) given in units of 100 km s−1 and the tem-
perature anisotropy (y-axis) for all events. The
number of events N i

vA is given in logarithmic
scale. Here we show the BFs of all fits, while in
the following we also show the fits for the f111,
f121, and f131 distributions. The upper left panel
shows the total anisotropy, the upper right panel
shows that of the core, while the lower left and
lower right panels that of the halo and strahl,
respectively.

to solidly confirm this behaviour. Nevertheless, the results sug-
gest that in a declining phase of a solar cycle, the individual
electron distributions are best described by three Maxwellians,
meaning that they are in thermal equilibrium. In the ascend-
ing phase, when the solar activity increases, the halo distri-

bution is not well fitted by a Maxwellian, which means that
the particles are out of thermal equilibrium. This behaviour
deserves more attention and should be combined with other
spacecraft data. However, due to the unique solar polar orbit
of Ulysses and that most of the other spacecraft are in the
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Fig. 8. Correlating the solar wind speed
and the temperature anisotropy without
CMEs. The results shown in the columns
from left to right are for fall, f111, f121, and
f131, respectively. Rows from top to bot-
tom display the results for the total, core,
halo, and strahl distributions, respectively.
See text for more details.

Fig. 9. Correlating the parallel plasma beta
and the temperature anisotropy. Panels are orga-
nized as in Fig. 8. See text for more details.

ecliptic (HELIOS) or close to the Sun (Parker Space Probe, Solar
Orbiter), in principle the distance and latitude effects need to be
subtracted.

While the core distribution can most likely be fitted with an
isotropic Maxwell distribution as the temperature anisotropy is

close to 1 (see the red panels in the figures in Sect. 4), the halo
and superhalo/strahl (the blue and green panels) are best fitted
with anisotropic distributions (here with an RAK or a GAK). In
many cases we can also replace the GAK by the simpler RAK,
resulting in a slightly worse fit (see Fig. 3).
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Fig. 10. Correlation between the temperature
anisotropy and parameters of the halo compo-
nents of the distributions are displayed. The
temperature anisotropy is compared with the
κ parameter of the f131 distribution (upper left
panel), and with the η‖, η⊥, and ζ parameters of
the f121 distribution (upper right panel, lower
left panel, and lower right panel, respectively).
For further explanation, see text.

Table 2. Fit values for the linear regression (Eq. (11)) as shown in
Fig. 10.

A(x) a b

A(κ) 0.25 0.11
A(η‖) 0.16 0.19
A(η⊥) 0.15 0.27
A(ζ) 0.23 −0.16

The parallel plasma beta correlation with the temperature
anisotropy is similar for the three distributions f111, f121, and
f131, but shows a stalk for the halo distribution in the sample
of all distributions. We also showed the correlation between the
temperature anisotropy and the κ parameter of the f131 distribu-
tion as well as the η‖, η⊥ and ζ parameters of the f121 distribution.
The temperature anisotropy shows almost a linear dependence
on κ with increasing values of κ, and the temperature anisotropy
becomes more isotropic. For the GAK parameters (η‖, η⊥, ζ) we
also found a linear dependence of the temperature anisotropy.

Finally, we would like to highlight Fig. 4, which shows that
during a solar cycle the type of distribution function changes
from mainly a f111 type near solar minimum to a more gen-
eral f121 type close to solar maximum, and then goes back to
f111 for the next minimum phase. These results demonstrate that
the multi-distribution function fitting of velocity distributions
has a significant potential to advance our understanding of the
solar wind kinetics and, therefore, deserves further quantitative
analyses.

The data sets were derived from sources in the public
domain2.

2 http://ufa.esac.esa.int/ufa/#data/
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Appendix A: Pressure and temperature
moments

We briefly repeat here the definitions given in Paschmann et al.
(1998) and Scherer et al. (2021). The partial parallel and perpen-
dicular thermal pressures are as follows:

Pth =
1
3


∑

i

P‖,i + 2
∑

i

P⊥,i

 i ∈ {c, h, s} (A.1)

⇒



P‖,th ≡
∑
i

P‖,i

P⊥,th ≡
∑
i

P⊥,i .

The total pressure Ptot is the sum of the thermal pressure plus
(twice) the ram pressure (see Scherer et al. 2021 for further
explanation).

The respective temperatures are given by the ideal gas law
as

T‖,i ≡
P‖,i
kBni

, T⊥,i ≡
P⊥,i
kBni

, i ∈ {c, h, s} (A.2)

with kB denoting Boltzmann’s constant, and

T‖,t =
∑

i

niT‖,i
nt

, T⊥,t =
∑

i

niT⊥,i
nt

, (A.3)

where the number density nt is given by

nt =
∑

i

ni , i ∈ {c, h, s} . (A.4)

A.1. Representation method

In the graphical representations we divide the x- and y-axis into
100 sub-intervals ∆xi and ∆y j, and compute the total number of
events (data points) Nall in each interval Ni, j/(∆xi∆y j) via

Nall =
∑

i, j

Ni, j/(∆xi∆y j) . (A.5)

As stated above, we only discuss the macroscopic parameters for
the most relevant distribution functions, according to their BFs,
that is fall, f111, f121, and f131, where fall are all the BFs including
all distributions fi jk. We always show the total first, and then
core, halo, and superhalo/strahl moments for fall, and then we
show how the moments for the single distributions f111, f121, and
f131 contribute to fall.
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