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Abstract—This exploratory empirical paper investigates an-
nual time delays between vulnerability disclosure notifications
and acknowledgments by means of network analysis. These
delays are approached through a potential clustering effect of
vulnerabilities across software vendors. The analysis is based
on a projection from bipartite vendor-vulnerability structures
to one-mode vendor-vendor networks, while the hypothesized
clustering effect is approached with a conventional community
detection algorithm. According to the results, (a) vulnerabilities
cluster across vendors, (b) which also explains a portion of the
time delays, although (c) the clustering is not stable annually.
The computed network (d) clusters can be also interpreted by
reflecting these against common software security attack surfaces.
The results can be used to contemplate (e) practical means with
which the efficiency of vulnerability disclosure could be improved.

Index Terms—software vulnerability, vulnerability disclosure,
bug collision, social network, bipartite network, US-CERT

I. INTRODUCTION

This exploratory empirical paper seeks to answer the fol-
lowing three questions by means of applied network analysis.

RQ1 Do software vulnerability disclosure notifications sent by
a disclosure institution cluster across vendors?

RQ2 If there is clustering, how stable is the effect annually?
RQ3 Can a potential clustering effect explain a portion of the

variance in the time delays between third-party vulnera-
bility notifications and the subsequent acknowledgments
in a particular responsible vulnerability disclosure type?

These research questions (RQs) contain a number of terms
that should be clarified before continuing. First and foremost, a
software vulnerability is understood as a software defect with
security implications. Second, software vendors are abstract
entities that develop software products. This deliberately vague
definition underlines that, in the present context, a vendor
may be a private company, a non-profit, a public sector
organization, an open source community, or an individual. The
empirical analysis is based on network projections to vendor-
vendor dimension – to the common vulnerabilities that specific
vendors have shared in the subset of vulnerabilities disclosed
via a third-party disclosure institution. Here, third, the term
disclosure is understood as a practice via which vulnerability
discoverers make the vulnerabilities known to other actors.

Fourth, the term network analysis refers to the use of graph
theoretical concepts and methods for studying complex real-
world phenomena; social network analysis is the most notable

scholarly branch, although the domain extends well beyond
(social) networks based on human behavior.

It should be further emphasized that the word cluster is a
rather ambiguous term in the network literature. In this paper,
therefore, fifth, a word cluster is used loosely in the sense
of a dictionary definition (“a group or bunch of objects or
things joined together”), while clustering is understood “to be,
form, or grow in a cluster or clusters”. In network analysis,
these dictionary definitions include the so-called clustering
coefficient [1] and different community detection algorithms.
Usually, the latter build on the general idea that networks can
be often divided into densely connected groups, which are
only sparsely connected to each other [2]. Since the clustering
coefficient is not utilized in this paper, also the noted dictio-
nary definitions refer implicitly to clustering in the sense of
community detection. Finally, as in many clustering problems,
the basic approach to community detection is either theoretical
or empirical; either some known groups unrelated to empirical
network data are of interest, or the goal is to locate the
communities from relational network data algorithmically [3].
The latter algorithmic path is pursued in this paper, although
a brief qualitative assessment is carried out for evaluating
whether it is also possible to interpret the computed clusters.

Sixth, in this paper, the term time delay is defined according
to two endpoints: (a) a notification sent by a third-party
disclosure institution [4] to a software vendor about a potential
software vulnerability in its software product; and (b) the
potential response from the vendor to the institution. The
empirical sample is based on the notifications and acknowl-
edgments sent and received by the United States Computer
Emergency Readiness Team (US-CERT), which is in a third-
party role with respect to the software vendors, providing also
a third-party vulnerability database. These time delays can be
seen as coarse process metrics for measuring the coordination
efficiency of a specific institutional process for disclosing
vulnerabilities. This process has been known as a hybrid vul-
nerability disclosure type in order to separate the process from
other means by which vulnerabilities are disclosed [5]. In other
words, there are also companies that have specialized into
conquering a third-party role in vulnerability disclosure [6],
although it has been also common to disclose vulnerabilities
directly either to the public or to the corresponding vendors.

Last but not least, the particular hybrid disclosure process
led by US-CERT has often focused on particularly severe



vulnerabilities [7]. Multiple vendors may be affected, or the
processed vulnerabilities may disturb the whole Internet, for
instance. Furthermore, because US-CERT is backed by the
United States government, the highest possible level of institu-
tional trust is arguably provided. The associated hybrid model
also provides a well-understood policy for further provisioning
the trust between vendors and discoverers [8]. For instance, a
grace period of 45 days is provided for vendors to patch their
products after the notifications sent by US-CERT. This safety
period underlines the term responsible disclosure. Because
information is eventually disclosed to the public sphere after
the grace period, it is ensured that the affected vendors do not
have incentives to avoid patching their products, which was
relatively common historically [5]. It should be emphasized,
however, that also the hybrid model is entirely voluntary; there
are no juridical requirements, for instance, and there are still
today software vendors that are reluctant for participating.

The practical relevance of the paper can be motivated with
a couple of arguments. The first is related to the efficiency
aspect: if factors affecting the observed time delays can be ro-
bustly known, it should be possible to optimize the institutional
disclosure process. If there are clusters (RQ1), and these can
explain the time delays (RQ3), there may be means to consider
different notification bundles, for instance, or the information
can be used to contemplate whether some particular groups
of vendors would benefit from some form of special targeted
coordination. Second, provided that there are clusters (RQ1),
and regardless of the answers to RQ2 and RQ3, the empirical
clustering effects – or, rather, the lack of thereof – provide
a grain of information about natural software diversity [9]
associated with the usually severe vulnerabilities handled by
US-CERT. That is to say, clustering can generally reveal
information about potential common attack surfaces.

If Apple and FreeBSD are systematically in a same cluster,
for instance, it would seem that there is common code that
may require special attention. The two vendors might be
then encouraged by US-CERT for jointly coordinating their
patching efforts. If the two vendors are systematically in the
same cluster, it might be also reasonable for criminals to
allocate specific resources for studying FreeBSD in order to
find vulnerabilities that might be used for attacking supposedly
more prestigious Apple targets. This particular example is de-
liberately rather obvious because Apple and FreeBSD indeed
share code. Therefore, it would be more interesting when, say,
FreeBSD and a car industry company would be systematically
located in the same cluster. To these exploratory ends, the
paper proceeds by first introducing the materials and methods
in Section II. Results are presented in Section III. Discussion
and concluding remarks follow in the final Section IV.

II. MATERIALS AND METHODS

The empirical approach is based on the concept of bipartite
networks, although the actual empirical analysis proceeds by
means of conventional, unipartite, network methods. Examples
of real-world bipartite networks come in vast and different
numbers. Bipartite networks have been used for modeling

scientific collaboration networks in terms of papers and au-
thors [10], networks of directors and corporate boards [11],
networks of countries and international organizations [12],
plant-animal networks [13], and networks between distinct
protein types [14], to point out only a few examples from
a few distinctively different fields. All these examples share
one similarity: nodes (vertices) are defined in terms of two
non-overlapping sets.1 In addition to briefly elaborating this
two-mode structure, the forthcoming discussion introduces the
dataset, and shortly outlines the methodological toolbox.

A. Bipartite Networks

Bipartite networks contain links (edges) between two dif-
ferent node types. The classical social network example is
a relation between “actors” and “events”, both of which are
entirely abstract concepts. For instance, actors may refer to
individuals or groups of individuals, which are affiliated with
some abstract events, possibly including other non-overlapping
groups. Therefore, bipartite networks are sometimes referred
to as mutualistic networks [13], affiliation networks [15],
or two-mode networks [1]. When the additional terminology
is omitted, the underlying two-mode structure implies an
m×n incidence matrix, say B, from which the corresponding
network is constructed. In other words, there are two node
dimensions, in contrast to the more conventional, square adja-
cency matrix, A, which, in terms of the bipartite terminology,
would store a one-mode network of actors in relation to other
actors, or events in relation to other events.

The basic idea is illustrated in Fig. 1 with three actors and
two events, E1 and E2. As can be seen, the conventional
representation has actors on the m rows, while events are
referenced on the n columns. It is also possible to consider
weighted bipartite networks, although the much simpler binary
variants are sufficient for the empirical purposes of this paper.

A1 A2 A3

E1 E2

B =

 1 1
1 0
1 1



Fig. 1. A Small Bipartite Network

There are two common projections for transforming a bipar-
tite network into a conventional, unipartite network [16]. When
the incidence matrix B is post-multiplied with its transpose,
Aa = BB′, the non-diagonal elements in the square, m ×m,
and symmetric Aa capture the number of event affiliations
that are common to any two actors. To backtrack to Fig. 1,
the lower-triangular part would contain elements a21 = 1,
a31 = 2, and a32 = 1 because only A1 and A3 share an
affiliation with both E1 and E2. In addition to this actor

1 To clarify: the observed (undirected) bipartite graph can be represented
by using three finite (unordered) sets, G = (V1, V2, E), where an edge
(v, u) ∈ E is always placed from a vertex v ∈ V1 to a vertex u ∈ V2.



viewpoint, the duality perspective admits a product Ae = B′B
within which a non-diagonal element aij = aji displays the
number of actors that are common to events i and j. For
example, in the small example network the two non-diagonal
elements a21 and a12 in the n × n matrix Ae would attain a
value two. The diagonal elements in Aa and Ae, respectively,
capture the total number of event affiliations for each actor, and
the overall number of actors affiliated with each event. It is also
possible to combine the two projections into a single unified
community detection framework [17]. The duality perspective
is difficult to maintain with the projections, nevertheless.

The two projections imply also potential biases [12]. For
instance, the number of links is inflated [18], potentially
relevant information is lost, and dense one-mode networks may
result from sparse bipartite structures [1]. (The last point is
easy to see already by considering the small example network
for which both Aa and Ae represent maximally complete
graphs.) Some of these issues can be balanced with different
normalization procedures. One option is to normalize along
the diagonal. In terms of Aa, then, the non-diagonal elements
ãij = aij / aii represent the number of actors’ common event-
affiliations as a proportion of the total number of affiliations
for each (row) actor [12]. The resulting matrix, denoted by
Ãa, is asymmetric. In Fig. 1, for instance, there would be an
element ã12 = 0.5 because the two actors A1 and A2 are
linked through E1 but A1 has two affiliations. That is, for
the first actor the common affiliation with A2 carries half of
the weight of the affiliations with the third actor, ã13 = 1.
This diagonal normalization procedure is also utilized in the
subsequently described empirical analysis.

B. Data

There are numerous databases that cover public information
about software vulnerabilities. These include private com-
mercial sources, governmental databases, and different open
source or volunteer collections. In general, the databases are
only poorly compatible with each other, each source reflecting
a slightly different empirical nuance to vulnerabilities – to-
gether with the database-specific limitations and inaccuracies.
Many of the open data collections are based on two-mode
relations, linking software vendors to software vulnerabilities.

In this paper, the empirical data is based on the vulnerability
notes (VNs) database maintained by the Software Engineering
Institute (SEI) at the Carnegie Mellon University for the U.S.
Department of Defense [19]. While being operated by SEI,
US-CERT, and other related U.S. institutions, the database is
different from the more comprehensive National Vulnerability
Database (NVD) maintained by the same parties, and from
the Common Vulnerabilities and Exposures (CVEs) database
provided by the MITRE corporation. In general, vulnerability
notes are more informal than CVEs, covering information
for remediation and short technical summaries, among other
things. One thing makes the VN database preferable for
the empirical purposes of this paper: it contains also partial
historical records on the affected software vendors.

There were 3,175 entries during the data collection in the
noon of March 13, 2015. For each of these entries, a table
is provided for the vendors that are known, by US-CERT, to
have been affected by a particular vulnerability, which may or
may not have a more formal CVE record. For instance, the
vulnerability note for a heap overflow in a regular expression
library enumerates five vendors that are acknowledgedly af-
fected [20]. The corresponding table is illustrated in the cut
graphical excerpt shown in Fig. 2. As can be seen, there were,
in addition, five vendors that were known to be unaffected (at
the time of the query), and a number of vendors with unknown
status, despite of the notifications sent to the vendors. Given
these remarks, the empirical data was collected as follows.

Fig. 2. A Cut Example Record (from [19] for [20])

The selected longitudinal sample was first intentionally
restricted to the past nine years. Then, for each year between
2006 and 2014, the date-updated field was used for annual
sampling. For each vulnerability note in each year, only the
(a) affected vendors were included for which both (b) the
date-notified and the (c) date-updated fields were present.
These three restrictions can be interpreted to shift the focus
toward those particular software vendors that have actively
participated in the coordination efforts led by US-CERT.

TABLE I
MERGED VENDOR ENTRIES

3com, Alcatel, Apache, Apple, Attachmate, Avaya, Cisco, Computer Associates, De-
bian, EMC, F5 Networks, FreeBSD, F-Secure, Fujitsu, Global Technology Associates,
Huawei, IBM, Invensys, Linksys, Macrovision, Mandriva, Mozilla, NEC, Network
Appliance, OmniGroup, Opera, QNX, Redback Networks, Red Hat, SCO, Sendmail,
Shenzhen, Siemens, Sony, Sun Microsystems, SUSE, Symantec, TurboLinux, Verisign,
Verity, WatchGuard, Yamaha

A given vendor entry is merged into a given listed string whenever a lowercase
version of the string occurs in the entry. In addition, the two cases “Redhat” and
“Trendmicro” were merged manually to the groups “Red Hat” and “Trend Micro”.

In addition, some vendor-entries were corrected by merging
similar entries (see Table I). While this improves slightly the
reliability of the data, also some small ambiguities must be
acknowledged; namely, the unified group for Apache contains
both the hypertext transfer protocol server as well as one
other project developed by the Apache Software Foundation.
In general, however, the corrections seem reasonable, covering
mostly cases in which a separate entry is given for a company
and the company with its suffix (such as Inc. or Ltd.). For



instance, Apple is listed as “Apple Inc.”, “Apple Computer
Inc.”, “Apple Computer, Inc.”, and “Apple”. Although compa-
rable issues are known to exist with respect to the uniqueness
of vulnerability names [21], no further manipulations were
carried out in the small programmed data collection procedure.

C. Manipulation

Two different types of incidence matrices were constructed:

Bt,V and Bt,∆, (1)

where t = (2006, . . . , 2014). In both matrix sequences the
included vendors are recorded on the m rows, while the
n columns reference the vulnerability notes by their unique
identification numbers. Thus, in terms of the bipartite network
terminology, vendors are actors, while vulnerability notes are
events. In the sequence (B2006,V , . . . ,B2014,V ) the i:th row is
a vector of binary numbers that score a value one in case the
i:th vendor was affected by the j:th vulnerability (note). These
nine matrices constitute the nine networks of interests (RQ1),
which are based on

Ãa,t,V = f(Aa,t,V ) = f(Bt,V B′
t,V ), (2)

where f(·) denotes a function that carries out the discussed
diagonal normalization procedure (see Section II-A). A non-
diagonal element ãij in a given annual Ãa,t,V represents
the number of vulnerabilities that the i:th vendor has had
in common with the j:th vendor in the t:th year, scaled by
the total number of vulnerabilities that have affected the i:th
vendor during the year t.

In the sequence (B2006,∆, . . . ,B2014,∆) a given element
bij ∈ Bt,∆ records the time difference (in days) that was
required for the i:th vendor to respond to the notification from
US-CERT about the j:th vulnerability (note). By reducing
construct validity, these time delays might be interpreted as
coarse proxies for the overall time it takes for vendors to
construct patches. However, even without such stretching of
interpretation, the delta, denoted generally by the symbol ∆,
should be assumed to include all delays that were required
for the communication between the vendor and US-CERT,
and the latter to update its database, among other delays,
empirical inaccuracies, and other reliability concerns. Since
the vulnerability matrices are normalized with (2), but a
similar procedure is not meaningful – in terms of the research
questions – for the delay matrices, average annual amounts
are used for observing the time delays:

bi,t =
1

n

n∑
j=1

bi,j , i = 1, . . . ,m, bi,j ∈ Bt,∆, (3)

which implies that the averaging is done across all of the
n products, irrespective whether these are linked to the i:th
vendor. The row means in (3) are, however, relatively strongly
influenced by outliers. A closer examination further reveals
that these outlying vendors have not updated many products
with relatively high delays, but have rather updated few
products for which the notifications have been sent years ago.

These are freely allowed to influence the observed delays
on the grounds that the outliers imply long disclosure (and,
presumably, patching) periods for vendors’ software portfolios
in general. Following the existing empirical research [22], in
the empirical modeling, (3) was further passed through

g(bi,t) = ln(bi,t + 1) (4)

for obtaining the dependent variable for RQ3. In general, the
average delays have been quite reasonable, ranging roughly
from one day to five days, which can be considered as fast.

D. Methods
The paper adopts the seminal community detection algo-

rithm developed by M. E. J. Newman during the early 2000s
(for an outline see [2]). The algorithm builds on the classical
work from the 1970s during which the concept of betweenness
was introduced [23]. This concept refers to the number of
shortest paths that pass through an edge (or a vertex). The basic
idea behind the divisive algorithm is to break a network into
communities by iteratively removing links based on the highest
(edge) betweenness scores. At each iteration, the betweenness
scores are recomputed for accounting the removed links. The
result is a dendogram, and the basic problem relates to suitable
cuts in the dendogram for gaining optimal divisions. For this
purpose, Newman introduced the modularity concept, which
extends also to other algorithms, as well as to descriptive
purposes with known community structures.

The modularity scalar is defined as the fraction of all
links in a network that are connected to other nodes within
the same communities minus the expected fractions with the
same community structure but with random links between the
nodes [2]. The closer the value to the maximum of unity,
the stronger the strength of the community structure. Small,
or even negative [24], values indicate that the algorithmic
solution is no better than random. This early definition is rather
imprecise regarding the second term in the subtraction, that is,
the expected value of links placed at random, while keeping
the node characteristics fixed. Therefore, the implementation
used [25] utilizes a later, explicit definition [24]. Also many
other alternatives and normalizations [26] have been used,
partially owning to the fact that modularity maximization is
known to misestimate the number of communities in some
real-world networks [24], [27]. Nevertheless, the modularity
measure is widely used in applied work, and, hence, well
suited for exploratory empirical purposes. The same applies to
the divisive edge-betweenness community detection algorithm.

Given the detected k edge-betweenness communities for
the i = 1, . . . ,m vendors during the t:th year, the following
simple regression model is estimated:

g(bi) =

k∑
j=1

ζjCi,j + εi, (5)

where the index t is omitted for emphasizing that nine separate
models are estimated, bi and g(·) are defined in (3) and (4),
εi is the residual term, and Ci,j is zero unless the i:th vendor
belongs to the j:th community in which case Ci,j = 1.



The regression coefficients ζ1, . . . , ζk capture the mean of
the averaged annual delays. The basic interest, therefore, is to
observe (H0) whether ζ1 = ζ2 = · · · = ζk, meaning that the
detected communities do not discriminate the time delays. The
formula (5) refers to a classical one-way analysis of variance
(ANOVA) model. The two fundamental statistical assumptions
are: (a) the errors are independent and normally distributed,
while (b) the within-community variances are approximately
comparable. Both are generally important assumptions.

III. RESULTS

The empirical exploration is carried out in three steps.

A. Clustering

The basic numerical information is shown in Table II
both for the (a) complete networks and for (b) subnetworks
(subsamples) from which those vendors have been removed
that have had no shared vulnerabilities with other vendors. As
could be expected, the edge-betweenness clustering algorithm
places the isolate nodes into their own communities, which is
evident already in the large number of computed communities,
denoted by k. The number of communities varies considerably
also in the subnetworks, k ∈ [4, 23]. These numbers do not
match well the modularity scores, however. For instance, the
correlation (Pearson) between k and the modularity scores
are 0.43 and 0.17 in the whole networks and the subsamples,
respectively. The equivalent correlations between m and mod-
ularity scores are 0.14 and -0.48, in the same order of listing.
The latter negative sign is worth noting: in the subnetworks,
an inverse relation seems to be present between the number
of nodes and the modularity scores, whereas the contrary has
been observed in some [26] biological networks.

TABLE II
CLUSTERING (EDGE-BETWEENNESS COMMUNITIES)

(a) Complete networks (b) Subnetworks

Year m e k Q m e k Q

2006 70 678 33 0.16 53 678 16 0.16
2007 111 384 71 0.63 54 384 14 0.63
2008 97 1158 52 0.18 68 1158 23 0.18
2009 68 622 20 0.45 60 622 12 0.45
2010 88 2442 27 0.04 65 2442 4 0.04
2011 75 350 42 0.33 39 350 6 0.33
2012 105 568 64 0.47 52 568 11 0.47
2013 99 542 66 0.46 51 542 18 0.46
2014 126 1466 68 0.16 68 1466 10 0.16

Mean 93 912 49 0.32 57 912 13 0.32
Std. deviation 20 680 19 0.20 10 680 6 0.20

The symbols refer to the number of nodes (m), edges (e), and computed com-
munities (k), followed by the modularity scores (Q). These four scalar quantities
are presented for the whole networks (see Section II-C) as well as for smaller
subnetworks from which nodes without links have been removed, respectively.

In general, the modularity scores seem to be decent enough
for many, but not all, annual subsample networks. For adjust-
ing the interpretation, it is worth noting that a range from
0.3 to 0.7 has been observed to be typical [2], [3]. Five out of
nine scores fall to this range in the annual subnetworks, but no

2010 (m = 65, k = 4, Q = 0.04) 2007 (m = 54, k = 14, Q = 0.63)

Fig. 3. Clusters in Two Annual Subnetworks

uniform annual trend can be observed. The subnetworks with
the lowest and highest modularity scores are further visualized
in Fig. 3, respectively. The solutions are distinctively different
graphically. The annual sample from 2010, in particular, shows
a large cluster of vendors that are all connected to each other.
This is reflected in the very modest modularity score, although
a subjective graphical interpretation is inclined to view also the
left-hand side plot as a rather good-looking solution.

In conclusion, it is clear that the vendor-vendor projections
do yield sound network clustering solutions (RQ1). However,
there is substantial annual variation. Thus, a negative answer
must be given for the research question RQ2. Instability rather
than stability seem to characterize the clustering tendency.

B. Associations

The basic results from the regression models are shown in
Table III. These can be summarized with four observations.
First and second: although normality is problematic, the vari-
ance of the delays within the communities tend to be equal;
only two subsample models fail at this check. Therefore, the
basic requirements of ANOVA are mostly satisfied. Third, the
actual F -tests show that only two subsamples fail to reject the
assumption that the coefficients would be equal between the
computed communities. In other words, the computed clus-
tering structures can discriminate between the annual average
time delays. Fourth, the adjusted R2-values are decent, keeping
in mind the limited information delivered via (5) alone.

TABLE III
REGRESSION MODELS (ANOVA)

(a) Complete networks (b) Subnetworks

Year R2 (1) (2) (3) R2 (1) (2) (3)

2006 0.68 X X 0.62 X X
2007 0.52 X X 0.47 X X
2008 0.76 X X 0.76 X X X
2009 0.67 X X 0.66 X X
2010 0.88 X X 0.82 X X
2011 0.58 X X 0.67 X X
2012 0.25 X 0.46 X X
2013 0.41 X X 0.61 X X
2014 0.16 X 0.30 X X

The tabulated information contains: an adjusted R2; (1) a F -test for H0 that
ζ1 = · · · = ζk in (5); (2) a test (Shapiro-Wilk) for H0 that εi is normally
distributed; and a (3) test (Levene) that the variances are homogeneous across
the k communities (H0). For the last three, the symbol X denotes p < 0.05.
Analogous to Table II, the results are reported separately for the whole networks
and the noted subnetworks within which nodes without links have been removed.



2 12 49

1.
0

1.
5

2.
0

2.
5

2010

Community Size (nodes)

De
lay

1 2 3 4 5 8 13

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2007

Community Size (nodes)

De
lay

Fig. 4. Within-Community Delays by Community Size

It is illustrative for briefly returning to the left-hand side plot
in Fig. 3 because this structure also attains the highest adjusted
R2-value. The four coefficients for the four communities are
ζ̂1 ' 0.62, ζ̂2 ' 1.96, ζ̂3 ' 2.82, and ζ̂4 ' 0.63, leading to
suspect that ζ̂3 might be the big cluster of 49 nodes. This is not
the case, however. In fact, the approximated log-transformed
average delay mean is highest in a community with only
two nodes in Fig. 3. This observation is further illustrated in
Fig. 4 by using the 2010 and 2007 subsamples, respectively,
and by representing the estimated coefficients on the y-axes
and the unique community sizes on the x-axis. The latter are
defined in terms of the number of within-community nodes.
Although the logarithm transformation smoothens the delays,
the plots hint that the community structures may account also
for the outlying vendors and their outlying products. All in all,
the answer for RQ3 is positive: a portion of the variance in
disclosure delays is explained by the network clustering effect.

C. Qualitative Assessments

The answer to RQ1 is positive: the projected vendor-vendor
pairs do cluster. A brief qualitative assessment is required for
evaluating whether the clusters can be also interpreted.

A visual illustration is shown in Fig. 5 by using the annual
2009 cluster as an example. As can be seen, Lenovo shared a
vulnerability with IBM, which seems relatively logical against
the business history of the two companies. Another example
would be the cluster of SAP, Siemens, and Unigraphics
Solutions. Also this cluster likely reflects the historical market
situation; the company behind Unigraphics Solutions, UGS,
was acquired by Siemens in 2007, while Siemens and SAP
have long shared different business arrangements. Likewise,
VanDyke Software has specialized into secure shell (SSH)
software solutions, and, hence, it is no surprise that the
company clusters with PuTTY, the most common SSH client
for Microsoft Windows platforms.

A further qualitative illustration is shown in Table IV for
the case of NetBSD, the oldest open source operating system
project in existence. The results are relatively clear. A few
observations seem warranted. First, NetBSD expectedly often
clusters with FreeBSD and OpenBSD because all three oper-
ating system projects share a large amount of code. Second,
and again expectedly, NetBSD often clusters with other open
source projects that are either distributed by the project, or
with which NetBSD has had close collaboration relationships.
The particular examples would be OpenSSH and the Internet

2009 (k = 12)

AppleDebianSun Microsystems

IBM

Ultraseek

Verity

Gentoo LinuxCisco

Red Hat

QNX

UbuntuSCO

Intel Corporation

Microsoft Corporation

LDRA Software Technology

Particle Software

TurboLinuxResearch in Motion (RIM)

SUSE

xpdfNovell, Inc.MandrivaFedora ProjectSlackware Linux Inc.

NetBSDInternet Security Systems, Inc.

Global Technology Associates

Extreme Networks

FreeBSD

SquidSmoothWallBlue Coat SystemsZiproxyQBIK New Zealand Limited

SAPSiemens

Unigraphics Solutions

Internet Systems ConsortiumOpenBSDInfobloxNixuHewlett-Packard CompanyBlueCat Networks, Inc.F5 Networks

Lenovo

GnuTLSMcAfeeBarracuda Networks

Aurigma Inc. 

SonicWallOpenVPN Technologiesaep NETWORKSStonesoftSafeNetNortel Networks, Inc.Juniper Networks, Inc.Citrix

Check Point Software Technologies

PuTTY

VanDyke Software

Fig. 5. Vendors in the Annual 2009 Subnetwork Cluster

TABLE IV
THE NETBSD CLUSTERS

Year Vendors
2006 Slackware Linux Inc., Fedora Project, TurboLinux, NetBSD, OpenBSD,

Stonesoft, OpenSSL, Trustix Secure Linux, Internet Software Consortium
2007 NetBSD, Internet Software Consortium
2008 Icon Labs, NetBSD, Wind River Systems, Inc., OSSH, TTSSH, FiSSH,

Redback Networks, SSH Communications Security Corp, OpenSSH, Bitvise
2009 Gentoo Linux, QNX, SCO, NetBSD, Internet Security Systems, Inc.
2010 –
2011 FreeBSD, Force10 Networks, Inc., NetBSD
2012 Microsoft Corporation, Xen, NetBSD, Intel Corporation, FreeBSD
2013 –
2014 Red Hat, FreeBSD, Apple, Symantec, IBM, F5 Networks, Google, VMware,

Ubuntu, SUSE, Oracle Corporation, NEC, Global Technology Associates,
Hewlett-Packard Company, Fedora Project, Debian, McAfee, CA Tech-
nologies, NIKSUN, Slackware Linux Inc., Novell, Inc., Palo Alto Networks,
Juniper Networks, Inc., Gentoo Linux, Check Point Software Technologies,
Fortinet, Inc., Extreme Networks, D-Link Systems, Inc., Cisco, Blue Coat
Systems, Avaya, Barracuda Networks, Unisys, Wind River Systems, Inc.,
OpenBSD, NetBSD, Mandriva, Hitachi, Intel Corporation

The table shows all vendors that were located in the same annual clusters as NetBSD.

Software (Systems) Consortium, which is associated with the
development of the Bind (DNS) and DHCP servers, both of
which have also been traditionally distributed within NetBSD.
Last, and most interestingly, this open source operating system
project clusters particularly with a few notable networking
companies and embedded software vendors. Also this ob-
servation is expected because the no-strings-attached, BSD-
licensed, open source code from NetBSD has been used by
many companies over the years. There are a few perhaps
more noteworthy further details. For instance, Microsoft has
donated code to NetBSD, and, either by implication or by
chance, both vendors are located in the same annual 2012
cluster. Analogously, NetBSD is the only BSD project that
offers support for the Xen (Dom0) hypervisor, and indeed the
two vendors were affected by the same vulnerabilities in 2012.
In terms of attack surfaces, the annual 2008 cluster offers a
good final illustration; a number of SSH implementations and
vendors were affected by the same vulnerability.

In summary, these qualitative observations suggest that it is
indeed possible to interpret the clusters – it is possible to draw
analytical conclusions from the exploratory results. These



conclusions can also bring additional value to security decision
making, or to the evaluation of different strategies, policies,
and risks. In theory, a more detailed analysis could be used as a
heuristic for evaluating common attack surfaces in preparation
of targeted attacks – or the strategic solutions required for
building defenses against such attacks, for instance.

IV. DISCUSSION

This empirical paper examined three questions. First and
foremost: the vulnerability notifications sent by US-CERT
cluster across software vendors (RQ1), and it is also possible
to interpret the vendor-vendor clusters. Second and third:
although the clustering effects have not been stable over the
years (RQ2), these effects can still explain some of the varia-
tion in the time delays between the vulnerability notifications
sent by US-CERT and the corresponding acknowledgements
from the affected vendors (RQ3). The remainder of this paper
enumerates a few limitations, notes a few of related works, and
finally discusses a few practical aspects related to the results.

A. Limitations

The limitations can be addressed by considering the con-
cepts of reliability and validity, which in the context can be
discussed in terms of the robustness of data (reliability of
measures) and the soundness of analysis (what is measured
is valid and validly measured). The reliability of the dataset
is low, and arguably lower than the validity of the paper.

As was demonstrated, sensible vendor-vulnerability analysis
requires reclassifications, although such corrections were done
only for the observed vendor entries in the VN database.
Comparable data collection problems are also well-recognized
in the literature. A little more interesting are the techniques
used for balancing the issues in the public databases. Manual
inspections, reclassifications, and educated but subjective ex-
clusion of cases are all common in the field [21], [22], [28].
Needless to say, the general situation is suboptimal for further
advances in the empirical modeling of vulnerability data.

This paper used standard open data from a public database.
Already since this database is actively maintained and widely
used also by practitioners, the basic vendor-delay information
is contextually valid. One particular (internal) validity issue
can be noted about the methods: the paper was based on a
simple projection from the conventional two-mode vendor-
vulnerability pair [22], [28] to a one-mode vendor-vendor
dimension. Although this projection was suitable for the re-
search questions examined, it is unclear how different duality-
preserving methods compare to the one-mode analysis. As
much of the recent research agrees that the duality should
be preserved [15], [17], [18], the one-mode analysis can be
also noted as a limitation. This remark can be accompanied
with a more practical concern about the averaging of the time
delays across the software products of all observed vendors.

B. Related Work

The paper is located in the intersection of two scholarly
branches. As the paper elaborates, bipartite networks have

been extensively studied from applied computational perspec-
tives [1], [12], [27]. Moreover, computer science incorporates
a large and overlapping literature that focuses on the more
formal graph theoretical aspects related to bipartite networks.
The second scholarly branch is located in the empirical soft-
ware vulnerability research domain generally, and the smaller
subdomain of vulnerability disclosure research in particular.

Although network analysis has not been previously used
in the domain of software vulnerability (disclosure) research,
a few of the related contributions are worth elevating from
the literature. In particular, the hybrid US-CERT-led disclosure
process has been studied with both predictive [22] and descrip-
tive [7] statistical methods, as well as with fully theoretical
models [5]. Although even rather exotic questions have been
examined, such as whether the hybrid vulnerability disclosure
model is associated with firms’ stock prices [29], a more
traditional question has been the empirical determination of
the time delays that occur during disclosure process and
the associated stage of software patching [22], [28]. Given
the observed vendor-vendor clustering effect, the aspect of
competition between vendors [22] is particularly noteworthy.
The perspective adopted in this paper builds on a rather con-
trary interpretation that emphasizes coordination rather than
competition. In other words, as the presumable explanation
for the clustering relates to the shared code bases and other
collaborative software industry dynamics, coordination and
collaboration are arguably more important for the efficiency
of the particular hybrid disclosure type examined in the paper.

Finally, to summarize, in software engineering the subdo-
main of vulnerability disclosure research traces to the concept
of vulnerability life cycle [30], [31], which is also related to
the more encompassing concept of software life cycle [32].
Vulnerabilities are introduced, discovered, disclosed, patched,
and exploited. All these concepts are representatives of differ-
ent theoretical vulnerability life cycle stages. The life cycle
thinking also connects the research domain to traditional
security risks. If exploits are already available in the wild
Internet but patches have not been delivered, vulnerability
disclosure must be efficient, regardless of the particular means
by which the disclosure is arranged between discoverers,
vendors, the public sphere, and potential third-parties. Such
risks also signify the practical relevance of applied empirical
vulnerability disclosure research; the potential for analytical,
theoretical, and empirical optimizations that may improve the
efficiency of this particular type of software engineering work.

C. Concluding Remarks

Many software vendors are continuously affected by same
vulnerabilities. For further research, an interesting question
would be to examine whether more thorough clustering anal-
ysis could be adopted for contributing to the recent debate on
security bug collisions [33]. On the more practical side, this
exploratory empirical paper hints that the elaborated clustering
effect may be potentially used as a heuristic for optimizing
the concrete work associated with sending and receiving
vulnerability notifications and related sensitive information. If



nothing else, it can be contemplated whether some particular
groups of vendors would benefit from targeted or personalized
information delivered via electronic mail or by other means.

The discussed reliability problems further hint that
US-CERT may have difficulties in database management with
respect to systematic tracking of various software vendors that
are suspected to be affected by the disclosed vulnerabilities.
Software industry has always been affected by continuous
mergers and acquisitions, which supposedly make it difficult to
deduce which particular software vendors are responsible for
some particular software products at some particular instant of
time. Therefore, empirical clustering of database contents may
help at bringing more rigor to practical database maintenance.
The net result would not only benefit scholarly research, but
it would also make it easier for the numerous Internet sites
to robustly parse the information for tracking and security
intelligence purposes. Concrete improvements in the global
vulnerability disclosure processes require coordination and
trust between different parties, but also the distinct processes
and databases should be arguably coordinated.
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