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Abstract

We establish maximal local regularity results of weak solutions or local mini-
mizers of

divA(x, Du) = 0 and min
u

ˆ
�

F(x, Du) dx,

providing new ellipticity and continuity assumptions on A or F with general (p, q)-
growth. Optimal regularity theory for the above non-autonomous problems is a
long-standing issue; the classical approach byGiaquinta andGiusti involves assum-
ing that the nonlinearity F satisfies a structure condition. Thismeans that the growth
and ellipticity conditions depend on a given special function, such as t p, ϕ(t), t p(x),
t p+a(x)tq , and not only F but also the given function is assumed to satisfy suitable
continuity conditions. Hence these regularity conditions depend on given special
functions. In this paper we study the problem without recourse to, special function
structure and without assuming Uhlenbeck structure.We introduce a new ellipticity
condition using A or F only, which entails that the function is quasi-isotropic, i.e. it
may depend on the direction, but only up to a multiplicative constant. Moreover, we
formulate the continuity condition on A or F without specific structure and without
direct restriction on the ratio q

p of the parameters from the (p, q)-growth condition.

We establish local C1,α-regularity for some α ∈ (0, 1) and Cα-regularity for any
α ∈ (0, 1) of weak solutions and local minimizers. Previously known, essentially
optimal, regularity results are included as special cases.

1. Introduction

Research on regularity of weak solutions or minimizers of the problems

divA(x, Du) = 0 and min
u

ˆ
�

F(x, Du) dx
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is a major topic in the partial differential equations and the calculus of variations.
If there is no direct dependence on x (i.e., A(x, ξ) ≡ A(ξ) and F(x, ξ) ≡ F(ξ)),
these are called autonomous problems. The simplest non-linear model cases is
the p-power function F(ξ) = |ξ |p, 1 < p < ∞, and the corresponding Euler–
Lagrange equation is the p-Laplace equation where A(Du) = |Du|p−2Du. The
maximal regularity of weak solutions of the p-Laplace equation is C1,α for some
α ∈ (0, 1) depending only on p and the dimension n (e.g., [14,17,31,39]).

For non-autonomous problems, there is also direct x-dependence. To tackle
this case, Giaquinta and Giusti [20,21] introduced the following p-type growth
conditions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ �→ F(x, ξ) is C2,

ν|ξ |p � F(x, ξ) � L(1 + |ξ |p),
ν(μ2 + |ξ |2) p−2

2 |λ|2 � D2
ξ F(x, ξ)λ · λ � L(μ2 + |ξ |2) p−2

2 |λ|2,
|F(x, ξ) − F(y, ξ)| � ω(|x − y|)(1 + |ξ |p).

(1.1)

Here, F is related to the perturbed case a(x)|ξ |p and has the same p-type growth
at all points. Lieberman [32] generalized the model by replacing |ξ |p with Orlicz
growth ϕ(|ξ |). Marcellini [34] introduced non-standard, so-called (p, q)-growth
where the exponent p on the right-hand side is replaced by q > p. In this situation,
we need to assume that q

p is close to 1, see, e.g., [3,4,12,35]. However, all these
structure conditions fail to accommodate many kinds of energy functionals since
the variability in the x- and ξ -direction are treated separately.

For many years, it was thought that the only way to treat the x- and ξ -
directions together was through special cases. Consequently, a plethora of stud-
ies deal with the variable exponent case F(x, ξ) = |ξ |p(x). Over the past half-
dozen years the double phase functional F(x, ξ) = |ξ |p + a(x)|ξ |q , 1 < p � q
and a � 0, has attracted much attention. These models were first studied by
Zhikov [40,41] in the 1980’s in relation to Lavrentiev’s phenomenon and have
been considered in thousands of papers [36,38]. Moreover, various variants and
borderline cases have been investigated, such as: perturbed variable exponent
|ξ |p(x) log(e + |ξ |); Orlicz variable exponent ψ(|ξ |)p(x) or ψ(|ξ |p(x)); degenerate
double phase |ξ |p+a(x)|ξ |p log(e+|ξ |); Orlicz double phase ϕ(|ξ |)+a(x)ψ(|ξ |);
triple phase |ξ |p +a(x)|ξ |q + b(x)|ξ |r ; double variable exponent |ξ |p(x) +|ξ |q(x);
and variable exponent double phase |ξ |p(x) + a(x)|ξ |q(x); see [28] for references.
We emphasize that all these special cases are covered by our results.

In [28], we introduced a different approach which does not impose any direct
restriction on q

p . However, we were only able to prove maximal regularity for local
minimizers when F(x, ξ) = F(x, |ξ |) has so-called Uhlenbeck structure. In this
article we extend the results to both minimizers and weak solutions and dispense
with the Uhlenbeck restriction.

We collect some conditions for A : � × R
n → R

n and F : � × R
n → R

with an open set � ⊂ R
n (n � 2), which determine our equation and minimization

energy, respectively; see Sect. 2 for further definitions and notation, including the
continuity assumption (wVA1), with is the other main assumption.
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Assumption 1.1. We say that A : � × R
n → R

n satisfies Assumption 1.1 if the
following three conditions hold:

(1) For every x ∈ �, A(x, 0) = 0, A(x, ·) ∈ C1(Rn \ {0},Rn) and for every
ξ ∈ R

n , A(·, ξ) is measurable.
(2) There exist L � 1 and 1 < p < q such that the radial function t �→

|Dξ A(x, te)| satisfies (A0), (aInc)p−2 and (aDec)q−2 with the constant L , for
every x ∈ � and e ∈ R

n with |e| = 1. (The (p, q)-growth condition)
(3) There exists L � 1 such that

|Dξ A(x, ξ ′)| � L Dξ A(x, ξ)e · e
for all x ∈ � and ξ, ξ ′, e ∈ R

n with |ξ | = |ξ ′| 	= 0 and |e| = 1. (The
quasi-isotropic ellipticity condition)

The (A0) condition in (2) means that a coefficient factor of A is nondegenerate
and nonsingular, for instance a ≈ 1 when A(x, ξ) = a(x)|ξ |p−2ξ . The (aDec)q−2
and (aInc)p−2 conditions in (2) are equivalent to the function t �→ t2|Dξ A(x, te)|
satisfying the 
2- and ∇2-conditions, respectively. In particular, we note from (2)
that Dξ A(x, ξ) 	= 0 when ξ 	= 0. Uhlenbeck structure has been replaced by (3),
which is a quasi-isotropy condition since different directions behave the same up
to a constant. It is known that completely anisotropic equations do not necessarily
have any regularity as solutions may even be locally unbounded [19]. We also
note that if A(x, ξ) = Dξ F(x, ξ) the condition (3) means that the Hessian matrix
D2

ξ F(x, ξ) with ξ 	= 0 is positive definite and all its eigenvalues on each sphere
for ξ are comparable uniformly in x and the radii of spheres, that is,

1 �
sup{eigenvalues of D2

ξ F(x, te) : |e| = 1}
inf{eigenvalues of D2

ξ F(x, te) : |e| = 1} � L̃ for each x ∈ � and t > 0,

where L̃ depends only on L and n. Compare this to the p-growth condition in (1.1),
which implies a stronger condition, where x is inside the supremum and infimum:

1 �
sup{eigenvalues of D2

ξ F(x, te) : x ∈ �, |e| = 1}
inf{eigenvalues of D2

ξ F(x, te) : x ∈ �, |e| = 1} � L̃ for each t > 0.

We further refer to [12,13] for a discussion of non-uniformly elliptic conditions in
terms of ratios of eigenvalues (in particular [12, Sect. 4.6] and [13, Sect. 1]) and
related regularity results (see also Remark 1.7).

With these assumptions we consider the following quasilinear elliptic equation
in divergence form:

divA(x, Du) = 0 in �. (divA)

We say that u ∈ W 1,1
loc (�) is a local weak solution if |Du| |A(·, Du)| ∈ L1

loc(�)

and ˆ
�

A(x, Du) · Dζ dx = 0 for all ζ ∈ C∞
0 (�).
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Weshow that such solutions are quasiminimizers of a related functionalwithUhlen-
beck structure; thus C0,α-regularity for some α ∈ (0, 1) and higher integrability
follow from the results in [24,26], see Theorem 4.1. Let us state the first main
maximal regularity theorem for general weak solutions.

Theorem 1.2. (Maximal regularity for solutions) Let A : � × R
n → R

n satisfy
Assumption 1.1 and let u ∈ W 1,1

loc (�) be a local weak solution to (div A). Define
A(−1)(x, ξ):=|ξ |A(x, ξ).

(1) If A(−1) satisfies (wVA1), then u ∈ C0,α
loc (�) for every α ∈ (0, 1).

(2) If A(−1) satisfies (wVA1) with ωε(r) � rβε for some βε > 0, then u ∈ C1,α
loc (�)

for some α = α(n, p, q, L , L̄, βε) ∈ (0, 1).

Remark 1.3. The continuity condition (wVA1) for �-functions was introduced in
[28], see also Sect. 2.2. In our knowledge, the above theorem covers all previous
known C1,α-regularity results for equation (divA) with α independent of the solu-
tion. Some examples of functionals satisfying Assumptions 1.1 or 1.5 are presented
in Sect. 7.

Remark 1.4. In (wVA1), ε > 0 is arbitrary and it is possible that βε → 0 as ε → 0.
Moreover, the constant L̄ = L̄ K is from (wVA1) and K > 0 is arbitrary. However,
for given structure we actually choose certain, positive ε and K (see Sect. 6, in
particular, (6.1) and (6.2)), and α in the previous theorem depends on this βε and
L̄ = L̄ K . The same applies in Theorem 1.6.

If equation (divA) is an Euler–Lagrange equation, that is, if A = Dξ F for some
a function F : � × R

n → R, then we can consider milder regularity assumptions
in the context of variational calculus.

Assumption 1.5. We say that F : � × R
n → [0,∞) satisfies Assumption 1.5 if

the following two conditions hold:

(1) For every x ∈ �, F(x, 0) = |Dξ F(x, 0)| = 0, F(x, ·) ∈ C1(Rn)∩C2(Rn\{0})
and for every ξ ∈ R

n , F(·, ξ) is measurable.
(2) The derivative A:=Dξ F satisfies conditions (2) and (3) of Assumption 1.1.

From this assumption it follows that F(x, ξ) > 0 for all x ∈ � and ξ ∈ R
n \{0},

see (3.7) below. We say that u ∈ W 1,1
loc (�) is a local minimizer if F(·, Du) ∈

L1
loc(�) and

ˆ
supp(u−v)

F(x, Du) dx �
ˆ
supp(u−v)

F(x, Dv) dx (min F)

for every v ∈ W 1,1
loc (�) with supp(u − v) � �.

Theorem 1.6. (Maximal regularity for minimizers) Let F : � × R
n → [0,∞)

satisfy Assumption 1.5 and let u ∈ W 1,1
loc (�) be a local minimizer of (min F).

(1) If F satisfies (wVA1), then u ∈ C0,α
loc (�) for every α ∈ (0, 1).
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(2) If F satisfies (wVA1) with ω(r) � rβε for some βε > 0, then u ∈ C1,α
loc (�) for

some α = α(n, p, q, L , L̄, βε) ∈ (0, 1).

Under our differentiability assumptions on F , u ∈ W 1,1
loc (�) is a local weak

solution to (divA) with A = Dξ F if and only if it is a local minimizer of (min F).
Since not everymapping A is of the form Dξ F , Theorem1.2 ismore general in terms
of structure. On the other hand, (wVA1) with G(x, ξ) = |ξ |Dξ F(x, ξ) implies
(wVA1)withG(x, ξ) = F(x, ξ), but not the other way around (cf. Proposition 3.8),
so in that sense the assumption of Theorem 1.6 is weaker.

Remark 1.7. De Filippis and Mingione [13] study Hölder regularity of the gradient
of minimizers of non-autonomous, (p, q)-growth functionals with an upper bound
of q

p . Their condition is not covered by the condition in the above theorem, but their
Hölder exponent may depend on minimizers.

Let us briefly outline the rest of the paper and point out the main novelties.
We first collect some background information in next section. In Sect. 2.2, we
introduce our new conditions including (wVA1) that have been adapted to the non-
Uhlenbeck case. Formulating appropriate conditions and unifying them to cover all
the cases was the first challenge that we faced. In Sect. 3, we construct for A or F
an approximating function ϕ with Uhlenbeck structure (e.g., F(x, ξ) ≈ ϕ(x, |ξ |)
in the functional case) that we call a growth function. The function ϕ is similar to
the one used in [28] which allows us to use some earlier results. However, ϕ does
not have the same continuity property (wVA1) as A or F .

In Sect. 4, we consider regularity results in two simpler cases that are used as
building blocks later on. Specifically, we show that our weak solution or minimizer
is also a quasiminimizer of a non-autonomous functional with Uhlenbeck structure
and we study related Ā-equations or F̄-energy functionals which are autonomous
but lack Uhlenbeck structure. The main difficulty for us was constructing an appro-
priate approximating autonomous problemwith autonomous functions Ā or F̄ from
A or F and a growth function ϕ̄. This is solved in Sect. 5. For the function ϕ, we
use the same approximation ϕ̄ as in [28]. However, for A and F we need a novel
approach of transitioning smoothly between different growth using appropriately
chosen functions ηi . With these elements in place, we prove the main results in
Sect. 6 using comparison and iteration arguments. In the final section, we apply
the main result in the special cases of variable exponent- and double phase-type
growth.

2. Preliminaries

2.1. Notation and definitions

Throughout the paper we always assume that � is a bounded domain in R
n .

Let x0 ∈ R
n and r > 0. Then Br (x0) is the standard open ball in Rn centered at x0

with radius r . If its center is clear, we simply write Br = Br (x0). A function f :
[0,∞) → [0,∞) is almost increasing or almost decreasing if there exists L � 1
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such that f (t) � L f (s) or f (s) � L f (t), respectively, for all 0 < t < s < ∞.
In particular, if L = 1, we say f is increasing or decreasing. For an integrable
function f in U ⊂ R

n , we define
ffl
U f dx := 1

|U |
´
U f dx as the average of f in U

in the integral sense. For functions f, g : U → R, f � g or f ≈ g (in U ) mean
that there exists C � 1 such that f (y) � Cg(y) or C−1 f (y) � g(y) � C f (y),
respectively, for all y ∈ U . By D = Dx we denote the derivative with respect to
the space-variable x .

For ϕ : � × [0,∞) → [0,∞) and Br ⊂ R
n , we write

ϕ+
Br

(z):= sup
x∈Br∩�

ϕ(x, z) and ϕ−
Br

(z):= inf
x∈Br∩�

ϕ(x, z).

The same idea and notation is also used for F : � × R
N → [0,∞]. If the map

t �→ ϕ(x, t), t � 0, is increasing for every x ∈ �, then the (left-continuous) inverse
function with respect to t is defined by

ϕ−1(x, t):= inf{τ � 0 : ϕ(x, τ ) � t}.
If ϕ is strictly increasing and continuous in t , then this is just the normal inverse
function.

Definition 2.1. We define some conditions for ϕ : � × [0,∞) → [0,∞) and
γ ∈ R related to regularity with respect to the second variable, which are supposed
to hold for all x ∈ � and a constant L � 1 independent of x . Then,

(aInc)γ t �→ ϕ(x, t)/tγ is almost increasing on (0,∞) with constant L � 1.
(Inc)γ t �→ ϕ(x, t)/tγ is increasing on (0,∞).
(aDec)γ t �→ ϕ(x, t)/tγ is almost decreasing on (0,∞) with constant L � 1.
(Dec)γ t �→ ϕ(x, t)/tγ is decreasing on (0,∞).
(A0) L−1 � ϕ(x, 1) � L .

Note that this version of (A0) is slightly stronger than the one used in [22],
but they are equivalent under the doubling assumption (aDec), which means that
(aDec)q holds for some q � 1. We may rewrite (aInc)p or (aDec)q (p, q > 0) with
constant L � 1, as

ϕ(x, ct) � Lcpϕ(x, t) and L−1C pϕ(x, t) � ϕ(x,Ct)

or L−1cqϕ(x, t) � ϕ(x, ct) and ϕ(x,Ct) � LCqϕ(x, t), respectively,

for all (x, t) ∈ �× (0,∞) and 0 < c � 1 � C . We will use the above inequalities
many times without mention. Moreover, if ϕ(x, ·) ∈ C1([0,∞)) for each x ∈ �,
then for 0 < p � q

ϕ satisfies (I nc)p and (Dec)q ⇐⇒ p � tϕ′(x, t)
ϕ(x, t)

� q for all x ∈ � and t ∈ (0,∞).

We next introduce classes of �-functions and generalized Orlicz spaces. We
refer to [22] for more details about the basics. In the sequel we omit the words
“generalized” and “weak” mentioned in parentheses.
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Definition 2.2. Let ϕ : � × [0,∞) → [0,∞]. We call ϕ a (generalized) �-
prefunction if x �→ ϕ(x, | f (x)|) is measurable for every measurable function f
on �, and t �→ ϕ(x, t) is increasing for every x ∈ � and satisfies that ϕ(x, 0) =
limt→0+ ϕ(x, t) = 0 and limt→∞ ϕ(x, t) = ∞ for every x ∈ �. A �-prefunction
ϕ is a

(1) (generalized weak)�-function, denoted ϕ ∈ �w(�), if it satisfies (aInc)1;
(2) (generalized) convex�-function, denoted ϕ ∈ �c(�), if t �→ ϕ(x, t) is left-

continuous and convex for every x ∈ �.

If ϕ is independent of x , then we write ϕ ∈ �w or ϕ ∈ �c without “(�)”.

We note that convexity implies (Inc)1 hence �c(�) ⊂ �w(�). While we are
mainly interested in convex functions for minimization problems and related PDEs,
the class �w(�) is very useful for constructing approximating functionals, as it
allows much more flexibility. This will be utilized several times in this article.

We state some properties of �-functions, for which we refer to [22, Chapter 2].
We note that in [22], ϕ � ψ for �-prefunctions ϕ and ψ means that there exists
C � 1 such that ϕ(x,C−1t) � ψ(x, t) � ϕ(x,Ct) for all x ∈ � and t ∈ [0,∞).
This is weaker than ≈. However, if ϕ and ψ satisfy (aDec), then � and ≈ are
equivalent.

Suppose ϕ,ψ : [0,∞) → [0,∞) are �-prefunctions, ϕ satisfies (aInc)1, and
ψ satisfies (aDec)1. Then there exist a convex �-prefunction ϕ̃ and a concave �-
prefunction ψ̃ such that ϕ ≈ ϕ̃ and ψ ≈ ψ̃ . Therefore, by Jensen’s inequality we
have that

ϕ

( 
�

| f | dx
)

�
 

�

ϕ(| f |) dx and
 

�

ψ(| f |) dx � ψ

( 
�

| f | dx
)

for every f ∈ L1(�), where the implicit constants depend on the constants from
the equivalence relations and L from (aInc)1 or (aDec)1.

We define the conjugate function of ϕ : [0,∞) → [0,∞) by

ϕ∗(x, t):= sup
s�0

(st − ϕ(x, s)).

The definition directly implies that

ts � ϕ(x, t) + ϕ∗(x, s) for all s, t � 0.

Furthermore, if ϕ satisfies (aInc)p and (aDec)q for some 1 < p � q, then ϕ∗
satisfies (aInc)q ′ and (aDec)p′ with p′ = p

p−1 and q ′ = q
p−1 , and for any s, t � 0

and ε ∈ (0, 1),

ts � ϕ(x, ε
1
p t) + ϕ∗(x, ε− 1

p s) � εϕ(x, t) + ε
− 1

p−1 ϕ∗(x, s)

and

ts � ϕ(x, ε
− 1

q′ t) + ϕ∗(x, ε
1
q′ s) � ε−(q−1)ϕ(x, t) + εϕ∗(x, s).
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We will refer to any of the previous three formulas as “Young’s inequality”. We
also note that (ϕ∗)∗ = ϕ if ϕ ∈ �c(�) by [15, Theorem 2.2.6].

If ϕ ∈ �c(�), then there exists ϕ′, which is increasing and right-continuous,
with

ϕ(x, t) =
ˆ t

0
ϕ′(x, s) ds.

We collect some results about this (right-)derivative ϕ′.

Proposition 2.3. [Proposition 3.6, [28]] Let γ > 0 and suppose that ϕ ∈ �c(�)

has derivative ϕ′.

(1) If the derivativeϕ′ satisfies (aInc)γ , (aDec)γ , (Inc)γ or (Dec)γ , then the function
ϕ satisfies (aInc)γ+1, (aDec)γ+1, (Inc)γ+1 or (Dec)γ+1, respectively, with the
same constant L � 1.

(2) If ϕ satisfies (aDec)γ , then ϕ(x, t) ≈ tϕ′(x, t).
(3) If ϕ′ satisfies (A0) and (aDec)γ with constant L � 1, then ϕ also satisfies (A0),

with constant depending on L and γ .
(4) ϕ∗(x, ϕ′(x, t)) � tϕ′(x, t).

We will use the following inequality for C1-regular �-functions:

Proposition 2.4. (Proposition 3.8, [28]) Letϕ ∈ �c∩C1([0,∞))withϕ′ satisfying
(Inc)p−1 and (Dec)q−1 for some 1 < p � q. Then, for κ ∈ (0,∞) and x, y ∈ R

N ,

ϕ(|x − y|) � κ [ϕ(|x |) + ϕ(|y|)] + κ−1 ϕ′(|x | + |y|)
|x | + |y| |x − y|2.

Let L0(�) is the set of the measurable functions on �. For ϕ ∈ �w(�), the
generalized Orlicz space (also known as theMusielak–Orlicz space) is defined by

Lϕ(�):={
f ∈ L0(�) : ‖ f ‖Lϕ(�) < ∞}

,

with the (Luxemburg) norm

‖ f ‖Lϕ(�):= inf

{

λ > 0 : �ϕ

( f

λ

)
� 1

}

, where �ϕ( f ):=
ˆ

�

ϕ(x, | f (x)|) dx .

We denote by W 1,ϕ(�) the set of f ∈ Lϕ(�) ∩ W 1,1(�) satisfying that |Df | ∈
Lϕ(�) with the norm ‖ f ‖W 1,ϕ(�):=‖ f ‖Lϕ(�) + ‖ |Df |‖Lϕ(�). Note that if ϕ sat-
isfies (aDec)q for some q � 1, then f ∈ Lϕ(�) if and only if �ϕ( f ) < ∞, and
if ϕ satisfies (A0), (aInc)p and (aDec)q for some 1 < p � q, then Lϕ(�) and

W 1,ϕ(�) are reflexive Banach spaces. In addition, we denote by W 1,ϕ
0 (�) the clo-

sure of C∞
0 (�) in W 1,ϕ(�). For more information about the generalized Orlicz

and Orlicz–Sobolev spaces, we refer to the monographs [7,22,30] and also [15,
Chapter 2].
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2.2. New conditions

The condition (A1) was introduced in [27] (see also [33]) and is essentially
optimal for the boundedness of the maximal operator in generalized Orlicz spaces.
It also implies the Hölder continuity of solutions and (quasi)minimizers [5,24,25].
For higher regularity, we introduced in [28] a “vanishing (A1)” condition, denoted
(VA1), and aweak vanishing version, (wVA1). These previous studies applied to�-
functions ϕ : �×[0,∞) → [0,∞) and discussed the sharpness of the conditions.

We generalize the conditions to the non-Uhlenbeck situation. It can be easily
seen that (VA1)�⇒(wVA1)�⇒(A1). The results of this paper require only (wVA1),
but (VA1) is included since it is simpler to check and is a sufficient condition.

Definition 2.5. Let G : � × R
n → R

N , N ∈ N, ε ∈ [0, 1], K , L̄ > 0, r ∈ (0, 1]
and ω : [0, 1] → [0, 1]. We consider the inequality

|G(x, ξ) − G(y, ξ)| � L̄ω(r)
(|G(y, ξ)| + 1

)
when |G(y, ξ)| ∈ [0, K |Br |−1+ε]

for all x, y ∈ Br ∩ � and ξ ∈ R
n . We say that G satisfies:

(A1) if for any K > 0 there exists L̄ = L̄ K > 0 such that the inequality holds
for ω ≡ 1 and ε = 0.

(VA1) if for any K > 0 there exists L̄ = L̄ K > 0 and there exists a modulus of
continuity ω : [0, 1] → [0, 1] such that the inequality holds for ε = 0.

(wVA1) if for any K > 0 there exists L̄ = L̄ K > 0 and for every ε > 0 there exists
a modulus of continuity ω = ωε : [0, 1] → [0, 1] such that the inequality
holds.

Here, a modulus of continuity ω means that ω is concave and nondecreasing and
satisfies limr→0+ ω(r) = ω(0) = 0.

Ifwe compare these conditions in the case N = 1with the previouslymentioned
conditions in earlier papers, we see that they do not look exactly the same. First
of all the earlier conditions correspond to the case K = 1 only. If we consider
quasi-convex domains � and ϕ satisfies (aDec), then the condition with any K is
equivalent to the conditionwith fixed K . This is proved by a simple chain argument,
see [23, Lemma 3.3] for (A1).

Furthermore, the earlier conditions did not allow ξ satisfying |G(y, ξ)| < ω(r).
For instance, the old formulation of (VA1) (forG(x, ξ) = ϕ(x, |ξ |)) was to assume
that

|ϕ(x, t) − ϕ(y, t)| � Lω(r)ϕ(y, t) when ϕ(y, t) ∈ [ω(r), |Br |−1]
Compared to new (VA1), the right-hand side has ϕ(y, t) instead of ϕ(y, t) + 1 but
on the other hand the inequality is not assumed for ϕ(y, t) ∈ [0, ω(r)). However,
we can show that these are again equivalent if ϕ ∈ �w(�) is continuous in t . A
similar argument applies to the other conditions as well.

Let us show that the old version of (VA1) implies (VA1)with the sameω. Indeed,
we need only show that the old condition implies (VA1) when ϕ(y, t) < ω(r) since
this is trivial when ϕ(y, t) ∈ [ω(r), |Br |−1]. Fix Br and let y ∈ Br . Since ϕ is
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increasing and continuous, we can find s > t with ϕ(y, s) = ω(r). Then by the old
condition,

ϕ(x, t) � ϕ(x, s) � (1 + Lω(r))ϕ(y, s) � (L + 1)ω(r) for all x ∈ Br .

Hence we obtain (VA1) as follows:

|ϕ(x, t) − ϕ(y, t)| � ϕ(x, s) + ϕ(y, s) � (L + 2)ω(r)

� (L + 2)ω(r)(ϕ(y, t) + 1).

For the opposite implication, if ϕ(y, t) ∈ [ω(r)
1
2 , |Br |−1], then

ω(r)(ϕ(y, t) + 1) � 2ω(r)
1
2 ϕ(y, t).

It follows that (VA1) with ω implies the old version of (VA1) with ω
1
2 in place of

ω.
In summary, under minimal and natural assumptions on G, our conditions are

equivalent to previous versions. In particular, from [22, Chapter 7] and [28, Sect. 8],
we know that (A1) is equivalent to logarithmic Hölder continuity in the variable
exponent case ϕ(x, t) = t p(x) while (VA1) and (wVA1) hold with ω if and only if
p ∈ C0,ω. For the double phase case ϕ(x, t) = t p + a(x)tq , (VA1) is more or less
equivalent to q

p < 1 + α
n while (wVA1) and (A1) require only q

p � 1 + α
n , where

a ∈ C0,α(�).

Remark 2.6. Baroni, Colombo and Mingione [2,9] initiated the study of double
phase with additional information on the minimizer. Specifically, they consid-
ered bounded or Hölder continuous minimizers and showed that the assumption
q
p � 1 + α

n can be relaxed in these cases. Ok [37] considered analogous results
with Lebesgue integrability information on the minimizer. In [5,24], the general-
ized Orlicz case with additional information was considered, but only for lower
regularity, i.e. Harnack’s inequality and Hölder continuity for some γ > 0. It is
possible, but non-trivial, to develop the ideas from this paper to prove maximal reg-
ularity in the generalized Orlicz case with additional information; we will return to
this issue in a follow-up paper [29].

3. Construction of Growth Function

In this section, we construct an auxiliary function ϕ ∈ �c(�) that measures the
growth of A : � × R

n → R
n or F : � × R

n → [0,∞).

Definition 3.1. Let A : � × R
n → R

n satisfy Assumption 1.1(1). We say that
ϕ ∈ �c(�) is a growth function of A if the following conditions are satisfied:
ϕ(x, ·) ∈ C1([0,∞)) for every x ∈ �; ϕ′ satisfies (A0), (Inc)p1−1 and (Dec)q1 − 1
for some 1 < p1 � q1; and

|A(x, ξ)| + |ξ | |Dξ A(x, ξ)| � �ϕ′(x, |ξ |), (3.1)
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Dξ A(x, ξ)ξ̃ · ξ̃ � ν
ϕ′(x, |ξ |)

|ξ | |ξ̃ |2 (3.2)

for some 0 < ν � � and for all x ∈ � and ξ, ξ̃ ∈ R
n \ {0}.

Let F : � × R → R satisfy Assumption 1.5(1). We say that ϕ ∈ �c(�) is a
growth function of F if it is a growth function of A = Dξ F in the above sense.

Remark 3.2. In the above definition, we may assume without loss of gener-
ality that ϕ(x, ·) ∈ C2((0,∞)). Indeed, define ψ ′(x, t):= ´ t

0
ϕ′(x,s)

s ds and

ψ(x, t):= ´ t
0 ψ ′(x, s) ds. Thenψ(x, ·) ∈ C2((0,∞)) satisfies ϕ ≈ ψ , min{1, p1−

1}ϕ′(x, t) � ψ ′(x, t) � max{1, q1 − 1}ϕ′(x, t), and (Inc)p1−1 and (Dec)q1 − 1
with the same p1 and q1.

Proposition 3.3. Every A : �×R
n → R

n satisfying Assumption 1.1 has a growth
function ϕ ∈ �c(�) with constants 1 < p1 � q1 and 0 < ν � � depending only
on the parameters p, q and L in Assumption 1.1. Specifically, p1 = p and q1 � q.

Proof. Define ψ ∈ �w(�) by

ψ(x, t):=
ˆ t

0
ψ ′(x, s) ds and ψ ′(x, t):= sup

|ξ |=t
|ξ | |Dξ A(x, ξ)|.

By Assumption 1.1(2), ψ ′ satisfies (A0), (aInc)p−1 and (aDec)q−1, and hence ψ

satisfies (A0), (aInc)p and (aDec)q (Proposition 2.3(1)). In view of [22, Lemmas
2.2.1 and 2.2.6], there exists ψ̃ ∈ �c(�) with ψ̃ ≈ ψ which satisfies (A0), (Inc)p
and (Dec)q1 for someq1 � q. Nextwedefineϕ ∈ �c(�)withϕ(x, ·) ∈ C1([0,∞))

for every x ∈ � by

ϕ(x, t):=
ˆ t

0

ψ̃(x, s)

s
ds.

Then ϕ′(x, t) = ψ̃(x,t)
t ≈ ψ(x,t)

t ≈ ψ ′(x, t) and ϕ′ satisfies (A0), (Inc)p−1 and
(Dec)q1 − 1.

We now show that ϕ is the desired growth function. Note that by Assump-
tion 1.1(2),

|A(x, ξ)| =
∣
∣
∣
∣

ˆ 1

0

d

dt
A(x, tξ) dt

∣
∣
∣
∣ =

∣
∣
∣
∣

ˆ 1

0
Dξ A(x, tξ) · ξ dt

∣
∣
∣
∣

�
ˆ 1

0
|Dξ A(x, tξ)| |ξ | dt

� L

(ˆ 1

0
t p−2 dt

)

|Dξ A(x, ξ)| |ξ | � L

p − 1
ψ ′(x, |ξ |).

Then (3.1) follows from ϕ′ ≈ ψ ′ and the definition of ψ ′, and (3.2) holds by
Assumption 1.1(3) with ϕ′ ≈ ψ ′ and the definition of ψ ′.

From now on, if A : �×R
n → R

n satisfies Assumption 1.1, we take its growth
function as the one constructed in the above proposition, hence the constants p1,
q1, ν, � in Definition 3.1 depend on the constants p, q, L in Assumption 1.1.
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Remark 3.4. Inequality (3.2) with ϕ′ satisfying (Inc)p−1 and (Dec)q1 − 1 implies
the following strict monotonicity condition:

(A(x, ξ)−A(x, ξ̃ ))·(ξ−ξ̃ ) � ϕ′(x, |ξ | + |ξ̃ |)
|ξ | + |ξ̃ | |ξ−ξ̃ |2, x ∈ �, ξ, ξ̃ ∈ R

n\{0}.
(3.3)

Furthermore, letting ξ̃ → 0 in the preceding inequality, we also have the coercivity
condition

A(x, ξ) · ξ � ϕ′(x, |ξ |)|ξ | ≈ ϕ(x, |ξ |), x ∈ �, ξ ∈ R
n,

which yields that

ϕ(x, |ξ |) � A(x, ξ)·ξ � |ξ ||A(x, ξ)| � |ξ |ϕ′(x, |ξ |) ≈ ϕ(x, |ξ |), x ∈ �, ξ ∈ R
n .

(3.4)

From now on, we denote

A(−1)(x, ξ):=|ξ | A(x, ξ),

andwriteϕ ≈ A(−1) as an abbreviation of (3.4). (The notation is chosen since A(−1)

is comparable to the antiderivative of A.) Since (A1) is invariant under equivalence
[22, Lemma 4.1.3] we obtain the following result:

Proposition 3.5. Let A : �×R
n → R

n satisfy Assumption 1.1 and ϕ be its growth
function. Then A(−1) satisfies (A1) if and only if ϕ satisfies (A1).

We next consider the continuity hypotheses (wVA1). This assumption is not
invariant under equivalence, but we have the following implications for the growth
function. The second part of the proposition is a stronger version of (A1), where
we notice that the range of ϕ−

Br
(t) is changed to [ω(r), |Br |−1], which is needed

later on. Here p′ denotes the Hölder conjugate exponent of p, i.e. p′ = p
p−1 .

Proposition 3.6. Let A : �×R
n → R

n satisfy Assumption 1.1 and ϕ be its growth
function. If A(−1) satisfies (wVA1), then for each ε ∈ (0, 1] with ω = ωε and
r ∈ (0, 1],
(1) for all x, y ∈ Br ∩ � and ξ ∈ R

n satisfying ϕ−
Br

(|ξ |) ∈ [0, |Br |−1+ε],

|A(x, ξ) − A(y, ξ)| � cω(r)
1
p′

(
(ϕ′)−Br (|ξ |) + 1

);

(2) for all t > 0 satisfying ϕ−
Br

(t) ∈ [ω(r), |Br |−1],

ϕ+
Br

(t) � cϕ−
Br

(t).

Here the constants c > 0 depend on p, q, L and L̄2c1 , where c1 � 1 is the implicit
constant from ϕ ≈ A(−1) (3.4).
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Proof. Suppose that ξ ∈ R
n satisfies ϕ−

Br
(|ξ |) � |Br |−1+ε. Choose x ′ ∈ Br with

ϕ(x ′, |ξ |) � 2ϕ−
Br

(|ξ |) so that ϕ(x ′, |ξ |) � 2|Br |−1+ε. This together with A(−1) ≈
ϕ (3.4) yields

|A(−1)(x ′, ξ)| � c1ϕ(x ′, |ξ |) � 2c1|Br |−1+ε.

Therefore, by (wVA1) with K = 2c1 we have that for any x, y ∈ Br

|A(−1)(x, ξ) − A(−1)(y, ξ)|
� |A(−1)(x, ξ) − A(−1)(x ′, ξ)| + |A(−1)(x ′, ξ) − A(−1)(y, ξ)|
� 2L̄2c1ω(r)(|A(−1)(x ′, ξ)| + 1)

≈ ω(r)
(
ϕ(x ′, |ξ |) + 1

) ≈ ω(r)(ϕ−
Br

(|ξ |) + 1)

(3.5)

and, using A(−1) ≈ ϕ,

ϕ(x, |ξ |) � |A(−1)(x, ξ) − A(−1)(x ′, ξ)| + ϕ(x ′, |ξ |)
� ω(r)(ϕ−

Br
(|ξ |) + 1) + ϕ−

Br
(|ξ |). (3.6)

When also ϕ−
Br

(|ξ |) � ω(r) ∈ [0, 1], we can continue this by

ϕ(x, |ξ |) � ω(r)(ϕ−
Br

(|ξ |) + 1) + ϕ−
Br

(|ξ |) � 2ϕ−
Br

(|ξ |) + ω(r) � 3ϕ−
Br

(|ξ |).
Since the implicit constant in the preceding inequality is independent of ε, we obtain
the inequality in (2) for ξ with ϕ−

Br
(|ξ |) ∈ [ω(r), |Br |−1). Moreover, the continuity

of ϕ in the t variable implies the same inequality for ξ with ϕ−
Br

(|ξ |) = |Br |−1.
This completes the proof of claim (2).

Still considering ϕ−
Br

(|ξ |) � ω(r) ∈ [0, 1], we move on to prove (1). Since ϕ

satisfies (A0) and (Inc)p, we conclude that |ξ | � ω(r)1/p. Dividing (3.5) by |ξ |,
we obtain

|A(x, ξ) − A(y, ξ)| � ω(r)(ϕ−
Br

(|ξ |) + 1)|ξ |−1 � ω(r)((ϕ′)−Br (|ξ |) + ω(r)−1/p)

� ω(r)
1
p′ ((ϕ′)−Br (|ξ |) + 1),

where we used that tϕ′(x, t) ≈ ϕ(x, t).
It remains to prove (1) when ϕ−

Br
(|ξ |) < ω(r). By (3.6), it follows that

ϕ+
Br

(|ξ |) � ω(r). Hence applying Proposition 2.3(4), for any x ∈ Br ,

|A(x, ξ)| ≈ ϕ′(x, |ξ |) = (ϕ∗)−1(x, ϕ∗(x, ϕ′(x, |ξ |))) � (ϕ∗)−1(x, ω(r))

� ω(r)
1
p′

and so (1) follows in this case also.

Let F : �×R
n → [0,∞) satisfy Assumption 1.5 and ϕ ∈ �c(�) be its growth

function. By (3.4) with A = Dξ F ,

F(x, ξ) =
ˆ 1

0
Dξ F(x, tξ) · ξ dx ≈ ϕ(x, |ξ |) for all x ∈ � and ξ ∈ R

n, (3.7)

In the same way as Propositions 3.5 and 3.6, we can also prove the following.
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Proposition 3.7. Let F : � ×R
n → R satisfy Assumption 1.5 and ϕ be its growth

function. Then F satisfies (A1) if and only if ϕ satisfies (A1).
If F satisfies (wVA1), then for each ε ∈ (0, 1] with ω = ωε and r ∈ (0, 1],

(1) for all ξ ∈ R
n satisfying ϕ−

Br
(|ξ |) ∈ [0, |Br |−1+ε],

F+
Br

(ξ) − F−
Br

(ξ) � cω(r)
(
ϕ−
Br

(|ξ |) + 1
)

(2) for all t > 0 satisfying ϕ−
Br

(t) ∈ [ω(r), |Br |−1],
ϕ+
Br

(t) � cϕ−
Br

(t).

Here the constants c > 0 depend on p, q, L and L̄2c2 , where c2 � 1 is the implicit
constant from ϕ ≈ F (3.7).

Finally, we consider the relation between (wVA1) of A and F . Based on this
result we can say that the condition (wVA1) is weaker in the minimization case
than in the PDE case.

Proposition 3.8. Let F : � × R
n → R satisfy Assumption 1.5 and set

A(−1)(x, ξ):=|ξ |Dξ F(x, ξ). If A(−1) satisfies (wVA1), then so does F with the
same ω.

Proof. Let ϕ be a growth function of F . Fix any Br ⊂ R
n with r � 1. Suppose

F−
Br

(ξ) ∈ [0, K |Br |−1+ε]. Since |A(−1)(y, ξ)| � c1ϕ(y, |ξ |) � c1c2F(y, ξ) for

all ξ ∈ R
n by ϕ ≈ A(−1) (3.4) and ϕ ≈ F (3.7) with implicit constants c1 and c2,

respectively, we obtain

|A(−1)(y, ξ)| ∈ [0, Kc1c2|Br |−1+ε].
Thus we can use (wVA1) of A(−1). Define e = ξ

|ξ | . Then

F(x, ξ) − F(y, ξ) =
ˆ |ξ |

0
(A(x, te) − A(y, te)) · e dt

� L̄ Kc1c2ω(r)
ˆ |ξ |

0

[|A(y, te)| + 1
]
dt

� ω(r)
ˆ |ξ |

0
[ϕ′(y, t) + 1] dt = ω(r)(ϕ(y, |ξ |) + |ξ |)

� ω(r)(ϕ(y, |ξ |) + 1) ≈ ω(r)(F(y, ξ) + 1)

for any x, x̃ ∈ Br ∩ �, which is (wVA1) of F .

4. Auxiliary Regularity Results

In this section we collect results on two types of approximating problems,
namely non-autonomous problemswithUhlenbeck structure and autonomous prob-
lems without Uhlenbeck structure.
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4.1. Quasiminimizers

Forψ ∈ �w(�), we say that u ∈ W 1,ψ
loc (�) is a localψ-quasiminimizer if there

exists Q � 1 such thatˆ
supp (u−v)

ψ(x, |Du|) dx � Q
ˆ
supp (u−v)

ψ(x, |Dv|) dx

for all v ∈ W 1,ψ
loc (�)with supp (u−v) � �. Quasiminimizers of energy functionals

with generalized Orlicz growth have been studied e.g. in [5,6,24,26].
Let A : � × R

n → R
n satisfy Assumption 1.1 and ϕ be its growth function.

Let u ∈ W 1,1
loc (�) be a local weak solution to (divA). By ϕ ≈ A(−1) (3.4) and the

assumption |A(−1)(·, Du)| ∈ L1
loc(�)we see that u ∈ W 1,ϕ

loc (�). Assuming density,
we obtain by approximation thatˆ

�

A(x, Du) · Dζ dx = 0 for every ζ ∈ W 1,ϕ(�) with supp (ζ ) � �.

Using ϕ ≈ A(−1), the identity above with ζ = u − v, Young’s inequality and
Proposition 2.3(4), we haveˆ

supp (u−v)

ϕ(x, |Du|) dx �
ˆ
supp (u−v)

A(x, Du) · Du dx

=
ˆ
supp (u−v)

A(x, Du) · Dv dx

�
ˆ
supp (u−v)

ϕ(x, |Du|)
|Du| |Dv| dx

� ε

ˆ
supp (u−v)

ϕ(x, |Du|) dx

+ ε1−q
ˆ
supp (u−v)

ϕ(x, |Dv|) dx

for every ε ∈ (0, 1] and v ∈ W 1,ϕ(�) with supp (u − v) � �. Thusˆ
supp (u−v)

ϕ(x, |Du|) dx � Q
ˆ
supp (u−v)

ϕ(x, |Dv|) dx

for some Q � 1 depending only on p, q and L so that u is a ϕ-quasiminimizer.
Note that the density of smooth functions holds if ϕ satisfies (A0), (A1) and (aDec)
[22, Theorem 6.4.7].

Thus we can apply the regularity results for quasiminimizers in [24] to a local
weak solution to (divA). In particular, we have the following Hölder regularity
and higher integrability results for (divA). For the last estimate, we refer to [28,
Theorem 4.7].

Theorem 4.1. [24] Let A : � × R
n → R

n satisfy Assumption 1.1 with constants
L � 1 and 1 < p � q and have growth function ϕ ∈ �c(�) and let u ∈ W 1,1

loc (�)

be a local weak solution to (divA). If A(−1) satisfies (A1) with constant L̄K > 0,
then
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• u ∈ Cα
loc(�) for some α = α(n, p, q, L , L̄1) ∈ (0, 1);

• A(−1)(·, Du) ≈ ϕ(·, |Du|) ∈ L1+σ
loc (�) for some σ = σ(n, p, q, L , L̄1) > 0.

Moreover, for some c = c(n, p, q, L , L̄1) > 0 we have

( 
Br

ϕ(x, |Du|)1+σ dx

) 1
1+σ

� c

(

ϕ−
B2r

( 
B2r

|Du| dx
)

+ 1

)

whenever B2r � � with |B2r | � 1 and ‖Du‖Lϕ(B2r ) � 1.

Remark 4.2. The above theorem still holds in the setting of the minimization prob-
lem as in Theorem 1.6, where we assume that F satisfies (A1).

Remark 4.3. Assumptions 1.1 and 1.5 involve the derivative of A or the second
derivative of F . In fact, these are only needed for the maximal regularity. For the
previous theorem, Assumptions 1.1 could be replaced by weaker assumptions, such
as

(1) For every x ∈ �, A(x, 0) = 0, A(x, ·) ∈ C0(Rn \ {0};Rn) and for every
ξ ∈ R

n , A(·, ξ) is measurable.
(2) There exist L � 1 and 1 < p < q such that the radial function t �→ |A(x, te)|

satisfies (A0), (aInc)p−1 and (aDec)q−1 for every x ∈ � and e ∈ R
n with

|e| = 1.
(3) There exists L � 1 such that

|ξ ′| |A(x, ξ ′)| � L A(x, ξ) · ξ

for all x ∈ � and ξ, ξ ′ ∈ R
n with |ξ | = |ξ ′|.

In this case the growth function ϕ is replaced by

ψ(x, t):= sup
|ξ |=t

|ξ | |A(x, ξ)|.

4.2. Regularity results for autonomous Problems

We consider Assumption 1.1 for an autonomous function Ā : Rn → R
n via

its trivial extension Ā(x, ξ):= Ā(ξ). We may apply Proposition 3.3 to conclude
that such Ā has a growth function ϕ̄ ∈ �c(�). An inspection of the proof of
Proposition 3.3 shows that this ϕ̄ can be chosen autonomous as well, and we will
assume hereafter that ϕ̄ ∈ �c, i.e., ϕ̄ = ϕ̄(t). Moreover, in view of Remark 3.2, we
also assume that ϕ̄ ∈ C1([0,∞)) ∩ C2((0,∞)).

With these Ā and ϕ̄, we present regularity results of weak solutions to the
following autonomous problem

div Ā(Dū) = 0 in Br , (div Ā)

The following results are variations of known regularity results for equations with
Orlicz growth, and the proofs are similar to previous ones. In particular, in the
Uhlenbeck case Ā(ξ) = ϕ̄′(|ξ |)

ξ
ξ , we considered them in [28]. Therefore, we outline

the proofs and point out differences compared with the references. The first result
is local C1,α-regularity.
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Lemma 4.4. Let Ā : R
n → R

n satisfy Assumption 1.1 with A(x, ξ) ≡ Ā(ξ)

and constants L � 1 and 1 < p � q, and ϕ̄ ∈ �c be its growth function. If
ū ∈ W 1,ϕ̄(Br ) is a weak solution to (div Ā), then Dū ∈ C0,ᾱ

loc (Br ,Rn) for some
ᾱ ∈ (0, 1) with the following estimates: for any Bρ ⊂ Br and any τ ∈ (0, 1),

sup
Bρ/2

|Dū| � c
 
Bρ

|Dū| dx,
 
Bτρ

∣
∣
∣Dū(x) −

 
Bτρ

Dū(y) dy
∣
∣
∣ dx � cτ ᾱ

 
Bρ

|Dū| dx .

Here ᾱ ∈ (0, 1) and c > 0 depend only on the constants n, p, q and L.

Outline of proof. The proof is almost the same as for the Uhlenbeck case, that is
[28, Lemma 4.12] with a proof in [28, Appendix A]. We also refer to [31] for the
case ϕ̄(t) = t p. We only need to slightly modify the beginning and approximation
parts to the general case Ā(ξ).

Instead of the equation (div Ā), we consider approximate non-degenerate equa-
tions. For 0 < ε < 1

2 , define

Āε(ξ):= Ā
(
( ε
|ξ | + 1)ξ

) |ξ |
ε + |ξ | and ϕ̄′

ε(t):=
ϕ̄′(ε + t)

ε + t
t.

Note that ϕ̄ε(t):=
´ t
0 ϕ̄′

ε(s) ds is exactly the same as ϕε(t) in [28, (A.1)], hence,
in view of [28, Appendix A], ϕ̄ε also satisfies (A0), (Inc)p−1 and (Dec)q1 − 1,
ϕ̄(t) � ϕ̄ε(t)+1 and ϕ̄ε(t) � ϕ̄(t)+1. In particular, the last two inequalities imply
W 1,ϕ̄(Br ) = W 1,ϕ̄ε (Br ). Then we can see from (3.1) and (3.2) with A = Ā and
ϕ = ϕ̄ that there exist small ε0 > 0 and 0 < ν̄ � �̄ depending only on n, p, q, ν
and � such that for every ε ∈ [0, ε0)

| Āε(ξ)| + |ξ | |Dξ Āε(ξ)| � �̄ϕ̄′
ε(|ξ |) and Dξ Āε(ξ)ξ̃ · ξ̃ � ν̄

ϕ̄′
ε(|ξ |)
|ξ | |ξ̃ |2 (4.1)

for all ξ, ξ̃ ∈ R
n . Moreover, by (3.1),

Āε(Dg) −→ Ā(Dg) in L ϕ̄∗
(Br ) as ε → 0 (4.2)

for every g ∈ W 1,ϕ̄(Br ).
Let ūε ∈ W 1,ϕ̄(Br ) be the unique weak solution to

div Āε(Dūε) = 0 in Br and ūε = ū on ∂Br .

Fix any small 0 < ε � 1. Then, in the same way as in [16], in particular Lemmas
5.7 and 5.8, uε ∈ W 2,2

loc (Br ), ϕ̄ε(Duε) ∈ W 1,2
loc (Br ) and uε ∈ W 1,∞

loc (Br ) with the
estimate

sup
Bρ

ϕ̄ε(Dūε) � c
 
B2ρ

ϕ̄ε(Dūε) dx, B2ρ ⊂ Br ,
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for some c > 0 depending only on n, p, q1, ν̄ and �̄. Set

[ai j (ξ)]:=Dξ Aε(ξ) and [bi j (ξ)]:=Dξ Aε(ξ)
ε + |ξ |

ϕ′(ε + |ξ |) .

Note that, by (4.1), bi j (ξ) satisfies

ν̄|ξ̃ |2 �
n∑

i, j=1

bi j (ξ)ξ̃i ξ̃ j and
∣
∣[bi j (ξ)]∣∣ � �̄.

Therefore, by following [28, Appendix A], in particular from the paragraph con-
taining (A.7), with the above setting, we can obtain the desired regularity estimates
for uε, where relevant constants are independent of ε.

Then using (4.2) and the uniform monotonicity (3.3) with A = Āε and ϕ = ϕ̄ε,
we see that

ūε −→ ū in W 1,ϕ̄(Br ) as ε → 0.

Note that the standard Minty-Browder technique for a monotonicity operator, that
is, an operator A which satisfies inequality (3.3) with right hand side 0, implies
only weak convergence, but due to the uniform monotonicity we have the strong
convergence. In particular, Dūε(x) converges, up to a subsequence, to Dū(x) almost
everywhere in Br .

The next result is a Calderón–Zygmund type estimate in the generalized Orlicz
space for non-zero boundary data. Since θ is superlinear, this lemma allows us to
transfer regularity from u to ū.

Lemma 4.5. Let Ā : Rn → R
n satisfy Assumption 1.1 with A(x, ξ) ≡ Ā(ξ) and

constants L � 1 and 1 < p � q, and ϕ̄ ∈ �c be its growth function. Suppose
θ ∈ �w(Br ) satisfies (A0), (aInc)pθ and (aDec)qθ with constants Lθ � 1 and
1 < pθ � qθ and (A1) with constant L̄K > 0, and u ∈ W 1,ϕ̄(Br ) satisfies´
Br

θ(x, ϕ̄(|Du|)) dx � κ for some κ > 0. If ū ∈ u +W 1,ϕ̄
0 (Br ) is a weak solution

to (div Ā), then

‖ϕ̄(|Dū|)‖Lθ (Br ) � c ‖ϕ̄(|Du|)‖Lθ (Br )

and  
Br

θ(x, ϕ̄(|Dū|)) dx � c
(
κ

q1
p1

−1 + 1
)
(  

Br
θ(x, ϕ̄(|Du|)) dx + 1

)

for c = c(n, p, q, L , pθ , qθ , Lθ , L̄1) > 0.

Outline of proof. The lemma is a general version of [28, Lemma 4.15] and the
proof is exactly the same if we have the general version of [28, Theorem B.1]. We
note that the main tools used in the proof are weighted L p estimates, extrapolation
in the generalized Orlicz spaces and scaling. In particular, [28, Theorem B.1] is the
global weighted L p estimates for the gradient of weak solution to equation (div Ā)
with Ā(ξ) = ϕ̄′(|ξ |) ξ

|ξ | .
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The general version of [28, Theorem B.1] can be proved in a similar way. The
major difference is establishing the estimate (see the next paragraph) concerned
with the boundary Lipschitz regularity for the following approximate equation:

div Ā(Dv̄) = 0 in B+
ρ , v̄ = 0 on Bρ(0) ∩ {xn = 0},

where B+
ρ = Bρ(0) ∩ {xn > 0}. Other differences are minor modifications.

For a weak solution v̄ ∈ W 1,ϕ̄(B+
ρ ) to the above equation, one can prove that

sup
B+

ρ/2

ϕ̄(|Dv̄|) � c
 
B+

ρ

ϕ̄(|Dv̄|) dx

for some c > 0 depending only on n, p, q1, ν and �. This corresponds to [28,
(B.13)] in the Uhlenbeck case, which was obtained from the interior counterpart
by applying the reflection argument with the odd extension, see the last paragraph
in [28]. However, in the general case the reflection argument does not work, and
we use a so-called barrier argument. For the proof of the above Lipschitz estimate
we refer to [11, Theorem 4.1], see also [10, Theorem 2.2]. Note that Cho [11]
proved a Calderón-Zymund type estimatewith θ(x, t) ≡ θ(t) for nonhomogeneous
equations with the zero boundary condition.

5. Approximation

In this section we construct approximations for A in (divA) and F in (min F).
We start by recalling the simpler construction for ϕ ∈ C1([0,∞))withϕ′ satisfying
(A0), (Inc)p−1 and (Dec)q1 − 1 for some 1 < p � q1. Let Br = Br (x0) ⊂ � and
0 < t1 < 1 < t2. We define

ϕ̄(t):=
ˆ t

0
ϕ̄′(s) ds with ϕ̄′(t):=

⎧
⎪⎪⎨

⎪⎪⎩

a1
t p−1
1

t p−1 if 0 � t � t1,

ϕ′(x0, t) if t1 � t � t2,
a2
t p−1
2

t p−1 if t2 � t < ∞,

(5.1)

where a1:=ϕ′(x0, t1) and a2:=ϕ′(x0, t2). Note that the relationship between ϕ and
ϕ̄ is exactly the same as in [28, Sect. 5]. From there, we have the following result.

Proposition 5.1. Let ϕ and ϕ̄ be from (5.1) and L̃ � 1. Suppose that

ϕ+
Br

(t) � L̃ϕ−
Br

(t) for all t ∈ [t1, t2].
Then,

(1) ϕ̄ ∈ C1([0,∞)) with ϕ̄′ satisfying (Inc)p−1 and (Dec)q1 − 1.
(2) ϕ̄(t) � ϕ(x0, t) and L̃−1ϕ(x, t) � ϕ̄(t) for all (x, t) ∈ Br × [t1, t2].
(3) ϕ̄(t) � q1

p L̃ϕ(x, t) for all (x, t) ∈ Br × [t1,∞).

(4) θ0(x, t):=ϕ(x, ϕ̄−1(t)) satisfies (A0), (aInc)1 and (aDec)q1/p with constants L
depending only on the structure constants of ϕ.
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0

1

t1 2t1 1
2t2 t2 2t2

η1 η2η3

Fig. 1. The functions ηi

Note that the inequality assumed in the above proposition will be linked to the
one in Proposition 3.6(2) and 3.7(2). In the Uhlenbeck case F(x, ξ) = ϕ(x, |ξ |) a
suitablymollified version of ϕ̄ can be used as the approximation ofϕ [28]. However,
as far as we can tell, a similar approach to (5.1) does not work in the general case,
so we introduce smooth transitions around t1 and t2 with transition functions ηi .
We deal with A and F in separate subsections.

5.1. Approximation for weak solutions

Let A : � × R
n → R

n satisfy Assumption 1.1, and ϕ ∈ �c(�) be its growth
function. Recall that ϕ′ satisfies (A0), (Inc)p−1 and (Dec)q1 − 1. In this subsection,
we construct an autonomous nonlinearity Ā : Rn → R

n with growth function ϕ̄

given by (5.1), such that Ā and ϕ̄ are comparable with A and ϕ, respectively, in a
suitable sense.

Fix any small ball Br = Br (x0) � � satisfying |Br | � 1. For t1 ∈ (0, 1
2 ] and

t2 � 2 that will be chosen later in the next section, a1 and a2 from the definition of
ϕ̄, and constants q1, ν, � given in Proposition 3.3 we define

Ā(ξ):= ν

8
η1(|ξ |) a1

t p−1
1

|ξ |p−2ξ

︸ ︷︷ ︸

=: Ā1(ξ)

+ η2(|ξ |)A(x0, ξ)
︸ ︷︷ ︸

=: Ā2(ξ)

+ �̄η3(|ξ |) a2

t p−1
2

|ξ |p−2ξ

︸ ︷︷ ︸

=: Ā3(ξ)

,

(5.2)
where �̄:= 2q1−p+3�

min{p−1,1} , and ηi ∈ C∞([0,∞)), i = 1, 2, 3, satisfy

η1 ≡ 1 in [0, t1), η1 ≡ 0 in [2t1,∞) and − 2
t1

� η′
1 � 0,

η2 ≡ 1 in [0, t2), η2 ≡ 0 in [2t2,∞) and − 2
t2

� η′
2 � 0,

η3 ≡ 0 in [0, t2
2 ), η3 ≡ 1 in [t2,∞) and 0 � η′

3 � 4
t2

.

Clearly, Ā ∈ C(Rn,Rn) ∩ C1(Rn \ {0},Rn), and

Ā(ξ) = A(x0, ξ) whenever 2t1 � |ξ | � t2
2 .

Possible functions ηi are sketched in Fig. 1 to assist in following the proof.

Lemma 5.2. If ϕ is a growth function of A, and ϕ̄ and Ā are their autonomous
approximations as in (5.1) and (5.2), then ϕ̄ is a growth function of Ā.
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Proof. Let us start by calculating the derivative of ηi (|ξ |)|ξ |p−2ξ with i = 1, 3:

Dξ (ηi (|ξ |)|ξ |p−2ξ) = η′
i (|ξ |)|ξ |p−3ξ⊗ξ+(p−2)ηi (|ξ |)|ξ |p−4ξ⊗ξ+ηi (|ξ |)|ξ |p−2 In .

(5.3)
Here ⊗ denotes the tensor product (ai )i ⊗ (bi ) j = (aib j )i, j and In is the n-
dimensional identity matrix.

We consider the first condition (3.1) of being a growth function with Ā and ϕ̄ in
place of A and ϕ.When |ξ | < 2t1, we use |η′

1(t)| t � 2 t
t1

� 4 and ϕ̄′(t) ≈ a1
t p−1
1

t p−1

by (Inc)p−1 and (Dec)q1 − 1 for t1 � t < 2t1 to conclude that

| Ā1(ξ)| + |ξ ||Dξ Ā1(ξ)| � ν

8

a1

t p−1
1

[|ξ |p−1 + |η′
1(|ξ |)||ξ |p + (p − 1)|ξ |p−1]

� a1

t p−1
1

|ξ |p−1 ≈ ϕ̄′(|ξ |).

Similarly, we conclude that | Ā3(ξ)| + |ξ ||Dξ Ā3(ξ)| � a2
t p−1
2

|ξ |p−1 ≈ ϕ̄′(|ξ |) when
|ξ | � 1

2 t2. Finally, it follows by (3.1) of A and ϕ′(x0, t) ≈ ϕ′(x0, t2) when t1 �
t � 2t2 that | Ā2(ξ)| + |ξ ||Dξ Ā2(ξ)| � ϕ̄′(|ξ |). Therefore, we have established
(3.1) of Ā.

For the ellipticity condition (3.2), we consider four cases: 0 < |ξ | � t1, t1 <

|ξ | � 2t1, t2/2 < |ξ | � t2 and t2 < |ξ | � 2t2. The strategy is to get the ellipticity
condition by the same condition of Ā1 and Ā2 for first and third cases, respectively.
In the second and fourth cases one term of Dξ Ā is non-negative and the other is non-
positive (since η′

1 or η′
2 is non-positive), so we have to show that the non-positive

term can be absorbed in the non-negative one based on more precise estimates.

Note that the other cases, 2t1 < |ξ | � t2/2 and |ξ | > 2t2, are clear, since in
these intervals only Ā2 and Ā3, respectively, influence Ā.

0 < |ξ | � t1 In this interval, η1 ≡ η2 ≡ 1 and η3 ≡ 0. By the calculation
(5.3) and the ellipticity of A(x0, ξ),

Dξ Ā(ξ)ξ̃ · ξ̃ = Dξ Ā1(ξ)ξ̃ · ξ̃ + Dξ A(x0, ξ)ξ̃ · ξ̃
︸ ︷︷ ︸

�0

� ν

8

a1

t p−1
1

[(p − 2)|ξ |p−4(ξ · ξ̃ )2 + |ξ |p−2|ξ̃ |2]

� ν

8
min{p − 1, 1} a1

t p−1
1

|ξ |p−2|ξ̃ |2 = ν

8
min{p − 1, 1} ϕ̄

′(|ξ |)
|ξ | |ξ̃ |2.
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t1 < |ξ | � 2t1 In this interval, − 4
|ξ | � − 2

t1
� η′

1 � 0, η2 ≡ 1 and η3 ≡ 0.

Therefore by the ellipticity of |ξ |p−2ξ and A(x0, ξ) and (Inc)p−1 of ϕ′,

Dξ Ā(ξ)ξ̃ · ξ̃ = ν

8
η′(|ξ |) a1

t p−1
1

|ξ |p−3(ξ · ξ̃ )2 + ν

8
η1(|ξ |) a1

t p−1
1

Dξ (|ξ |p−2ξ)ξ̃ · ξ̃

︸ ︷︷ ︸
�0

+ Dξ A(x0, ξ)ξ̃ · ξ̃

� −ν

8

4

|ξ |
a1

t p−1
1

|ξ |p−1|ξ̃ |2 + ν
ϕ′(x0, |ξ |)

|ξ | |ξ̃ |2

� −ν

2

ϕ′(x0, |ξ |)
|ξ | |ξ̃ |2 + ν

ϕ′(x0, |ξ |)
|ξ | |ξ̃ |2 = ν

2

ϕ̄′(|ξ |)
|ξ | |ξ̃ |2.

t2
2 < |ξ | � t2 In this interval, η′

3, η3 � 0, η2 ≡ 1 and η1 ≡ 0. Hence

Dξ Ā(ξ)ξ̃ · ξ̃ = Dξ A(x0, ξ)ξ̃ · ξ̃ + �̄η′
3(|ξ |) a2

t p−1
2

|ξ |p−3(ξ · ξ̃ )2

︸ ︷︷ ︸
�0

+ �̄η3(|ξ |) a2

t p−1
2

∂(|ξ |p−2ξ)ξ̃ · ξ̃

︸ ︷︷ ︸
�0

� Dξ A(x0, ξ)ξ̃ · ξ̃ � ν
ϕ′(x0, |ξ |)

|ξ | |ξ̃ |2 = ν
ϕ̄′(|ξ |)

|ξ | |ξ̃ |2.

t2 < |ξ | � 2t2 In this interval, − 4
|ξ | � − 2

t2
� η′

2 � 0, η3 ≡ 1 and η1 ≡ 0.
Therefore

Dξ Ā(ξ)ξ̃ · ξ̃ = η′
2(|ξ |)
|ξ | (ξ ⊗ A(x0, ξ))ξ̃ · ξ̃ + η2(|ξ |)Dξ A(x0, ξ)ξ̃ · ξ̃

︸ ︷︷ ︸
�0

+ �̄
a2

t p−1
2

Dξ (|ξ |p−2ξ)ξ̃ · ξ̃

� −4�
ϕ′(x0, |ξ |)

|ξ | |ξ̃ |2 + �̄min{p − 1, 1} a2

t p−1
2

|ξ |p−2|ξ̃ |2.

For the first term, we use (Inc)p−1 and (Dec)q1 − 1 of ϕ′ to conclude that

ϕ′(x0, |ξ |)
|ξ |p−1 � ϕ′(x0, 2t2)

(2t2)p−1 � 2q1−p ϕ′(x0, t2)
t p−1
2

= 2q1−p a2

t p−1
2

.

Recalling the definition of �̄, we complete the proof of (3.2) of Ā with the obser-
vation

Dξ Ā(ξ)ξ̃ · ξ̃ � 2q1−p+2�
a2

t p−1
2

|ξ |p−2|ξ̃ |2 = 2q1−p+2�
ϕ̄′(|ξ |)

|ξ | |ξ̃ |2.

��
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5.2. Approximation for minimizers

Let F : � × R
n → [0,∞) satisfy Assumption 1.5 with constants L � 1 and

1 < p < q, and ϕ ∈ �c(�) be its growth function. We construct an autonomous
function F̄ : Rn → [0,∞)with growth function ϕ̄ given in (5.1). The construction
is similar to, yet more delicate than, that of the previous subsection. The added
difficulty comes from the fact that we need to differentiate F twice, which makes
controlling the approximation more challenging.

Fix any small ball Br = Br (x0) � � with r ∈ (0, 1) satisfying |Br | � 1. For
t1 ∈ (0, 1

2 ], t2 � 2, ν̄ � 1 and �̄ � 1 that will be chosen later, we define

F̄(ξ) := ν̄η1(|ξ |) a1

t p−1
1

|ξ |p
︸ ︷︷ ︸

=:F̄1(ξ)

+ η2(|ξ |)F(x0, ξ)
︸ ︷︷ ︸

=:F̄2(ξ)

+ �̄η3(|ξ |) a2

t p−1
2

|ξ |p
︸ ︷︷ ︸

=:F̄3(ξ)

, (5.4)

where ηi ∈ C∞([0,∞)), i = 1, 2, 3, satisfy

η1 ≡ 1 in [0, t1), η1 ≡ 0 in [2t1,∞), η′
1 � 0 and |η′

1|t1 + |η′′
1 |t21 � 10,

η2 ≡ 1 in [0, t2), η1 ≡ 0 in [2t2,∞), η′
2 � 0 and |η′

2|t2 + |η′′
2 |t22 � 10,

η3(t):=
ˆ t

0

h(s)

s2
ds

with h ∈ C∞([0,∞)) increasing, equal to 0 on [0, 1
2 t2] and to t2 on [ 34 t2,∞], and

‖h′‖∞ � 10.
Observe that η1 and η2 are analogous to their namesakes in the previous sub-

section, but η3 behaves somewhat differently. The reason is that if η3 is forced to
be constant from 2t2 onward as in the previous subsection, then it is not possible
to control derivatives up to order 2 in an appropriate manner. We again note that

ηi (t) + t |η′
i (t)| + t2|η′′

i (t)| � C (5.5)

for i = 1, 2, 3 and all t � 0, and that

F̄(ξ) = F(x0, ξ) whenever 2t1 � |ξ | � t2
2 .

Lemma 5.3. If ϕ is a growth function of F, and ϕ̄ and F̄ are their autonomous
approximations as in (5.1) and (5.4), then ϕ̄ is a growth function of F̄ .

Proof. To check the first condition of the definition of growth function, (3.1) with
A:=Dξ F̄ and ϕ:=ϕ̄, we calculate the derivatives and use (5.5) as in Lemma 5.2;
the only noteworthy feature is that we use (Inc)p−1 to control F(x0, ξ) and its
derivatives when t < t1:

|Dξ F̄(ξ)| � pν̄a1(
|ξ |
t1

)p−1 + �ϕ′(x0, |ξ |) � (pν̄ + �)a1(
|ξ |
t1

)p−1 ≈ ϕ̄′(|ξ |)
and

|ξ | |D2
ξ F̄(ξ)| � c(n, p)ν̄a1(

|ξ |
t1

)p−1 + �ϕ′(x0, |ξ |)
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� (c(n, p)ν̄ + �)a1(
|ξ |
t1

)p−1 ≈ ϕ̄′(|ξ |).
We move on to (3.2) and consider four cases: 0 < |ξ | � t1, t1 < |ξ | � 2t1,

t2/2 < |ξ | � t2 and |ξ | > t2. The remaining case 2t1 < |ξ | � t2/2 follows from
the assumption that ϕ is a growth function of F , since ϕ ≡ ϕ̄ and F ≡ F̄ in this
set.

0 < |ξ | � t1 As in Lemma 5.2, we find that

D2
ξ F̄(ξ)ξ̃ · ξ̃ = ν̄

a1

t p−1
1

Dξ (|ξ |p−2ξ)ξ̃ · ξ̃ + D2
ξ F(x0, ξ)ξ̃ · ξ̃

︸ ︷︷ ︸
�0

� ν̄ min{p − 1, 1} a1

t p−1
1

|ξ |p−2|ξ̃ |2 = ν̄ min{p − 1, 1} ϕ̄
′(|ξ |)
|ξ | |ξ̃ |2.

t1 < |ξ | � 2t1 We calculate that

Dξ F̄(ξ) = ν̄
(
η′
1(|ξ |)|ξ | + pη1(|ξ |)) a1

t p−1
1

|ξ |p−2ξ + Dξ F(x0, ξ)

and

D2
ξ F̄(ξ) = ν̄

[
η′′
1(|ξ |)|ξ |2 + (1 + p)η′

1(|ξ |)|ξ |] a1

t p−1
1

|ξ |p−4ξ ⊗ ξ

+ ν̄
[
η′
1(|ξ |)|ξ | + pη1(|ξ |)] a1

t p−1
1

Dξ (|ξ |p−2ξ) + D2
ξ F(x0, ξ).

By (5.5), the coefficients in the square brackets are bounded from below by a
negative constant. By taking ν̄ sufficiently small and using (Inc)p−1 and (Dec)q−1
of ϕ̄′, we have that

D2
ξ F̄(ξ)ξ̃ · ξ̃ � −ν̄c

a1

t p−1
1

|ξ |p−2|ξ̃ |2 + ν
ϕ′(x0, |ξ |)

|ξ | |ξ̃ |2 � ν

2

ϕ′(x0, |ξ |)
|ξ | |ξ̃ |2

≈ ν

2

ϕ̄′(|ξ |)
|ξ | |ξ̃ |2.

t2
2 < |ξ | � t2 We observe that η′

3(t) = h(t)
t2

. Since h(t) = η′
3(t)t

2 is increasing

and differentiable, we conclude that (η′
3(t)t

2)′ = η′′
3(t)t

2 + 2tη′
3(t) � 0. Also

pη3(t) + η′
3(t)t � 0 since both terms are non-negative. We calculate Dξ F̄3(ξ) =

�̄
(
pη3(|ξ |) + η′

3(|ξ |)|ξ |) a2
t p−1
2

|ξ |p−2ξ and

D2
ξ F̄3(ξ)ξ̃ · ξ̃ = �̄

(
(p + 1)η′

3(|ξ |)|ξ | + η′′
3(|ξ |)|ξ |2) a2

t p−1
2

|ξ |p−4(ξ · ξ̃ )2

+ �̄
(
pη3(|ξ |) + η′

3(|ξ |)|ξ |) a2

t p−1
2

Dξ (|ξ |p−2ξ)ξ̃ · ξ̃ � 0.

Therefore, the ellipticity of F̄ follows from the ellipticity of F̄2(ξ) = A(x0, ξ).
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t2 < |ξ | As in the previous case, we conclude that

D2
ξ F̄3(ξ)ξ̃ · ξ̃ � �̄pη3(|ξ |) a2

t p−1
2

Dξ (|ξ |p−2ξ)ξ̃ · ξ̃

� �̄p
3 min{1, p − 1} a2

t p−1
2

|ξ |p−2|ξ̃ |2,

where we used that η′
3 � 0 and

η3(|ξ |) � η3(t2) =
ˆ t2

0

h(s)

s2
ds � t2

ˆ t2

3
4 t2

1

s2
ds = 1

3
.

Hence the ellipticity of F̄ = F̄3 when |ξ | > 2t2 follows.
Finally, we suppose that t2 < |ξ | � 2t2. We calculate Dξ F̄2(ξ) =

η′
2(|ξ |)
|ξ | F(x0, ξ)ξ + η2(|ξ |)Dξ F(x0, ξ) and

D2
ξ F̄2(ξ) =η′

2(|ξ |)
|ξ | F(x0, ξ)In + 2

η′
2(|ξ |)
|ξ | Dξ F(x0, ξ) ⊗ ξ

+ η′′
2(|ξ |)|ξ | − η′

2(|ξ |)
|ξ |3 F(x0, ξ)ξ ⊗ ξ

+ η2(|ξ |)D2
ξ F(x0, ξ).

Since |η′
2|t2 + |η′′

2 |t22 � 10 and |ξ | ≈ t2, by choosing �̄ sufficiently large for the
second estimate, we obtain that

D2
ξ F̄(ξ)ξ̃ · ξ̃ � −c

ϕ′(x0, |ξ |)
|ξ | |ξ̃ |2 + �̄p

3 min{p − 1, 1} a2

t p−1
2

|ξ |p−2|ξ̃ |2

� ϕ̄′(|ξ |)
|ξ |p−1 |ξ̃ |2;

here we also used (Inc)p−1 and (Dec)q1 − 1 of ϕ′ to conclude that

ϕ′(x0, |ξ |)
|ξ |p−1 � ϕ′(x0, 2t2)

(2t2)p−1 � 2q1−p ϕ′(x0, t2)
t p−1
2

= 2q1−p ϕ̄′(|ξ |)
|ξ |p−1 .

Thus we obtain the second condition of being a growth function, (3.2).

6. Regularity of Weak Solutions and Minimizers

In this section we prove the main theorems stated in the introduction. We con-
sider either A : � × R

n → R
n satisfying Assumption 1.1 with A(−1) satisfying

(wVA1) or F : � × R
n → R satisfying Assumption 1.5 and (wVA1). Note that

the parameters p, q and L are from Assumption 1.1 or 1.5, and the parameter L̄ is
given by L̄ K in (wVA1) with

K = 2c1 in the equation case or K = 2c2 in the functional case, (6.1)
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where c1 and c2 are from Propositions 3.6 and 3.7. Let ϕ be a growth function of A
or F . Note that by Proposition 3.6 or 3.7, A(−1) or F satisfies (A1) when K = 1
with L̄1 depending only on n, p, q, L and L̄ , hence so does ϕ.

Let u ∈ W 1,ϕ
loc (�) be a local weak solution to (divA) or a local minimizer

of (min F). Then, by Theorem 4.1 along with Remark 4.2, we have ϕ(·, |Du|) ∈
L1+σ
loc (�) for some σ = σ(n, p, q, L , L̄) ∈ (0, 1). With this σ , we fix the parame-

ters ε and ω = ωε from (wVA1) by

ε:= σ

2(2 + σ)
<

1

6
, (6.2)

We also fix �′ � �, and consider any B2r ⊂ �′ with r ∈ (0, 1
2 ) satisfying

ω(r) � 1

2q1L
, |B2r | � max

{

2pL , 2
1

1−ε , 2
2(1+σ)

σ ‖ϕ(·, |Du|)1+σ ‖
2+σ
σ

L1(�′)

}−1

.

Note that using Hölder’s inequality we have

ˆ
B2r

ϕ(x, |Du|)1+ σ
2 dx � |B2r |

( 
B2r

ϕ(x, |Du|)1+σ dx

) 1+σ/2
1+σ

� 1

2
, (6.3)

so thatˆ
B2r

ϕ(x, |Du|) dx �
ˆ
B2r

ϕ(x, |Du|)1+ σ
2 dx + |B2r | � 1

2
+ 1

2
= 1. (6.4)

Note that this allows us to take advantage of the higher integrability estimate in
Theorem 4.1. Next we set

t1:=(ϕ−
Br

)−1(ω(r)) � 1

2
and t2:=(ϕ−

Br
)−1(|Br |−1) � 2.

With these t1 and t2, we construct Ā, F̄ and ϕ̄ as described in Sect. 5.

6.1. Regularity for weak solutions

We first prove Theorem 1.2. We assume A : � × R
n → R

n satisfies
Assumptions 1.1 and A(−1) satisfies (wVA1), and consider a local weak solution
u ∈ W 1,ϕ

loc (�) to (divA). By Proposition 3.6(1),

|A(x, ξ) − A(y, ξ)| � ω(r)
1
p′

(
(ϕ′)−Br (|ξ |) + 1

)
, (6.5)

for all ξ ∈ R
n satisfyingϕ−

Br
(|ξ |) ∈ [

0, |Br |−1+ε
]
.Moreover, byProposition 3.6(2),

the condition of Proposition 5.1 holds with L̃ = L̃(n, p, q, L , L̄).
Recall that ϕ̄ and Āwere constructed in (5.1) and (5.2). Let ū ∈ u+W 1,ϕ̄

0 (Br ) be
a weak solution to (div Ā). By Proposition 5.1(3), u ∈ W 1,ϕ̄(Br ), so it is a suitable
boundary value. The following lemma is a generalization of [28, Lemma 5.15] to
the non-Uhlenbeck case. Note that we use only the (A1) condition of A(−1) in the
proof.



Regularity Theory Without Uhlenbeck Structure 1427

Lemma 6.1. Let A, ϕ, u, L̄, σ , B2r and ū be as above. Then

 
Br

ϕ(x, |Du|) dx �
( 

Br
ϕ(x, |Du|)1+σ dx

) 1
1+σ

(1)

� ϕ−
B2r

( 
B2r

|Du| dx
)

+ 1 � ϕ̄

(  
B2r

|Du| dx
)

+ 1,

 
Br

ϕ(x, |Dū|) dx �
( 

Br
ϕ(x, |Dū|)1+ σ

2 dx

) 2
2+σ

�
( 

Br
ϕ(x, |Du|)1+ σ

2 dx + 1

) 2
2+σ

,

(2)

 
Br

|Dū| dx �
 
B2r

|Du| dx + 1. (3)

The implicit constants depend only on n, p, q, L and L̄.

Proof. By Hölder’s inequality and higher integrability in Theorem 4.1, we have
that
 
Br

ϕ(x, |Du|) dx �
( 

Br
ϕ(x, |Du|)1+σ dx

) 1
1+σ

� ϕ−
B2r

( 
B2r

|Du| dx
)

+ 1.

From (6.4) we obtain that
ffl
B2r

|Du| dx � (ϕ−
Br

)−1(|Br |−1) = t2. Hence (1) follows
by Proposition 5.1(2).

By Proposition 5.1(4), we see that θ(x, t):=ϕ(x, ϕ̄−1(t))1+σ/2 satisfies (A0),
(aInc)1+σ/2 and (aDec)(1+σ/2)q1/p. Moreover, (A1) of ϕ implies (A1) of θ . There-
fore, in view of Lemma 4.5 with (6.3) we have (2).

Finally, by Jensen’s inequality, the standard energy estimate for (div Ā), i.e. the
estimate in Lemma 4.5 with θ(x, t) ≡ t , and (1), we have

ϕ̄

( 
Br

|Dū| dx
)

�
 
Br

ϕ̄(|Dū|) dx �
 
Br

ϕ̄(|Du|) dx �
 
Br

ϕ(x, |Du|) dx + 1

� ϕ̄

( 
Br

|Du| dx + 1

)

,

which implies (3), since ϕ̄ is strictly increasing.

We next estimate the difference of the gradient between u and ū in the L1-sense.
This generalizes Lemma 6.2 and Corollary 6.3 of [28] to the non-Uhlenbeck case.

Lemma 6.2. Let A, ϕ, u, L̄, ε, ω, B2r , ϕ̄, Ā and ū be as above. Then
 
Br

ϕ̄′(|Du| + |Dū|)
|Du| + |Dū| |Du − Dū|2 dx � c

(
ω(r)

p−1
q1 + rγ

)
(

ϕ̄

( 
B2r

|Du| dx
)

+ 1

)

and  
Br

|Du − Dū| dx � c
(
ω(r)

p−1

2q21 + r
γ
2q1

)
( 

B2r
|Du| dx + 1

)

.

for some c � 1 and γ ∈ (0, 1) depending only on n, p, q, L and L̄.
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Proof. Using the monotonicity of Ā (3.3) and taking u − ū ∈ W 1,ϕ
0 (Br ) ⊂

W 1,ϕ̄
0 (Br ) as a test function in the weak forms of (divA) and (div Ā), we find that

 
Br

ϕ̄′(|Du| + |Dū|)
|Du| + |Dū| |Du − Dū|2 dx �

 
Br

( Ā(Dū) − Ā(Du)) · (Du − Dū) dx

=
 
Br

(A(x, Du) − Ā(Du)) · (Du − Dū) dx

�
 
Br

|A(x, Du) − Ā(Du)| |Du − Dū| dx .

We split Br into two regions defined by

E1:=Br ∩
{
ϕ−
Br

(|Du|) � |Br |−1+ε

2p

}
and E2:=Br ∩

{ |Br |−1+ε

2p
< ϕ−

Br
(|Du|)

}
.

In the set E1, we have |Du| � t2
2 . If also 2t1 � |Du|, then it follows from Ā(ξ) =

A(x0, ξ) and (6.5) that

|A(x, Du) − Ā(Du)| = |A(x, Du) − A(x0, Du)| � ω(r)1−
1
p ((ϕ′)−(|Du|) + 1).

If, on the other hand, |Du| � 2t1, then (Dec)q1 and (A0) of ϕ imply that |Du| �
ω(r)

1
q1 . Therefore by (Inc)p−1 and (A0) of ϕ′ and ϕ̄′ and the growth function

property (3.1) of A and Ā, we see that |A(x, Du) − Ā(Du)| � ω(r)
p−1
q1 . Applying

Young’s inequality with ϕ−
Br

and (ϕ−
Br

)∗ and ϕ∗(x, ϕ′(x, t)) � ϕ(x, t) as well as
t � ϕ(x, t) + 1, we find that

|A(x, Du) − Ā(Du)| |Du − Dū|χE1 � ω(r)
p−1
q1 [(ϕ′)−(|Du|)|Du − Dū| + |Du − Dū|]

� ω(r)
p−1
q1 [ϕ(x, |Du|) + ϕ(x, |Dū|) + 1].

Next we integrate this inequality over Br and use Lemma 6.1(1)&(2):

 
Br

|A(x, Du) − Ā(Du)||Du − Dū|χE1 dx

� ω(r)
p−1
q1

(

ϕ̄

( 
B2r

|Du| dx
)

+ 1

)

.

In the set E2, 1 � |Br |1−εϕ−
Br

(|Du|). Then applying Young’s inequality and
Proposition 5.1(3) we have

|A(x, Du) − Ā(Du)| |Du − Dū|χE2 � ϕ′(x, |Du|)|Du − Dū| � ϕ(x, |Du|) + ϕ(x, |Dū|)
�

[
|B2r |1−εϕ−

Br
(|Du|)

] σ
2 [ϕ(x, |Du|) + ϕ(x, |Dū|)]

� r
n(1−ε)σ

2
(
ϕ(x, |Du|)1+ σ

2 + ϕ(x, |Dū|)1+ σ
2
)
.
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Integrating this inequality over Br and using Lemma 6.1(2) and the definition of ε

from (6.2), we find that 
Br

|A(x, Du) − Ā(Du)||Du − Dū|χE2 dx

� r
n(4+σ)σ
4(2+σ)

( 
Br

ϕ(x, |Du|)1+ σ
2 dx

) σ
2+σ

+ 2
2+σ

.

On one hand, by Lemma 6.1(1), we have
( 

Br
ϕ(x, |Du|)1+ σ

2 dx

) 2
2+σ

� ϕ̄

( 
B2r

|Du| dx
)

+ 1.

On the other hand, by (6.3),
( 

Br
ϕ(x, |Du|)1+ σ

2 dx

) σ
2+σ

� |Br |− σ
2+σ � r− 4nσ

4(2+σ) .

Therefore, the previous three inequalities imply that 
Br

|A(x, Du) − Ā(Du)| |Du − Dū|χE2 dx � r
nσ2

4(2+σ)

(

ϕ̄

( 
B2r

|Du| dx
)

+ 1

)

.

Combining the results of this and the previous paragraph, we have the first claim
of the lemma, with γ := nσ 2

4(2+σ)
.

Next, setω0(r):=ω(r)
p−1
q1 +rγ . Applying Proposition 2.4(3) with κ = ω0(r)

1
2 ,

Proposition 5.1(3), Lemma 6.1(1)&(2) and the first part of the lemma, we find that 
Br

ϕ̄(|Du − Dū|) dx

� ω0(r)
1
2

 
Br

[ϕ̄(|Du|) + ϕ̄(|Dū|)] dx

+ ω0(r)
− 1

2

 
Br

ϕ̄′(|Du| + |Dū|)
|Du| + |Dū| |Du − Dū|2 dx

� ω0(r)
1
2

 
Br

[ϕ(x, |Du|) + ϕ(x, |Dū|) + 1] dx

+ ω0(r)
1
2

(

ϕ̄

( 
B2r

|Du| dx
)

+ 1

)

� ω0(r)
1
2

(

ϕ̄

( 
B2r

|Du| dx
)

+ 1

)

.

Therefore, by Jensen’s inequality and (Dec)q1 of ϕ̄, we have that

ϕ̄

( 
Br

|Du − Dū| dx
)

�
 
Br

ϕ̄(|Du − Dū|) dx

� ϕ̄

(

ω0(r)
1

2q1

( 
B2r

|Du| dx + 1

))

.

Since ϕ̄ is strictly increasing, this implies the second claim of the lemma.
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Now, the regularity result for weak solutions follows.

Proof of Theorem 1.2. We can prove the theorem using Lemmas 4.4, 6.1 and 6.2
using a standard iteration argument. The proof is exactly the same as [28, Theorem
7.2], see also [1,2], so we omit it.

6.2. Regularity for minimizers

In this subsection we prove Theorem 1.6. The method is almost the same as
for Theorem 1.2 except for the comparison step. Hence we will take advantage of
many parts from the previous subsection.

We assume F : � × R
n → R satisfies Assumption 1.5 and (wVA1), and

consider a local minimizer u ∈ W 1,ϕ
loc (�) of (min F). Recall that the minimizer u

is also a weak solution to (divA) with A = Dξ F , but (wVA1) of F does not imply
(wVA1) of A:=Dξ F . On the other hand, by Proposition 3.7(1) we have

F+
Br

(ξ) − F−
Br

(ξ) � ω(r)
(
ϕ−
Br

(|ξ |) + 1
)
, (6.6)

for all ξ ∈ R
n satisfying ϕ−

Br
(|ξ |) ∈ [

0, |Br |−1+ε
]
. Moreover, by the Proposi-

tion 3.7(2), the condition of Proposition 5.1 holds with L̃ = L̃(n, p, q, L , L̄).

We use ϕ̄ and F̄ constructed in (5.1) and (5.4). Let ū ∈ u + W 1,ϕ̄
0 (Br ) be a

weak solution to (div Ā) with Ā:=Dξ F̄ . Lemma 6.1 holds also for the minimizer
u, since the lemma needed only (A1), which holds by Propositions 3.5 and 3.7. We
prove the following analogue of Lemma 6.2, where (wVA1) is used in a different
way.

Lemma 6.3. Let F, ϕ, u, L̄, ε, ω, B2r , ϕ̄, F̄ and ū be as above. Then

 
Br

ϕ̄′(|Du| + |Dū|)
|Du| + |Dū| |Du − Dū|2 dx

� c
(
ω(r)

p
q1 + rγ

)
(

ϕ̄

( 
B2r

|Du| dx
)

+ 1

)

and

 
Br

|Du − Dū| dx � c
(
ω(r)

p

2q21 + r
γ
2q1

)
( 

B2r
|Du| dx + 1

)

for some c � 1 and γ ∈ (0, 1) depending only on n, p, q, L and L̄.
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Proof. By monotonicity (3.3) and (Inc)p−1 and (Dec)q1 − 1 of ϕ̄′,

F̄(ξ1) − F̄(ξ2) − Dξ F̄(ξ2) · (ξ1 − ξ2) =
ˆ 1

0
(Dξ F̄(tξ1 + (1 − t)ξ2) − Dξ F̄(ξ2)) · (ξ1 − ξ2) dt

�
ˆ 1

0
t
ϕ̄′(|tξ1 + (1 − t)ξ2| + |ξ2|)

|tξ1 + (1 − t)ξ2| + |ξ2| |ξ1 − ξ2|2 dt

�
ˆ 1

3/4
t
ϕ̄′(|tξ1 + (1 − t)ξ2| + |ξ2|)

|ξ1| + |ξ2| |ξ1 − ξ2|2 dt

�
(ˆ 1

3/4
t dt

)
ϕ̄′( 34 |ξ1| − 1

4 |ξ2| + |ξ2|)
|ξ1| + |ξ2| |ξ1 − ξ2|2

≈ ϕ̄′(|ξ1| + |ξ2|)
|ξ1| + |ξ2| |ξ1 − ξ2|2

for every ξ1, ξ2 ∈ R
n . Using this and the facts that u − ū ∈ W 1,ϕ

0 (Br ) ⊂ W 1,ϕ̄
0 (Br )

from Lemma 6.1, we find that
 
Br

ϕ̄′(|Du| + |Dū|)
|Du| + |Dū| |Du − Dū|2 dx

�
 
Br

[F̄(Du) − F̄(Dū)] dx −
 
Br

Dξ F̄(Dū) · (Du − Dū) dx

︸ ︷︷ ︸

=0 by (div Ā)

=
 
Br

[F̄(Du) − F(x, Du) + F(x, Dū) − F(|Dū|)] dx

+
 
Br

[F(x, Du) − F(x, Dū)] dx
︸ ︷︷ ︸

�0 by (min F)

�
 
Br

|F̄(Du) − F(x, Du)| dx +
 
Br

|F(x, Dū) − F̄(Dū)| dx .

We shall estimate only the second integral; the estimate for the first is analogous,
we merely swap the roles of Dū and Du. We split Br into

E1:=Br ∩
{

ϕ−
Br

(|Dū|) � |Br |−1+ε

2p

}

andE2:=Br ∩
{ |Br |−1+ε

2p
< ϕ−

Br
(|Dū|)

}

.

In the set E1, |Dū| � t2
2 . If also 2t1 � |Dū|, then F̄(ξ) = F(x0, ξ) and (6.6) imply

that

|F(x, Dū) − F̄(Dū)| = |F(x, Dū) − F(x0, Dū)| � ω(r)(ϕ−
Br

(|Dū|) + 1).

When |Dū| < 2t1, we use F ≈ ϕ, F̄ ≈ ϕ̄ and that ϕ and ϕ̄ satisfy (A0), (Inc)p

and (Dec)q1 , to conclude that |F(x, Dū)− F̄(Dū)| � ω(r)
p
q1 . Therefore, applying

Lemma 6.1(1)&(2), we have
 
Br

|F(|x, Dū|) − F̄(Dū)|χE1 dx � ω(r)
p
q1

(

ϕ̄

( 
B2r

|Du| dx
)

+ 1

)

.
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In the set E2, Proposition 5.1(3), 1 � |B2r |1−εϕ−
Br

(|Dū|) and F ≈ ϕ imply
that

|F(x, Dū) − F̄(Dū)| � ϕ(x, |Dū|) � r
n(1−ε)σ

2 ϕ(x, |Dū|)1+ σ
2 .

Integrating this inequality over E2 and using the definition of ε from (6.2), we find
that
 
Br

|F(x, Dū) − F̄(Dū)|χE2 dx � r
n(4+σ)σ
4(2+σ)

( 
Br

ϕ(x, |Dū|)1+ σ
2 dx

) σ
2+σ

+ 2
2+σ

.

In the same way as in the proof of Lemma 6.2, we derive from this that 
Br

|F(x, Dū) − F(Dū)|χE2 dx � r
nσ2

4(2+σ)

(

ϕ̄

( 
B2r

|Du| dx
)

+ 1

)

.

Adding the estimates in E1 and E2, we obtain the inequality 
Br

ϕ̄′(|Du| + |Dū|)
|Du| + |Dū| |Du − Dū|2 dx �

(
ω(r)

p
q1 + rγ

) (

ϕ̄

( 
B2r

|Du| dx
)

+ 1

)

with γ := nσ 2

4(2+σ)
. This is the first claim of the lemma. The second claim follows

from the first one by the same argument as in the proof of Lemma 6.2.

Proof of Theorem 1.6. The proof is exactly same as that of Theorem 1.2, with
Lemma 6.2 replaced by Lemma 6.3.

7. Examples

We present two known, important nonstandard growth problems, and show that
they are special cases of Theorem 1.2 or 1.6. Various other examples of growth
functions together with references about regularity results for related equations
and minimizing problems can be found in [28].

The first example is the equation (divA) with p(x)-growth, for which we refer
to [18] (see also [1]). The second example is the functional (min F) with the double
phase condition, for which we refer to [2] (see also [8,9]). For brevity, we consider
one example in PDE form and the other as a minimizer, although obviously both
problems could be considered in either form. In Example 7.1, p is a function
whereas the lower growth exponent is denoted by p−.

Example 7.1. (Variable exponent growth) Let p : � → [p−, p+] for some 1 <

p− � p+, and let ωp be the modulus of continuity of p and satisfy

lim
r→0

ωp(r) ln
( 1
r

) = 0.

Suppose A : � × R
n → R

n satisfies that A(x, ·) ∈ C1(Rn \ {0},Rn) and
⎧
⎪⎨

⎪⎩

|A(x, ξ)| + |ξ ||Dξ A(x, ξ)| � L|ξ |p(x)−1,

|ξ |p(x)−2|ξ̃ |2 � LDξ A(x, ξ)ξ̃ · ξ̃ ,

|A(x, ξ) − A(y, ξ)| � Lωp(|x − y|)(|ξ |p(x)−1 + |ξ |p(y)−1)
(
1 + ∣

∣ ln |ξ | ∣∣).
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For instance, A(x, ξ) = |ξ |p(x)−2ξ satisfies these conditions.
We will show that A satisfies the assumptions of Theorem 1.2. Since the first

two conditions above imply

|ξ |p(x)−2 ≈ |Dξ A(x, ξ)| ≈ |ξ |−1|A(x, ξ)| and |Dξ A(x, ξ)| � Dξ A(x, ξ)e · e,
Assumption 1.1 is satisfied. We next derive (wVA1) for A(−1). Let r ∈ (0, 1) and
x, y ∈ Br . The third condition and |ξ |p(x)−2 ≈ |ξ |−1|A(x, ξ)| imply that

|ξ | |A(x, ξ) − A(y, ξ)| � ωp(r)
(
1 + ∣

∣ ln |ξ |∣∣)|ξ | |A(y, ξ)|

for all ξ ∈ R
n . Moreover, if 1 � |ξ | |A(y, ξ)| � |Br |−1, then |ξ |p− � Cr−n for

some C � 1 so that

1 + ln |ξ | � 1 + 1
p− lnC + n

p− ln
( 1
r

)
� ln

( 1
r

)
.

On the other hand, if 0 � |ξ ||A(y, ξ)| � 1, then |ξ ||A(y, ξ)| � |ξ |p−
hence

(
1 + ∣

∣ ln |ξ |∣∣) |ξ | |A(y, ξ)| �
(
1 + ∣

∣ ln |ξ |∣∣) |ξ |p− � 1.

Therefore we have

|ξ | |A(x, ξ) − A(y, ξ)| � ωp(r) ln
( 1
r

)
(|ξ | |A(y, ξ)| + 1),

|ξ | |A(y, ξ)| ∈ (0, |Br |−1].
This implies A(−1) satisfies (wVA1) with ωε(r) = ωp(r) ln

( 1
r

)
for all ε ∈ (0, 1].

We note that if ωp(r) � rβ for some β > 0, then ωε(r) � rβε for any
βε ∈ (0, β).

Example 7.2. (Double phase growth) Let H(x, t) = t p + a(x)tq with a : � →
[0, a+] satisfy that for some β ∈ (0, 1],

1 � q

p
� 1 + β

n
and |a(x) − a(y)| � L|x − y|β.

Suppose F : � × R
n → R satisfies F(x, ·) ∈ C1(Rn) ∩ C2(Rn \ {0}),

⎧
⎪⎨

⎪⎩

|ξ | |Dξ F(x, ξ)| + |ξ |2 |D2
ξ F(x, ξ)| � LH(x, |ξ |),

|ξ |−2H(x, |ξ |)|ξ̃ |2 � LD2
ξ F(x, ξ)ξ̃ · ξ̃ ,

|F(x, ξ) − F(y, ξ)| � Lω̃(|x − y|)(H(x, |ξ |) + H(y, |ξ |)) + L|a(x) − a(y)| |ξ |q .

For instance, F(x, ξ) = γ (x)H(x, ξ41 +· · ·+ξ4n )with ω̃ the modulus of continuity
of γ satisfies these conditions if 0 < γ − � γ � γ +.

We will show that F satisfies the assumptions of Theorem 1.6. Assumption 1.5
is obvious from the first two conditions above.We next show (wVA1). Let r ∈ (0, 1)
and x, y ∈ Br . The first condition implies that

|F(x, ξ) − F(y, ξ)| � ω̃(2r)(|H(x, ξ)| + |H(y, ξ)|) + rβ |ξ |q
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for all ξ ∈ R
n . From the first and second conditions, we conclude that |H(x, ξ)| �

F(x, ξ) and |H(y, ξ)| � F(y, ξ). If F(y, ξ) � |Br |−1+ε, then |ξ |p � r−(1−ε)n .
Since β � (q−p)n

p , we have

rβ |ξ |q � rβ |ξ |q−pH(y, |ξ |) � r
ε(q−p)n

p F(y, |ξ |)
Therefore we have

|F(x, ξ) − F(y, ξ)| �
(

ω̃(2r) + r
ε(q−p)n

p

)

(|F(x, ξ)| + |F(y, ξ)|).

From this estimate we obtain |F(x, ξ)| � |F(y, ξ)|, and this we have (wVA1) with
ωε(r) = ω̃(2r) + r

ε(q−p)n
p .

We note that if ω̃(r) � rβ for some β > 0, then ωε(r) � rmin{β,
ε(q−p)n

p }.
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