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Chlorophyll does not reflect green light – how to correct a 
misconception
Olli Virtanen a, Emanuella Constantinidoua,b and Esa Tyystjärvi a

aDepartment of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland; bFaculty of Health and 
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ABSTRACT
Plant leaves are green because they contain the green photosynthetic 
pigments, chlorophylls a and b. Popular science literature, and sometimes 
even textbooks, state that the greenness is caused by reflection of green 
light by chlorophyll. In the present study, we compared the reflectance 
spectra of green leaves to yellow or white leaves of the same species. 
Chlorophyll-deficient leaves reflected green light more efficiently than 
green leaves of the same species, which conclusively refutes the miscon-
ception. The data show that the green colour of leaves is caused by 
preferential absorption of blue and red light by chlorophyll, not by 
reflection of green light by chlorophyll. The data suggest that the cellulose 
of the cell walls is the main component that diffusely reflects visible light 
within plant leaves.
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Introduction

The colours of illuminated items are – with few exceptions like the blue colour of the sky – caused 
by wavelength-selective absorption of light. Wavelengths that are neither absorbed nor pass 
through, are (diffusively) reflected from the item, and the spectral distribution of the reflected 
light determines the colour. An opaque object either absorbs or reflects all incident light, and if the 
object is homogenous like a Lego brick, then the reflection spectrum of the material is essentially 
a mirror image of its absorption spectrum. In heterogeneous systems, one constituent may mostly 
reflect and another may absorb.

Chlorophylls a and b show strong absorption in the blue and red spectral regions but absorb 
poorly green light (500–560 nm) (Lichtenthaler and Buschmann 2001). Due to inhomogeneous 
broadening, the absorption spectra of both pigments are however wider in vivo than in organic 
solvents (Van Amerongen, Valkunas, and van Grondelle 2000), enabling wider absorption of 
photons throughout the illumination spectrum. Plants also contain carotenoids absorbing blue- 
green light (Lichtenthaler and Buschmann 2001). Nonetheless, due to the sheer number of pigment 
molecules, green light is overall absorbed only 20–30% less efficiently by leaves of land plants than 
red or blue light, and green light is also utilised in photosynthesis (Hershey 1995). Ability to utilise 
green light has been suggested to provide the leaves in lower layers of the canopy and chloroplasts in 
lower mesophyll layers with excitation energy when the topmost layers efficiently absorb blue and 
red light (Terashima et al. 2009).

The reflectance of light is widely used in remote sensing to estimate the chlorophyll content per 
surface area of the terrain. The estimation requires simultaneous recording of reflectance at two 
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wavelengths, from which one is strongly and the other poorly absorbed by chlorophyll. The ratio of 
reflectance in the red region (strongly absorbed) to reflectance in near-infrared (poorly absorbed) 
has been found to estimate chlorophyll content better than the red to green reflectance ratio (Le 
Maire, Francois, and Dufrêne 2004; Datt 1999).

Popularised science texts (see, e.g. Ortega 2020) and even biology textbooks (see, e.g. Raven, 
Evert, and Eichorn 2005) sometimes explain the green colour of plant leaves by stating that 
chlorophyll absorbs blue and red but reflects green light. The origins of this hypothesis are unclear, 
but it appears to be widespread. A Google search requiring the exact wording ‘chlorophyll reflects 
green light’ gave 4670 hits when tested on 4 October 2020, and Wikipedia repeats the misconcep-
tion (Wikipedia article titled Chlorophyll; https://en.wikipedia.org/wiki/Chlorophyll, cited 
27 April 2020).

Light and colour belong to elementary school science classes and to high-school physics. Studies 
of conceptions about light, colour and vision have revealed that upper elementary school children 
(grades 3–6) often have no idea about the roles of incident and reflected light in vision and that 
children tend to get confused when they find out that a brightly coloured item cannot be seen at all 
in complete darkness (Ward, Sadler, and Shapiro 2008). Various incorrect (‘alternative’) concep-
tions of colour, including the idea that colour is a permanent property of an object and independent 
of the colour of incident light, are common among upper elementary school students (Eaton et al. 
1984; Valanides and Angeli 2008), and the misconceptions appear to be recalcitrant against 
traditional science teaching (Eaton et al. 1984). In Finnish high-school biology textbooks, the 
colour of plants is simply attributed to the presence of chlorophyll, without a further physical 
explanation (Happonen et al. 2018a, 2018b).

The misconception that chlorophyll reflects light may not belong to elementary school students’ 
misconceptions because this misconception requires correct basic understanding on how the colour 
of an object is formed. Therefore, the misconception is expected to be one of the teachers and their 
educators. In the present study, we show that the reflectance of green light by plant leaves is not 
caused by chlorophyll, and plant leaves devoid of chlorophyll show higher, not lower, reflectance in 
the green region than green leaves. With these data, we seek out to falsify and correct the common 
misconception about chlorophyll reflecting green light. Furthermore, we provide simple tools for 
demonstrating the reflectance of light by leaves in a classroom.

Materials and methods

Plant material

Three different species of plants with different variations in pigment composition were used to 
measure reflectance of light. Green and yellow leaves of Betula pendula (silver birch) were collected 
from a local park in late autumn, Euphorbia pulcherrima (poinsettia), a variety with white upper 
leaves, was purchased from a local flower store and additional leaves were obtained as a gift from 
Ms. Eija Leino. Seeds of a variegated barley plant, Hordeum vulgare var. variegata (‘cat grass’) were 
bought from Moles Seeds, Colchester, UK, sown in a research greenhouse, where the germinated 
plants were grown at 21°C and in a 16 h light/8 h dark-light cycle with photosynthetic photon flux 
density of 100 µmol m−2s−1. From the two latter species, reflectance was measured from both white 
and green leaves of the specimens. Six-millimetre leaf disks were cut out from the selected plant 
leaves just before measuring.

Reflectance measurements

Spectra of specular reflectance between 400 and 800 nm were measured with an STS-VIS 
spectrometer equipped with an optical reflectance probe R600-7-UV-125 F, both from 
Ocean Optics, Dunedin, FL, USA. The spectrometer provides a spectrum from 370 to 
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800 nm with 1024 data points but data below 400 nm were not used because of low signal 
quality. The reflectance probe was aligned with the normal of the sample surface and placed 
5 mm above it. A 250 W halogen lamp, driven by a stable voltage source, was attached to 
one end of the bifurcated reflectance probe. A reflectance standard from Labsphere, Inc. 
(North Sutton, NH, USA) was used to define full reflectance. For calibration of the spectro-
meter, reflectance was also probed from a Vantablack-VIS (Surrey Nanosystems, Surrey, 
UK) surface to ensure that the instrument zero truly indicates zero reflectance (Figure 1). 
Reflectance spectra of leaf discs were measured on top of a matt black cardboard or on 
white office paper, as indicated. Interference by external light was blocked by doing the 
measurements in a darkroom and covering the setup with a black matt foil (Edmund Optics, 
York, UK).

Pigment quantification

Pigments from parallel samples of Hordeum and Euphorbia were extracted with N, 
N-dimethylformamide (DMF) from 6-mm diameter leaf disks. Each disk was incubated in 
1 ml of DMF overnight (white poinsettia for a few hours), and absorbance was measured at 
480, 646.8, 663.8 and 750 nm; the very small 750 nm absorbance was subtracted from other 
absorbance values to compensate for light scattering. Betula leaf disks were incubated only 
shortly to obtain the carotenoid to chlorophyll ratio. Pigments were quantified according to 
Wellburn (1994).

Figure 1. Reflectance spectra of the matt black paper used under the leaf samples (black, solid line), 100% reflection standard 
(red, long-dashed line) and a Vantablack surface (green, dashed line). Specular reflectance was measured with an STS-VIS 
spectrometer, using a 250 W halogen lamp as a light source. For the measurement, the probe was placed 7 mm above the surface 
and aligned with the surface normal. Each curve represents an average of 10 technical replicates, and the data have been 
smoothened with a moving median.
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Results

Silver birch leaves were collected in late autumn, when both green and yellow leaves are available. 
Green silver birch leaves, collected in late autumn, contain 40–50 μg chlorophyll cm−2, and the 
chlorophyll concentration drops rapidly to less than 10 μg cm−2 before the leaf falls (Mattila et al. 
2017). The reflectance spectra of green birch leaves showed the familiar spectral shape of a plant 
leaf, with 9–15% reflectance in blue (400–490 nm) and red (640–700 nm), 24% reflectance in green 
(500–570 nm), and strong reflection of far-red light (>700 nm) (Figure 2). The maximum of the 
reflectance of visible light was recorded at 550 nm (Figure 2). Yellow leaves reflected all colours of 
visible light more strongly than green leaves, and their reflectance in the green region was roughly 
twice as high as that of the green leaves (Figure 2). However, below 490 nm, the reflectance of the 
yellow leaves was only slightly higher than that of the green leaves, and above 770 nm, the 
reflectance values from green and yellow leaves were identical.

Variegated barley produces both green and white leaves. The chlorophyll concentrations of the 
green leaves vary, whereas white leaves contain no chlorophyll (Table 1). Reflectance measurements 
from both leaf types showed that the white leaves reflected more light throughout the whole 
spectrum than the green leaves. In the green region, white leaves reflected approximately 30%, 
whereas green leaves reflected less than 10% of light (Figure 3). In the red region (640–700 nm), the 
reflectance of the white leaves was similar as in the green region, but green leaves reflected less red 
than green light. Both types of leaves reflected less blue than green light but the white leaves still 
reflected more than 20%, whilst the green leaves reflected only 4–6% (Figure 3).

The Poinsettia variety used for the study has dark green lower leaves and white upper leaves 
containing no chlorophyll (Table 1). The white leaves are somewhat transparent, which prompted 

Figure 2. Reflectance spectra of green (black, solid line) and yellow (red, dashed line) leaves of B. pendula (a) and examples of the 
leaves (b). Specular reflectance was measured with an STS-VIS spectrometer, using a 250 W halogen lamp as a light source. For 
the measurement, a leaf disk was placed on a matt black cardboard at a 5 mm distance from the probe, and the probe was 
aligned with the surface normal. Each curve represents an average of 6 independent biological replicates, and the data have been 
smoothened with a moving median using a window of 9 data points.

Table 1. Pigment composition of leaves of H. vulgare and E. pulcherrima. Pigments were measured from samples similar to those 
used for the reflectance measurements and quantified spectrophotometrically according to Wellburn (1994). The dash indicates 
that no quantitative extraction was done.

Chlorophyll (a + b), µg/cm2 Carotenoids, µg/cm2 Carotenoid to chlorophyll ratio μg/μg

B. pendula, green leaves - - 0.29
B. pendula, yellow leaves - - 1.23
H. vulgare, green leaves 22.38 ± 3.62 4.04 ± 0.59 0.18
H. vulgare, white leaves 0.00 0.23 ± 0.06
E. pulcherrima, green leaves 58.75 ± 10.80 10.05 ± 1.78 0.17
E. pulcherrima, white leaves 0.0 0.0
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us to measure their reflectance on both black and white background. In both backgrounds, white 
poinsettia leaves reflected much more light than green leaves (Figure 4a). When measured on 
a black background, the difference was smaller (Figure 4b) but still clear.

Discussion

White and yellow leaves with very low chlorophyll concentrations (Table 1) show significantly 
higher reflectance of green light than the green leaves of the same species (Figure 2 –Figure 4), 
thus immediately falsifying the hypothesis that chlorophyll reflects green light. Our results are 
in agreement with results of Gitelson and Merzlyak (1996) who showed that increasing 
chlorophyll a concentration is inversely, rather than directly proportional to the reflectance of 
green light.

Specular reflectance appears to depend on the surface quality and on the chlorophyll content of 
the leaf. The glossy birch and barley leaves reflect light more strongly than the matt, high- 
chlorophyll Euphorbia leaves throughout the measured spectrum. The differences in chlorophyll 
content (Table 1) partially explain the differences in reflectance below 700 nm but above that 
chlorophylls a and b absorb light very poorly. The present data also show that transmission of light 
from the background through the leaf can be significant. This was demonstrated by the Euphorbia 
spectra that changed dramatically when the background was changed, indicating strong depen-
dence of reflectance on the reflectivity of the background. Dependence of leaf reflectance on the 
background may be important for the interpretation of remote sensing data.

While chlorophylls a and b absorb throughout the visible spectrum, carotenoids only absorb 
blue-green light (Zur et al. 2000). In green leaves, the contribution of carotenoid absorption to the 
reflectance is difficult to distinguish from the contribution of chlorophyll b, as both absorb roughly 
at the same range of wavelengths. However, the spectra of the chlorophyll-deficient leaves show that 
the decrease in reflectance in all pigmented leaves when approaching 500 nm from the long- 
wavelength side is largely caused by carotenoids. This conclusion is based on the finding that the 
decrease in reflectance around 500 nm is much larger in the yellow, more carotenoid-rich birch 
leaves (Figure 2, Table 1) than in the white leaves of variegated barley and Euphorbia with very low 
carotenoid content (Figures 3 and Figures 4).

Figure 3. Reflectance spectra of green (black, solid line) and white (red, dashed line) of Hordeum vulgare cv. variegata leaves (a) 
and examples of the measured leaves (b). Specular reflectance was measured with an STS-VIS spectrometer, using a 250 W 
halogen lamp as a light source. For the measurement, a leaf disk was placed on a matt black cardboard at a 5 mm distance from 
the probe, and the probe was aligned with the surface normal. Each curve represents an average of 10 independent biological 
replicates, and the data have been smoothened with a moving median using a window of 9 data points.

JOURNAL OF BIOLOGICAL EDUCATION 5



If chlorophyll does not reflect green and near-infrared light, what then causes the reflectivity of 
leaves in these wavelength regions? Our data do not pinpoint a specific biomolecule among the 
constituents of the leaves, but cellulose of the cell walls is an obvious candidate, as white paper, 
composed of cellulose, is highly reflective in the whole visible range (see Figure 4). The large 
amount of cell walls in a plant leaf supports the suggestion that they are mainly responsible for the 
reflectance of leaves.

The sensitivity curve of the human eye reflected in the 1931 CIE luminous efficiency function 
(see Solomon and Lennie 2007 for a review of the human visual system) peaks in green, and 
therefore green light has a higher visible impact than other visible wavelength ranges. The spectral 
sensitivity of the human eye deepens our perception that plant leaves are definitely green, even if 
green light might be only slightly enriched in the light reflected from a leaf (Figure 4).

We have prepared two tools for the demonstration of why plant leaves are green. Appendix 1 is 
a short slide show demonstrating the function of chlorophyll in a leaf. This slide show can also help 
students to understand colour and vision in a more general sense. Appendix 2 demonstrates that in 
heterogeneous materials, one component often absorbs light while another is responsible of the 
diffuse reflection. A stroke of marker pen on white paper is an extreme example, as it appears 
colourful because the marker pen ink blocks the diffuse reflection of some wavelengths from the 
underlying paper. Such pigments do not leave any coloured mark on black paper. Crayons 
functioning with this principle are common, although many crayons, as well as watercolours, also 
contain reflective ingredients. Appendix 2 contains a video demonstration with white and black 

Figure 4. Reflectance spectra of green (black, solid lines) and white (red, dashed lines) of E. pulcherrima leaves placed on white (a) 
or black (b) background; the measured samples are also shown (c). Specular reflectance was measured with an STS-VIS 
spectrometer, using a 250 W halogen lamp as a light source. For the measurement, a leaf disk was placed on white copy 
paper (a) or on a matt black cardboard (b) at a 5 mm distance from the probe, and the probe was aligned with the surface normal. 
Each curve represents an average of 10 independent biological replicates, and the data have been smoothened with a moving 
median using a window of 9 data points.
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paper and a few colours, including marker pens, crayons and a plant extract in which the main 
pigments are chlorophylls a and b. The demonstration can either be shown as a video or reproduced 
in a classroom, when the teacher has made sure that the students understand the role of reflected 
light in the perception of colour.

In conclusion, plant leaves are green because green light is less efficiently absorbed by 
chlorophylls a and b than red or blue light, and therefore green light has a higher probability 
to become diffusely reflected from cell walls than red or blue light. Chlorophylls do not reflect 
light.
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