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Abstract

We introduce a multi-label classification sys-
tem for the automated assignment of diag-
nostic codes to radiology reports. The sys-
tem is a cascade of text enrichment, feature
selection and two classifiers. It was evaluated
in the Computational Medicine Center’s 2007
Medical Natural Language Processing Chal-
lenge and achieved a 87.7% micro-averaged
F1-score and third place out of 44 submis-
sions in the task, where 45 different ICD-9-
CM codes were present in 94 combinations.
Especially the text enrichment and feature
selection components are shown to contribute
to our success. Our study provides insight
into the development of applications for real-
life usage, which are currently rare.

Appearing in the Proceedings of the ICML/UAI/COLT
2008 Workshop on Machine Learning for Health-Care Ap-
plications, Helsinki, Finland, 2008. Copyright 2008 by the
author(s)/owner(s).

1. Introduction

The application of natural language processing (NLP)
methods to clinical free-text is of growing interest
for both health care practitioners and academic re-
searchers; the motivation being the potential of these
applications to support the use of the gathered in-
formation in decision-making, administration, science,
and education. However, applications used in direct
care are still rare.

In spring 2007, an international challenge on the devel-
opment of machine learning and NLP-based methods
for this domain was organized. The task was to auto-
mate the assignment of International Classification of
Diseases, Ninth Revision, Clinical Modification (ICD-
9-CM, National Center for Health Statistics (2007))
codes to free-text radiology reports (Computational
Medicine Center, 2007). All applicable codes were to
be assigned to each report. The challenge organizers
motivated the task with its practical importance for
hospital administration and health insurance because
the codes serve as justification for having specific pro-
cedures performed.
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This application paper describes our successful sub-
mission: a system that combines feature engineering
and two complementary classifiers. In Section 2, we
briefly review related work. Sections 3–5 specify the
data, introduce our system, and describe the mea-
sures used in performance evaluation. In Section 6,
we present and discuss our results. Section 7 concludes
the study.

2. Background

The transition from paper documentation to elec-
tronic patient information systems has enabled ma-
chine learning and NLP methods to support the use
of the gathered clinical information. This support in-
cludes, for example, generating statistics, trends and
alerts, but is typically limited to the numerical and
structured parts of patient records. However, a con-
siderable amount of clinical information is documented
as free-text.

Developing automated tools for free-text patient docu-
ments is of growing interest. Although text mining ap-
plications taken into clinical practice are rare in partic-
ular for minority languages, some success stories exist:
As examples relevant to the ICD-9-CM coding topic,
we refer to Medical Language Extraction and Encod-
ing System (MedLEE) and Autocoder. MedLEE is
routinely used in the New York Presbyterian Hospital
to parse English clinical documents and map them to
Unified Medical Language System (Bodenreider, 2004)
(UMLS) codes (Mendonça et al., 2005). Adapting it
for ICD-9-CM coding has also been studied (Lussier
et al., 2000). Autocoder is implemented at the Mayo
Clinic in Rochester, Minnesota to assign unit specific
ICD-9-CM-related codes to patient documents. It has
changed the nature of the coding personnel’s duties to
code verification and consequently resulted in an 80%
workload reduction. (Pakhomov et al., 2007.)

When building our ICD-9-CM coding system, we drew
on much of our prior experiences in machine learn-
ing and NLP method development. Before the chal-
lenge we have developed clinical language technology
in our on-going project with a focus on supporting the
use of the gathered intensive care documentation by
identifying text pieces relevant to a given topic (see,
e.g., Suominen et al. (2006) and Hiissa et al. (2007)).
To lay groundwork for this, we have studied informa-
tion extraction tasks in the related domain of biomed-
ical scientific publications (Pyysalo et al., 2007). We
have also derived efficient methods (see, e.g., Pahikkala
et al. (2006; 2007)) that enabled us to fast test which
strategies improve classification performance. Further,
we have introduced a document classifier supported by

a)
CLINICAL HISTORY
Eleven year old with ALL, bone marrow transplant on Jan.
2, now with three day history of cough.
IMPRESSION
1. No focal pneumonia. Likely chronic changes at the left
lung base. 2. Mild anterior wedging of the thoracic verte-
bral bodies.
ICD-9-CM CODING

786.2 Cough

b)
CLINICAL HISTORY
This is a 7-month - old male with wheezing.
IMPRESSION
Borderline hyperinflation with left lower lobe atelectasis
versus pneumonia. Clinical correlation would be helpful.
Unless there is clinical information supporting pneumonia
such as fever and cough, I favor atelectasis.
ICD-9-CM CODING
486 Pneumonia, organism unspecified
518.0 Pulmonary collapse

786.07 Wheezing

c)
CLINICAL HISTORY
7-year - old with history of reflux and multiple urinary tract
infections.
IMPRESSION
Interval growth of normal appearing kidneys.
ICD-9-CM CODING

V13.02 Personal history, urinary (tract) infection

d)
CLINICAL HISTORY
One UTI. Siblings with reflux.
IMPRESSION
Normal renal ultrasound.
ICD-9-CM CODING

599.0 Urinary tract infection, site not specified

Figure 1. Illustration of the data.

domain terminological resources (Ginter et al., 2007),
showing the potential of these resources to notably im-
prove performance.

3. Data

The anonymized challenge data set was collected from
US radiology department for children. The free-text
documents described chest x-ray and renal procedures,
and each included two parts seen as fundamental for
assigning the ICD-9-CM codes: clinical history pro-
vided by an ordering physician before the procedure
and impression reported by a radiologist after the pro-
cedure. Their style was concise and highly domain
specific (Figure 1).

The data was accompanied with ICD-9-CM code an-
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notation obtained by a majority vote of three inde-
pendent parties. The majority vote was selected as
the coding task is ambiguous: unit-specific detailed in-
structions are used to complement the official coding
guidelines (Moisio, 2000, pp. 69–126) stating gener-
ally, for example, that uncertain codes should not be
assigned, a definite diagnosis should be specified when
possible, and symptoms must not be coded if the def-
inite diagnosis is available.

Altogether 45 different codes in 94 combinations were
present in the data set of 1954 documents. The most
common were

1. 786.2 Cough (N = 310),

2. 599.0 Urinary tract infection, site not specified
(N = 193),

3. 593.70 Vesicoureteral reflux, unspecified or with-
out reflux nephropathy (N = 161),

4. 780.6 Fever AND 786.2 Cough (N = 151), and

5. 486 Pneumonia, organism unspecified (N = 132).

An unlabeled test set of 976 reports was made available
a month after the training set of 978 documents was
released. The sets were restricted by requiring that
any combination of codes occurs at least once both in
the training and test data.

4. System description

We next introduce our method combining machine
learning and NLP for automated assignment of ICD-9-
CM codes to free-text radiology reports. It can be di-
vided into feature engineering and classification phases
(Figure 2). At the former phase, text is enriched and
features improving performance are extracted from the
input text. The latter phase contains a cascade of two
classifiers.

4.1. Phase 1: Feature engineering

The documents are represented as a set of binary fea-
tures. The text is initially represented using the simple
bag-of-words (unigram) model — the addition of word
bigrams and trigrams was tested during development
but these features were omitted in favor of the sim-
pler model as they provided no notable performance
advantage. Additionally, the text is semantically en-
riched using concepts from the UMLS metathesaurus
and their hypernyms. Further, features are marked for
occurrence in a negative context. Finally, the training
set is augmented with a small set of artificial examples.

The feature engineering is next described in more de-
tail.

Initially, in order to reduce sparseness problems due to
inflection and synonymous expressions, the text is to-
kenized and UMLS concepts occurring in the text are
recognized using the MetaMap program (Bodenreider,
2004). From the MetaMap output, the mapping of the
text to concepts for which MetaMap assigned the high-
est score is selected to obtain a set of unique UMLS
concept identifiers. For instance, the terms pneumonia
and superimposed pneumonia are both represented by
the concept identifier C0032285.

In addition, the data is enriched by including also all
hypernyms of the directly occurring concepts in the
UMLS vocabularies into the feature set. Thus, for an
occurrence of the concept pneumonia, the feature set is
augmented so that it also contains the concept codes
for respiratory tract infection, disease caused by mi-
croorganism, bacterial infection, et cetera. This allows
the similarity of distinct but closely related concepts
to be recognized by the machine learning method: for
example, all mentions of specific types of respiratory
tract infections will introduce the respiratory tract in-
fection feature into the feature set.

Negations and conditional statements signaling uncer-
tain or negative findings are identified in the text using
a list of common trigger expressions such as no, pos-
sible, suggestive, and likely. In accordance with the
coding guidelines, the goal is to avoid assigning neg-
ative or uncertain codes. As a simple heuristic, we
assume that the scope of negation is up to the end
of the sentence in which it occurs; features extracted
from text following a trigger expression up to the end
of the sentence are marked, making them distinct from
the same features occurring in an affirmative context.
Hypernyms of marked concepts are excluded from the
feature set so that, for example, no pneumonia does
not imply no respiratory tract infection, as other res-
piratory tract infections may be present.

Finally, the training set is augmented with 45 in-
stances obtained by catenating the textual descrip-
tion of each of the 45 codes used in the challenge with
the descriptions of its parents in the ICD-9-CM tree.
For example, the artificial instance corresponding to
the code 593.70 Vesicoureteral reflux, unspecified or
without reflux nephropathy is Diseases Of The Geni-
tourinary System. Other diseases of urinary system.
Other disorders of kidney and ureter. Vesicoureteral
reflux. Vesicoureteral reflux unspecified or without re-
flux nephropathy. This strategy is based on the in-
tuition that informative keywords appear both in the
radiology reports corresponding to a given code and
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Figure 2. A flow chart of the system components.

in the description of this code in the ICD-9-CM tree
(see, e.g., Figure 1a and 1c). Features are extracted
from these artificial instances in the same manner as
from the original training instances.

4.2. Phase 2: Classification

A machine-learning approach using a cascade of two
classifiers trained on the same data is used to predict
the codes. Both classifiers perform multi-label classifi-
cation by decomposing the task into 45 binary classifi-
cation problems, one for each code. In this setting, it is
possible for a classifier to predict an empty, or impossi-
ble, combination of codes. Such recognizable mistakes
are used to trigger the cascade: when the first classifier
makes a known error, the output of the second classi-
fier is used instead as the final prediction. No further
correction of the output of the second classifier is per-
formed, as preliminary experiments suggested that this
would not further improve the performance. Next, we
describe the two classifiers and explain why we chose
them.

Classifier 1: Regularized Least Squares

The first classification method is a Regularized Least
Squares (RLS) classifier (see, e.g., Rifkin et al. (2003)).
This kernel-based classification method is closely re-
lated to Support Vector Machines (Suykens & Vande-
walle, 1999) and has been shown to have comparable
classification performance (Rifkin, 2002).

We formalize the RLS algorithm in the case of our
binary classification problem as follows: Let

T = ((~x1, y1), . . . , (~xn, yn))

be the training set of n input instances ~xi ∈ X and

y ∈ Y the respective outputs. Further, let f : X → Y
be the function that maps the input instances ~xi ∈ X
to the outputs yi ∈ Y. Here X is the input space,
that is, the sets of possible inputs and Y = {0, 1} the
output space. Notice that while we call T a training
set, we consider it as an ordered sequence. With this
notation f(~xi) ∈ Y is the hypothesized class for an
input instance ~xi. The RLS algorithm can be defined
as a minimization problem

A(T ) = min
f

n
∑

i=1

(y − f(~x))2 + λ‖f‖2
k, (1)

where the regularization parameter λ ∈ R+ and ‖ · ‖k

is a norm in a reproducing kernel Hilbert space defined
by a positive definite kernel function k.

The minimizer of ( 1) has the form

f(~x) =

n
∑

i=1

aik(~x, ~xi),

where parameters ai ∈ R. These parameters can be
calculated from

~a = V (Λ + λI)−1V T~y,

where ~a = (a1, . . . , an)T, ~y = (y1, . . . , yn)T, and V

and Λ consist of the eigenvectors and eigenvalues of

K =







k(~x1, ~x1) · · · k(~x1, ~xn)
...

. . .
...

k(~xn, ~x1) · · · k(~xn, ~xn)






,

respectively. For the multi-label case, ~a and ~y are re-
placed with the matrices corresponding to the classifi-
cation task in question. The kernel function which we
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used is the cosine of the input instances, that is,

k(~x, ~xi) =
〈~x, ~xi〉

√

〈~x, ~x〉〈~xi, ~xi〉
.

We chose to use RLS in the challenge because it has the
following computational advantages (Pahikkala et al.,
2006; Pahikkala, 2008): Firstly, it is possible to cal-
culate the cross-validation (CV) performance of RLS
on the training data without retraining in each CV
round. Secondly, the RLS solution can be computed
for several different values of the regularization param-
eter as efficiently as calculating for only one. Thirdly,
several learning problems on the same data set can
be solved in parallel, provided that the same kernel
function is used with each problem, as is the case in
our multi-label classification task. Therefore, we can
efficiently perform multi-label classification together
with fast regularization parameter selection and cross-
validation. These properties enabled us to test fast
which strategies improve the system performance.

Classifier 2: RIPPER

The second method in the cascade is the RIPPER rule
induction-based learning method (Cohen, 1995). The
rules learned by the algorithm are formulated in propo-
sitional logic. Each individual rule is a conjunction of
individual conditions. These conditions may be of the
form A = v (A being a nominal attribute), or A ≤ v or
A ≥ v (A being a real valued attribute), where v de-
notes a value. A sequence of such rules is learned for
recognizing positive examples. When predicting the
class of a new example, each rule is applied. If any
one of them matches the example, it is assigned the
corresponding label.

The algorithm works as follows. In the initialization
phase the training data is split to two sets, the grow-
ing set used for learning the rules and the pruning set
used for removing overfitting rules. Each rule starts
as an empty conjunction, to which new conditions are
added based on an information gain criterion. Once
all positive examples are covered, the rule is tested on
the pruning set and overfitting conditions are removed
from it. Based on the error of the rule on the test set
and the total description length of the whole rule set
the algorithm decides whether to include the pruned
rule in the rule set and continue, or stop. Finally,
a post-processing step, guided by a minimum descrip-
tion length-based heuristic, is performed to further op-
timize the rule set.

We selected the RIPPER algorithm to the cascade due
to its excellent performance on the challenge data set
and because it has quite a different learning principle

than the one embodied by RLS. This may have al-
lowed RIPPER to succeed in cases where RLS failed.
The good performance of the conjunctive rules implies
that the task of classifying the clinical documents can
be reduced to recognizing certain groups of informa-
tive keywords from the text, as our intuition about the
data was (see also Farkas and Szarvas (2008)). RIP-
PER was not, however, chosen as primary classifier
because RLS performed slightly better in our prelimi-
nary experiments.

While the identification of all impossible code combi-
nations might not be straightforward in a real-world
setting, we note that the classifier cascade would still
be applicable to cases where no code is assigned (ap-
proximately 50% of known errors) as well as to cases
where, for example, codes to a disease and its symp-
tom are both assigned, a combination excluded by the
ICD-9-CM coding rules.

5. Performance evaluation measures

The primary performance measure used in the chal-
lenge was a micro-averaged F1-score (F1mi). In ad-
dition, the organizers reported macro-averaged F1
(F1ma) and cost-sensitive accuracy (CSA), but they
had no effect on the submission ranking. All these
measures compare the output of the classifier with the
gold standard, which is in the challenge the majority
annotation.

F1mi and F1ma are extensions of the F1-score for the
multi-label case. The F1-score is a well-established
classification performance measure. When only one
class is considered, the standard F1-score is defined as
the harmonic mean of precision P and recall R,

F1 =
2PR

P + R
, (2)

where

P =
TPi

TPi + FPi

,

R =
TPi

TPi + FNi

,

TPi is the number of test instances correctly assigned
to the class i (i.e., the number of true positives), FPi

the number of test instances the system predicts mis-
takenly to be a member of the class i (i.e., the num-
ber of false positives), and FNi the number of test in-
stances that belong to the class i in the gold standard
but not in the system output (i.e., false negatives).
The benefits of the F1-score include its independence
on true negatives.
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As multi-label classification can be decomposed into
distinct binary classification problems, the F1-score
(2) can also be calculated separately for each class.
F1ma is achieved simply by averaging the scores over
the classes, that is, if m is the number of classes and
F1i is the F1-score for the class i ∈ {1, . . . ,m},

F1ma =

∑m

i=1
F1i

m
.

In contrast, F1mi evaluates the performance by com-
puting the F1-score based on the global perspective
of m × ntest binary labeling decisions. Here m is
the number of classes and ntest the size of the test
set. Let TP ′ =

∑m

i=1
TPi, FP ′ =

∑m

i=1
FPi and

FN ′ =
∑m

i=1
FNi. Then the micro-averaged precision

and recall are

Pmi =
TP ′

TP ′ + FP ′
and

Rmi =
TP ′

TP ′ + FN ′
,

respectively. F1mi is calculated as in the formula (2)
but replacing precision and recall with their micro-
averaged variants:

F1mi =
2PmiRmi

Pmi + Rmi
.

F1ma and F1mi were chosen to be used as they pro-
vide supplementary information: by definition, the for-
mer emphasizes the significance of performing well on
all classes, including relatively ones, whilst the latter
weights each code assignment decision equally. Be-
cause of the practical orientation towards an evalua-
tion setting that is dominated by the performance in
the common classes, F1mi is the primary performance
measure.

The challenge organizers motivate the use of CSA by
clinical regulations enforcing over and under-coding
penalties (Pestian et al., 2007): The justification for
these lie in the additional risks of possible prosecution
for fraud and lost revenues. The proportion of the
over-coding penalty po to the under-coding penalty pu

is known to be three. If Bi is the number of test in-
stances that are assigned to the class i either in the
gold standard or by the system and B′ =

∑m

i=1
Bi,

then

CSA =

(

1 −
puFN ′ + poFP ′

B′

)α

.

In the challenge α = 1, po = 1 and pu = 0.33.

Table 1. An estimate of the effect of the different compo-
nents on overall performance of our system. Relative de-
crease in the F1mi error (RDE) is given against the results
of the previous rows.

Component F1mi Error RDE

RLS (initial) 79.3% 20.7% -
Tokenization 80.7% 19.3% 7%
UMLS mapping 82.5% 17.5% 9%
UMLS hypernyms 83.4% 16.6% 5%
Context marking 84.7% 15.3% 8%
Cascaded RIPPER 86.5% 13.5% 12%
ICD-9 instances 86.6% 13.4% 1%

Table 2. Final ranking of top ten submissions (Computa-
tional Medicine Center, 2007).

Rank F1mi F1ma CSA

1 89.1% 76.9% 91.8%
2 88.6% 72.9% 90.9%
3 (our system) 87.7% 70.3% 91.3%
4 87.6% 72.1% 90.9%
5 87.2% 77.6% 90.1%
6 87.1% 73.3% 89.8%
7 86.8% 73.2% 90.0%
8 85.9% 66.8% 90.5%
9 85.1% 68.2% 90.1%
10 85.0% 67.6% 87.8%

6. Results and discussion

We adopted a modular approach when developing our
ICD-9-CM classifier. By following this policy, we eval-
uated not only the overall quality of the system but
also the effect of its different components to the per-
formance by using a 10-fold CV on the training set.
We included only the components that led to a bet-
ter performing system, although we tested also other
strategies in addition to those mentioned in Table 1.

For the submission, we allowed our system to learn
from all training data available. As expected, this im-
proved the performance giving us on the test set the
F1mi score of 87.7% and the third place (Table 2).

When developing our system, we focused on maximiz-
ing F1mi. Different performance evaluation measures
emphasize, however, different aspects of the problem,
and our F1mi = 87.7% illustrates a good quality in re-
lation to the number of code assignments. In terms
of the over and under-coding penalty-bearing CSA
measure, our submission performed the second best
whereas F1ma would have dropped us to the seventh
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place. The latter result is in line with our strategy
of considering F1mi and not even aiming at perform-
ing well in the all 45 classes. The same trend is also
observable in other submissions (Table 2).

According to the report of the challenge organiz-
ers (Pestian et al., 2007), initially about 150 registra-
tions were made from six continents and more than
20 countries. When all 44 submissions were consid-
ered, the mean, standard deviation and median of
F1mi-scores were 76.7%, 13.3% and 79.9%, respec-
tively. The organizers’ review of all submissions sug-
gests that for this particular task, the choice of the
classifier was not crucial for success. However, use of
negations, the structure of UMLS, hypernyms, syn-
onyms, and symbolic processing seemed to contribute
to performance. These characteristics were evident in
our method development too. More information about
other highly ranked submissions can be found, for ex-
ample, in Farkas and Szarvas (2008) (the first place),
Goldstein et al. (2007)(the second place) and Crammer
et al. (2007) (the fourth place).

The experiences gained from the challenge encourage
using machine learning and NLP-based methods to as-
sign ICD-9-CM codes in clinical practice. Firstly, al-
though further software development, integration and
piloting is needed, the top systems perform well. Sec-
ondly, clinical experiences (Pakhomov et al., 2007) in
semi-automated coding at the Mayo Clinic give evi-
dence in support of the claim. Thirdly, the variation in
human judgment advocates the use; the pairwise inter-
annotator agreement rates measured by using F1mi in
the test set were 67.3%, 72.7% and 75.8%, and when
compared against the gold standard, the rate varied
between 82.6% and 89.6% (Farkas & Szarvas, 2008).
Notice that the stronger agreement between human
annotators and the gold standard than individual hu-
man annotators is explained by the way the gold stan-
dard was created based on the majority vote. When
comparing the performance of the challenge submis-
sions with these numbers, we see that the top systems
outperform some human annotators and are competi-
tive even with the best.

7. Conclusion

We introduced a machine learning-based system for
the automatic assignment of ICD-9-CM codes to radi-
ology reports. Of its seven components, those related
to feature engineering seemed to provide the compet-
itive edge with respect to other systems submitted to
the international challenge.

The experiences gained from the challenge are ben-

eficial for developing human language technology for
clinical use. As future work, we are particularly inter-
ested in Finnish intensive care and occupational health
care domains.
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Three approaches to automatic assignment of ICD-
9-CM codes to radiology reports. Proceedings of the
Fall Symposium of the AMIA (pp. 279–283). Chi-
gaco, IL: American Medical Informatics Association.

Hiissa, M., Pahikkala, T., Suominen, H., Lehtikun-
nas, T., Back, B., Karsten, H., Salanterä, S., &
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