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Abstract. We study extreme points of the set of finite-outcome positive-operator-

valued measures (POVMs) on finite-dimensional Hilbert spaces and particularly the

possible ranks of the effects of an extreme POVM. We give results discussing ways

of deducing new rank combinations of extreme POVMs from rank combinations of

known extreme POVMs and, using these results, show ways to characterize rank

combinations of extreme POVMs in low dimensions. We show that, when a rank

combination together with a given dimension of the Hilbert space solve a particular

packing problem, there is an extreme POVM on the Hilbert space with the given ranks.

This geometric method is particularly effective for constructing extreme POVMs with

desired rank combinations.
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1. Introduction

The measurement outcome statistics of a quantum measurement are given by

quantum observables, which are usually identified with positive-operator-valued measures

(POVMs) [2, 7]. In this treatise we concentrate on finite-outcome POVMs on finite-

dimensional Hilbert spaces. As an observable M = (Mj)
N
j=1, Mj ∈ L(H), Mj ≥ 0,

j = 1, . . . , N ,
∑N

j=1 Mj = 1H, (L(H) standing here for the algebra of (bounded)

linear operators on the Hilbert space H the unit element of which is denoted by 1H)

is measured, the outcome j is detected with the probability pMρ (j) = trMjρ supposing

that the pre-measurement state of the system was ρ.

Quantum measurements can be mixed: We may imagine a classically randomized

measurement procedure where a measurement corresponding to a POVM M(1) is

triggered with relative frequency t ∈ [0, 1] and another measurement corresponding
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to a POVM M(2) is triggered for the rest of the time. The effective observable measured

is the statistical mixture M = tM(1) + (1 − t)M(2), i.e., Mj = tM
(1)
j + (1 − t)M(2)

j for all

outcomes j. Indeed, the set of POVMs (with a fixed number of outcomes and operating

in the same Hilbert space) is convex.

An extreme point within the set of POVMs (an extreme POVM) is free from

this classical randomness and thus contains no redundancy caused by mixing different

measurement procedures. In this work, we concentrate on the case of finite-outcome

observables in finite dimensions in which case the convex hull of the extreme points

of the set of POVMs coincides with the set of POVMs. Thus, knowledge on extreme

POVMs gives us maximal amount of information about all available measurements

and their outcome distributions. Moreover, when choosing the most advantageous

way of measuring a physical quantity, i.e., in measurement optimization, the optimal

POVMs are often required to maximize a convex pay-off function (e.g., a form of mutual

information) or to minimize a concave pay-off function. In both cases, the desired

extreme values for the pay-off function is attained at extreme POVMs, implying that

extreme POVMs can be associated with optimal measurements.

The question arises on how much resources we need to implement extreme POVMs

and one such resource aspect is the set of possible ranks (denoted here by rankMj) of

an extreme POVM M. Naturally, the higher the ranks are, the more resources have

to be used in implementing the POVM. We are particularly interested in the possible

rank combinations and what conditions these combinations have to satisfy. We find a

particularly nice sufficient condition on rank combinations to guarantee that an extreme

POVM with that particular combination of ranks exists. The condition is not, however,

necessary. Exhaustive characterization of the possible rank combinations of extreme

POVMs will ultimately enable us to concentrate on relevant POVMs in measurement

optimization, thus helping to manage the problem size in these tasks. The methods we

provide, although not exhaustive, should provide a wider class of extreme POVMs for

optimality considerations than normally studied before.

The paper is organized as follows: In Section 2 we review some known necessary

and sufficient conditions for extremality of POVMs from [1, 3, 8, 9] and introduce some

known conditions the ranks of extreme POVMs have to satisfy. We go on in Section

3 to give methods for finding new extreme POVMs when we have access to a known

extreme POVM and consequently find methods of deducing rank combinations assured

to be associated with an extreme POVM using rank combinations that are known to

correspond to an extreme POVM. Using these techniques, in Section 4 we are able to

characterize the rank combinations corresponding to extreme POVMs in low dimensions.

Finally in Section 5 we introduce certain packing problems and show that solutions to

packing problems are always rank combinations of an extreme POVM. There remain

POVMs associated with rank combinations which do not solve these packing problems.

The packing problem, however, provides a nice visual ‘algorithm’ for finding extreme

POVMs with a desired combination of ranks.
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2. Extreme POVMs

In our investigation we concentrate on finite-outcome POVMs on a finite-dimensional

Hilbert space H, dimH = d. We fix the orthonormal basis {|n〉}dn=1 for H for the

duration of this paper. An N -outcome POVM M on H is identified with an N -tuple

(Mj)
N
j=1 of positive operators on H such that M1 + · · ·+MN = 1H. We denote by rj(M)

the rank of the j’th operator Mj.

A POVM M = (Mj)
N
j=1 has a minimal Năımark dilation (M,P, J) consisting of

a Hilbert space M of dimension r1(M) + · · · + rN(M), a projection-valued measure

(PVM) P = (Pj)
N
j=1 on M and an isometry J : H → M such that Mj = J∗PjJ for

all j = 1, . . . , N and the vectors PjJϕ, j = 1, . . . , N , ϕ ∈ H, span M. One particular

choice for a minimal dilation can be constructed by giving the spectral decompositions

Mj =

rj(M)∑
k=1

|fjk〉〈fjk|, j = 1, . . . , N, (1)

where the set of vectors {fjk}
rj(M)
k=1 is orthogonal for all j. Suppose that M is a

Hilbert space of dimension r1(M) + · · · + rN(M) with an orthonormal basis {ejk | k =

1, . . . , rj(M), j = 1, . . . , N} and set up a linear operator J =
∑N

j=1

∑rj(M)
k=1 |ejk〉〈fjk|.

Also define the PVM P = (Pj)
N
j=1 on M through Pj =

∑rj(M)
k=1 |ejk〉〈ejk|, j = 1, . . . , N .

It easily follows that the triple (M,P, J) is a minimal Năımark dilation for M.

We say that a POVM M = (Mj)
N
j=1 is extreme if the condition

Mj =
1

2
Aj +

1

2
Bj ∀j

yields A = B = M for POVMs A = (Aj)
N
j=1 and B = (Bj)

N
j=1. Extremality

characterizations of POVMs (amongst others) ultimately go back to [1] but, in our

case, the most applicable ones are given in [3, 8]. First, the extremality of a POVM M

can be characterized using its minimal Năımark dilation (M,P, J):

(A) M is extreme if and only if for an operator D ∈ L(M) the conditions PjD = DPj
for all j = 1, . . . , N and J∗DJ = 0 imply D = 0.

Equivalently,

(B) M is extreme if and only if the map D 3 D 7→ J∗DJ ∈ L(H), where D is the algebra

of (r1(M), . . . , rN(M))-block-diagonal operators with respect to any eigenbasis of P,

is injective.

Yet another equivalent characterization is that:

(C) M is extreme if and only if the set {|fjk〉〈fjl| | k, l = 1, . . . , rj(M), j = 1, . . . , N}
is linearly independent, where the vectors fjk form the spectral decomposition in

Equation (1).

Let us briefly outline how we can see the equivalence of (B) and (C) above. Let

us endow the effects of the POVM M with the spectral decomposition of Equation (1)
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giving rise to the minimal Năımark dilation (M,P, J) as introduced earlier. An operator

D which is block diagonal in the eigenbasis of P is of the form

D =
N∑
j=1

rj(M)∑
k,l=1

αjkl|ejk〉〈ejl|

with some αjkl ∈ C, k, l = 1, . . . , rj(M), j = 1, . . . , N . It can be easily checked that

J∗DJ =
N∑
j=1

rj(M)∑
k,l=1

αjkl|fjk〉〈fjl|.

This immediately implies the equivalence of the conditions (B) and (C).

All PVMs are extreme, as the characterization (C) immediately shows, and PVMs

are the only commutative POVMs that are extreme [6]. There are, however, plenty

of extreme POVMs with no projections in their range. For instance, a minimal

informationally complete POVM consisting of rank-1 operators is such. We note that

minimal Năımark dilations can be used to characterize extreme POVMs also in the case

of infinite dimensional Hilbert space and uncountably many outcomes [9]. A physically

relevant example of such an extreme POVM is the canonical phase observable [5].

As observed in [3, 8], the above extremality characterizations imply that an extreme

POVM M satisfies:

(i) r1(M) + · · ·+ rN(M) ≥ d,

(ii) r1(M)2 + · · ·+ rN(M)2 ≤ d2,

(iii) rj(M) + rk(M) ≤ d for any j, k = 1, . . . , N , j 6= k.

The condition (i) above is trivial and holds for any POVM since M1 + · · ·+ MN = 1H.

The condition (ii) follows immediately from (C). The condition (iii) follows from the

fact that the intersection of the supports of two different operators Mj and Mk must

contain only the zero vector.

The previous conditions (i)–(iii) can be seen as necessary conditions for a vector

(m1, . . . , mN) to be a rank vector of an extreme POVM. In what follows, we will

investigate the opposite question on sufficient conditions, i.e., we study conditions on

vectors (m1, . . . , mN) that guarantee the existence of an extreme POVM M = (Mj)
N
j=1

on H with rj(M) = mj for all j = 1, . . . , N . For example, it has been shown in [4]

that for every N satisfying d ≤ N ≤ d2, there exists an extremal rank-1 POVM with N

outcomes.

3. Useful results

In this section, we list and prove some important results we need later on. In all

the following theorems 1, 2, 3, 4, and 5, M = (Mj)
N
j=1 is an extreme POVM on a d-

dimensional Hilbert space H and the vectors fjk give the spectral decomposition of

Equation (1) for the components of M. The following theorem is a generalization of a

result proven in [4].
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Theorem 1 (Adding of rank-1 operators). Suppose that r1(M)2 + · · · + rN(M)2 < d2.

There is an extreme (N + 1)-outcome POVM M′ with rj(M
′) = rj(M) for j = 1, . . . , N

and rN+1(M
′) = 1. In particular, for any N = d, . . . , d2 there is an extreme rank-1

POVM, i.e., an extreme POVM M with r1(M) = · · · = rN(M) = 1.

Proof. We denote by R the operator system (selfadjoint linear subspace of L(H))

spanned by |fjk〉〈fjl|, k, l = 1, . . . , rj(M), j = 1, . . . , N . The assumption on ranks

implies that there is a nonzero selfadjoint operator A /∈ R. Since A is selfadjoint, it has

a decomposition A =
∑r

s=1 αs|ηs〉〈ηs| with αs ∈ C. Hence, at least one, let say |η1〉〈η1|
of the rank-1 operators |ηs〉〈ηs|, is not in R. We then denote R = (1H + |η1〉〈η1|)−1/2,
and set

M′j = RMjR, j = 1, . . . , N,

M′N+1 = R|η1〉〈η1|R.

Clearly, M′ = (M′j)
N+1
j=1 is a POVM.

Let (M,P, J) be a minimal dilation for M where M has the orthonormal basis

{ejk | k = 1, . . . , rj(M), j = 1, . . . , N}, Pj =
∑rj(M)

k=1 |ejk〉〈ejk| for all j, and J =∑N
j=1

∑rj(M)
k=1 |ejk〉〈fjk|. Denote M′ = M ⊕ C and pick any unit vector eN+1 from the

(1-dimensional) orthogonal complement of M within M′. Define P′j = Pj, j = 1, . . . , N ,

and P′N+1 = |eN+1〉〈eN+1|, and J ′ = JR + |eN+1〉〈Rη1|. Using the invertibility of

R, it is simple to check that (M′,P′, J ′), where P′ = (P′j)
N+1
j=1 , is a minimal dilation

for M′. For each j = 1, . . . , N , denote the subspace of M spanned by {ejk}
rj(M)
k=1 by

Mj and CeN+1 =: MN+1 so that M =
⊕N+1

j=1 Mj. The commutant of the PVM P′

consists of decomposable, or block-diagonal, operators D =
⊕N+1

j=1 Dj, Dj ∈ L(Mj),

j = 1, . . . , N + 1. Suppose that D =
⊕N+1

j=1 Dj is decomposable and define D0 =∑N
j=1 PjDPj so that D = D0 ⊕ d|eN+1〉〈eN+1| with some d ∈ C. It follows that

(J ′)∗DJ ′ = R(J∗D0J + d|η1〉〈η1|)R.

Since R is invertible, we find that (J ′)∗DJ ′ = 0 if and only if J∗D0J + d|η1〉〈η1| = 0.

This is equivalent with J∗D0J = 0 and d = 0 because J∗D0J ∈ R and |η1〉〈η1| /∈ R.

Because M is extreme, J∗D0J = 0 yields D0 = 0. Thus D = 0 implying that M′ is

extreme.

To prove the last claim, pick any orthonormal basis {ϕn}dn=1 of H and define the

observable Md = (Md
j )
d
j=1, M

d
j = |ϕj〉〈ϕj|, j = 1, . . . , d. The POVM Md is a rank-1 PVM

and thus extreme. We may construct rank-1 POVMs MN = (MN
j )Nj=1, N = d, . . . , d2,

where for each N = d, . . . , d2−1 the POVM MN+1 is obtained by the method of adding

a rank-1 outcome to MN using the technique introduced above. Since Md is extreme,

all of the MN are extreme.

We are interested in the possible rank vectors ~m = (m1, . . . , mN)d of extreme

N -outcome POVMs on a d-dimensional H. We always order the ranks from highest to

lowest and indicate repeating values of rank with a subscript, so that, e.g., (3, 2, 2, 2)5 =:
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(3, 23)5. Moreover, we may neglect rank-1 outcomes since, according to Theorem 1, rank-

1 outcomes may be freely added as long as the sum of squares of the ranks does not

exceed d2. Thus, e.g., (3, 2, 2, 2, 1, 1, 1, 1)5 is replaced with (3, 23)5. Furthermore, we say

that a POVM M (with N outcomes) is associated with the rank vector ~m when ordering

the vector (r1(M), . . . , rN(M)) in a descending order and grouping the recurrent ranks

as described above and neglecting the possible rank-1 outcomes we obtain ~m. In this

situation, we denote ~m =: ~m(M). In the following theorem, we also allow rank vectors

where the number of repetitions of a rank (one of the subscripts) is zero; we define this to

mean that the rank does not actually appear in the vector, e.g., (40, 3, 23)5 := (3, 23)5.

We make this definition to allow for the deletion of all effects of a given rank in the

following result.

Theorem 2 (Operators can be deleted). Suppose that

~m(M) = (m1
s1 , . . . ,m

R
sR)d

where m1, . . . , mR are natural numbers greater than or equal to 2 with 1 ≤ r ≤ R. There

is an extreme POVM M′ with

~m(M′) = (m1
t1 , . . . ,m

R
tR)d, tr ≤ sr, r = 1, . . . , R

i.e., one can delete operators from an extreme POVM and obtain another extreme

POVM, possibly adding rank-1 outcomes to ensure normalization if above
∑R

r=1 t
rmr <

d.

Proof. We prove the claim by induction; we show that one rank can be deleted. Let

us delete the outcome Mh, 1 ≤ h ≤ N , resulting in a subnormalized N − 1-outcome

POVM. Since M is extreme, also the restricted set {|fjk〉〈fjl| | k, l = 1, . . . , rj(M), j =

1, . . . , h − 1, h + 1, . . . , N} is linearly independent. If the rank of 1H − Mh is d, We

may define the POVM M′ = (M′1, . . . ,M
′
h−1,M

′
h+1, . . . , M

′
N) by setting M′j = SMjS for

all j 6= h where S = (1H − Mh)
−1/2. Otherwise we may add rank-1 outcomes to the

subnormalized POVM (M1, . . . ,Mh1 ,Mj+1, . . . ,MN) from the complement of the linear

hull of {|fjk〉〈fjl| | k, l = 1, . . . , rj(M), j = 1, . . . , h− 1, h+ 1, . . . , N} until the sum R

of the components M̃j of the resulting non-normalized POVM M̃ is of full rank. Then

we may set M′j = R−1/2M̃jR
−1/2 for all j. The new M′ can be shown to be extreme in

the same way as in the proof of Theorem 1.

Theorem 3 (Components can be refined). For each j = 1, . . . , N and any natural

numbers R1, . . . , RN and sequences (nj,r)
Rj

r=1 of positive natural numbers such that∑Rj

r=1 njr = rj(M), there exists an extreme POVM M′ = (M′jr | r = 1, . . . , Rj, j =

1, . . . , N) with R1 + · · · + RN outcomes such that Mj =
∑Rj

r=1M
′
jr for each j, i.e., the

components of an extreme POVM can be refined to obtain a new extreme POVM.

Proof. Set

M′jr =

nj,r∑
s=1

|fj,s+nj,r−1
〉〈fj,s+nj,r−1

|.
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Because M is extreme, also the restricted set

{|fj,k+nj,r−1
〉〈fj,l+nj,r−1

| | k, l = 1, . . . , nj, r = 1, . . . , Rj, j = 1, . . . , N}

is linearly independent implying that M′ = (M′jr | r = 1, . . . , Rj, j = 1, . . . , N) is

extreme as well.

Theorem 4 (Ranks can be multiplied). Let ~m(M) = (m1
n1 , . . . ,mR

nR)d. For any

A = 1, 2, . . . there is an extreme POVM M′ on an Ad-dimensional Hilbert space

associated with the rank vector (Am1
n1 , . . . , AmR

nR)Ad. This means that the ranks of

an extreme POVM can be multiplied to obtain a new extreme POVM operating on a

Hilbert space with similarly multiplied dimension.

Proof. Pick an orthonormal basis {|a〉}Aa=1 for CA and define a POVM M′ = (M′j)
N
j=1,

M′j = Mj ⊗ 1CA , j = 1, . . . , N,

on H ⊗ CA. Since M is extreme, it easily follows that the set

{|fjk〉〈fjl| ⊗ |a〉〈b| | k, l = 1, . . . , rj(M), j = 1, . . . , N, a, b = 1, . . . , A}

is linearly independent. Thus M′ is extreme as well.

Theorem 5 (Increasing a rank). Pick any h = 1, . . . , N . There is an extreme POVM

M′ = (M′j)
N
j=1 on a (d + 1)-dimensional Hilbert space with rj(M

′) = rj(M) for all j 6= h

and rh(M
′) = rh(M) + 1.

Proof. Denote H′ := H⊕C and pick any unit vector ψ from the orthogonal complement

of H within H′. Define the POVM M′ = (M′j)
N
j=1,

M′h = Mh + |ψ〉〈ψ|, M′j = Mj, j 6= h,

on H′. Note that we view operators on H as operators on H′ by extending them to

operate as the zero-operator on the orthogonal complement of H. Pick complex numbers

αjkl, k, l = 1, . . . , rj(M
′), j = 1, . . . , N . We set

N∑
j=1

rj(M)∑
k,l=1

αjkl|fjk〉〈fjl|+
rh(M)∑
k=1

(αh,k,rh(M)+1|fhk〉〈ψ|+ αj,rh(M)+1,k|ψ〉〈fhk|)

+ αh,rh(M)+1,rh(M)+1|ψ〉〈ψ| = 0.

Multiplying this equation from both sides with P and, on the other hand, with 1H′−P ,

where P is the orthogonal projection onto H, one obtains

N∑
j=1

rj(M)∑
k,l=1

αjkl|fjk〉〈fjl| = 0 (2)
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and
rh(M)∑
k=1

(αh,k,rh(M)+1|fhk〉〈ψ|+αj,rh(M)+1,k|ψ〉〈fhk|)+αh,rh(M)+1,rh(M)+1|ψ〉〈ψ| = 0.(3)

Since M is extreme, Equation (2) yields αjkl = 0 for all k, l = 1, . . . , rj(M) and

j = 1, . . . , N . Operating from right and left on Equation (3) with vectors fhk,

k = 1, . . . , rh(M), and ψ and recalling that these vectors are orthogonal, we obtain

αh,k,rh(M)+1 = αh,rh(M)+1,k = 0 with k = 1, . . . , rh(M) + 1. Thus M′ is extreme.

Combining the results of theorems 3 and 5, one immediately obtains the following:

Theorem 6. Whenever there is an extreme POVM M on a d-dimensional Hilbert space

with ~m(M) = (m1
s1 , . . . ,m

R
sR)d, there is an extreme POVM M′ on a (d+ p)-dimensional

Hilbert space with ~m(M′) = (m1
s1 , . . . ,m

R
sR)d+p for any p = 1, 2, . . ..

4. Rank vectors in low dimensions

Using the results above and excluding the rank combinations prohibited by the

conditions (i)-(iii) presented in Section 2, we may deduce most of the possible rank

vectors of extreme POVMs in low dimensions. In each dimension, we omit the

trivial observables associated with (d)d. In dimensions 1-4, we are able to completely

characterize the possible rank vectors of extreme POVMs using the machinery developed

above but in dimensions 5-7 some rank combinations cannot be tackled with these

methods. Remarkably though, in all the cases satisfying the conditions (i)-(iii) of Section

2 examples of extreme POVMs with the associated rank vectors have been found by

Drs Miguel Navascués and Heinz-Jürgen Schmidt using algorithmic methods (private

communication). However, it remains unclear, whether these minimal conditions for a

rank vector are actually sufficient for the existence of an extreme POVM with that rank

vector.

d = 2 The only non-trivial extreme POVMs are the rank-1 POVMs associated with (1, 1)2,

(1, 1, 1)2, and (1, 1, 1, 1)2 whose existence is guaranteed by Theorem 1.

d = 3 Again, we have the POVMs associated with (1s)3, s = 1, . . . , 9. The only remaining

rank vectors associated with extreme POVMs are (2, 1s)3 =: (2)3. Indeed, their

existence follows from the existence of (1s)2 and Theorem 5.

d = 4 The existence of extreme POVMs with vectors (1s)4 is clear. We obtain (3)4 from

(2)3 using Theorem 5. Since extreme POVMs with (14)2 exist, Theorem 4 implies

that extreme POVMs with (24)4 exist. From this one can show by refining ranks

(and adding rank-1 outcomes) the existence of extreme POVMs with (23)4, (22)4,

and (2)4.

d = 5 Again, the cases (1s)5 are clear and (4)5 follow from (3)4 and Theorem 5. The cases

(3)5, (3, 2)5, (3, 22)5, and (3, 23)5 follow from (2s)4, s = 1, 2, 3, 4, and Theorem 5.

Since the existence of POVMs with (2s)4, s = 1, 2, 3, 4, has already been shown,
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Theorem 6 counts for the cases (2s)5, s = 1, 2, 3, 4. The remaining cases are (3, 24)5
and (26)5. According to computer-algebraic methods used by Dr. Navascués (for

the former case) and by Dr. Schmidt (for also latter case), there are extreme

POVMs associated with these rank vectors.

d = 6 All the cases (m1
s1 , . . . ,m

R
sR)d dealt with above with d = 1, 2, 3, 4, 5 exist in the

d = 6 case (possibly adding rank-1 outcomes) by Theorem 6. The existence of

POVMs with (34)6 is guaranteed by Theorem 4, given the existence of extreme

POVMs with (14)2. From this, the cases (33, 2)6 (32, 22)6, (32, 2)6, (33)6, (32)6, and

(3)6 follow by refining or deleting ranks and possibly adding rank-1 outcomes. The

cases (29)6 follow from (19)3 by doubling of ranks, and one obtains all combinations

of 2 and 1 from this by refining or deleting. The extreme POVMs (5)6 are obtained

from (4)5 by increasing the highest rank. The case (4, 25)6 follows from (2, 15)3 by

doubling and one obtains all possible rank vectors of extreme POVMs involving

4 from this by refining or deleting. Moreover, we have (3, 25)6 and (3, 24)6. The

remaining problematic cases are (32, 23)6 and (32, 24)6. Dr. Schmidt has provided us

with an example of an extreme POVM with the latter rank vector using computer-

algebraic methods, and one obtains an extreme POVM associated to the former by

using Theorem 2.

d = 7 Almost all the possible rank vectors corresponding to extreme POVMs in dimension

7 (those suggested by conditions (i)-(iii) of Section 2) are guaranteed by methods

like the ones used above. The new problematic cases are now (32, 27)7, (33, 25)7,

(34, 23)7, and (35, 2)7. Dr. Schmidt has found examples of extreme POVMs in all

of these cases using computer-algebraic methods.

5. Packing problems

In this section, we identify a rank vector ~m = (m1
s1 , . . . ,m

R
sR)d with a set consisting of

sr squares with sides of length mr, r = 1, . . . , R. Moreover, we imagine a d × d-box.

We consider the following problem:

Packing problem 1 (General packing problem). For any rank vector ~m =

(m1
s1 , . . . ,m

R
sR) we consider the problem of packing the sr mr ×mr-boxes, r = 1, . . . , R,

into d × d-box: the individual boxes should not be broken down to pieces and the rank

boxes should not overlap when fitted in the d×d-box. We call this as the general packing

problem associated with ~m.

Note that if the general packing problem associated with the vector ~m can be solved,

any POVM M with ~m(M) = ~m satisfies the conditions (i)-(iii) of Section 2. Indeed, the

condition (ii) corresponds to the requirement that the area covered by the rank boxes

has to fit inside the d × d-box, and if (iii) does not hold, there will be two rank boxes

that do not fit inside the big box even if they are set side by side. However, the vector

(3, 24)5 satisfies the conditions (i)-(iii) but, as pointed out in Figure 1, the associated

general packing problem has no solution. However, numerical calculations show that
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Figure 1. As we see, the general packing problem associated with (3, 23)5 can be

solved; the 3 × 3-box and the three 2 × 2-boxes can be fitted inside the 5 × 5-box

without overlaps or breaking the boxes. After a moments thought, one can see that

the packing problem associated with (3, 24)5 has no solution.

an extreme POVM associated with this rank vector exists. Thus, solutions to packing

problems do not exhaust the set of possible rank vectors of extreme POVMs. However,

we will see that a large class of rank vectors of extreme POVMs can be associated to

solutions of particular packing problems.

In the sequel, we call formation (packing of the rank boxes inside the big box with

no overlaps or breaking down the boxes) symmetric when

• the formation is symmetric with respect to a diagonal through the large d× d-box

and

• whenever any box is translated horizontally or vertically to the diagonal, it fits inside

a box lying on the diagonal; formally, for a box Bj of the formation covering the slots

(rj+k−1, sj+l−1), k, l = 1, . . . , mj, there are mi×mi- and mi′×mi′-boxes Bi and,

respectively, Bi′ of the formation with the lower left slots (ri, ri) and, respectively,

(si
′
, si
′
) such that ri ≤ rj + k− 1 ≤ ri +mi − 1 and si

′ ≤ sj + k− 1 ≤ si
′
+mi′ − 1

for all k = 1, . . . , mj.

We may now formulate the following packing problem:

Packing problem 2 (Symmetric packing problem). If we are able to solve the general

packing problem associated with ~m in a way where the rank boxes can be organized in

a formation that can be obtained from a symmetric formation by deleting some of the

boxes of the symmetric formation, we say that the symmetric packing problem associated

with ~m has a solution.
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Figure 2. The rank boxes corresponding to the rank vector of a PVM can always be

packed inside the d× d-box. In fact, they all fit on the diagonal.

Figure 3. Above, one solution for the general packing problem associated with

(32, 23)6 is given. However, after a little thinking one finds that the corresponding

symmetric packing problem has no solution.

In Figure 1, a solution for the general packing problem associated with (3, 23)5
is given. This is obviously also a solution for the symmetric packing problem. The

solution presented in the figure has, in fact a symmetric formation of boxes. Erasing,

e.g., the top-left 2× 2-box shows that also the packing problem associated with (3, 22)5
has a solution. The symmetric packing problem associated with (32, 23)6, on the other

hand, has no solution, as remarked in Figure 3, although the associated general packing

problem can be solved. We will shortly provide a recipe of writing down an extreme

POVM with a rank vector such that the associated symmetric packing problem has
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a solution. We have already stated in Section 4 that there are extreme POVMs with

rank vectors (3, 24)5 and (3, 23)6 (even (3, 24)6) associated with unsolvable symmetric (or

even general) packing problems, meaning that this method is not able to find extreme

POVMs with all the possible rank vectors. As pointed out in Figure 2, the rank vector of

a PVM always has a solution for the general packing problem. Because the rank boxes

of a PVM always fit on the diagonal of the d × d-box, the corresponding symmetric

packing problem has a solution as well.

In the following theorem, we show that whenever the symmetric packing problem

can be solved, we can construct an extreme POVM in the associated dimension with

the associated ranks. The proof hence gives a recipe for constructing a wide class of

extreme POVMs.

Theorem 7. Suppose that the symmetric packing problem associated with the rank

vector ~m has a solution. There is an extreme POVM M with ~m(M) = ~m.

Proof. Fix a finite dimension d. Suppose that we are able to solve the symmetric packing

problem associated with ~m = (m1
s1 , . . . ,m

R
sR)d. Using theorems 2 and 3, we can show

that, if there is an extreme POVM with the rank vector associated with an underlying

symmetric solution from which the near-symmetric solution of ~m can be obtained by

possibly deleting rank boxes, there is also an extreme POVM with the rank vector

~m. Hence, we may assume that the rank boxes of ~m can be arranged into a perfectly

symmetric formation.

Fix a d-dimensional Hilbert space and an orthonormal basis {|n〉}d−1n=0 for H. Let us

visualize a d× d box with d2 slots with the coordinates (r, s), r, s = 1, . . . , d. To each

slot (r, s), we associate a vector grs ∈ H,

grs =


|r〉+ |s〉, r > s,

|r〉, r = s,

|r〉 − i|s〉, r < s.

According to the note made in the beginning of this proof, we may arrange the rank

boxes associated with ~m into a formation inside this d×d-grid which is symmetric with

respect to the diagonal {(r, r) | r = 0, . . . , d − 1}. We assume that the box associated

with the rank mj of ~m occupies the slots Bj := {(rj+k−1, sj+l−1) | k, l = 1, . . . , mj}.
Because of our assumption, each box Bj, j = 1, . . . , N , N := s1 + · · ·+ sR, is either on

the diagonal or completely contained in the upper triangle above the diagonal or in the

lower triangle below the diagonal and each box that is not on the diagonal has a pair on

the opposite triangle occupying slots with transposed coordinates. From each box Bj,

we pick the vectors hjk := grj+k−1,sj+k−1, k = 1, . . . , mj, associated with the diagonal

of the box.

Let us define the operator R =
(∑

j

∑mj

k=1 |hjk〉〈hjk|
)−1/2

; if the operator in the

parentheses is not of full rank, we may add rank-1 boxes in a symmetric fashion as long
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Figure 4. The boxes B+− and B−+ (in red) and B++ and B−− (in blue) of the

symmetric formation are presented here together with the vertical and horizontal

translates of B+− and B−+ to the diagonal. Note that the horizontal translate of

B+− and the vertical translate of B−+ fit inside box B−− and the horizontal translate

of B−+ and the vertical translate of B+− fit inside B++. Also the lower-left corners

of the boxes and their translates to the diagonal are depicted.

as there are empty slots inside the d×d-box. We may now set up a POVM M = (Mj)
N
j=1,

Mj = R

mj∑
k=1

|hjk〉〈hjk|R, j = 1, . . . , N.

Since R is invertible, M is extreme if and only if the set {|hjk〉〈hjl| | k, l = 1, . . . , mj, j =

1, . . . , N} is linearly independent which is what we are going to show next.

It follows easily that, when the box Bj is on the diagonal, the set {|hjk〉〈hjl| | k, l =

1, . . . , mj} spans the subalgebra generated by |rj + k − 1〉〈rj + l− 1|, k, l = 1, . . . , mj.

Thus, for the boxes Bj on the diagonal, the rank-1 operators |rj + k − 1〉〈rj + l − 1|,
k, l = 1, . . . , mj, generate an algebra of block-diagonal matrices in the basis {|n〉}d−1n=0

whose dimension is the sum of the areas of these boxes. We may hence concentrate on

the boxes in the upper and lower triangles.

Let us pick a box B+− = {(r + k − 1, s + l − 1) | k, l = 1, . . . , m}, r > s, in the

lower triangle with its twin box B−+ = {(s + k − 1, r + l − 1) | k, l = 1, . . . , m} in

the upper triangle. Let B++ = {(r++ + k − 1, r++ + l − 1) | k, l = 1, . . . , m++} and

B−− = {(s−− + k − 1, s−− + l − 1) | k, l = 1, . . . , m−−} be those boxes on the diagonal
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such that the horizontal and vertical translates of B+− and B−+ to the diagonal fit

inside B++ and B−−; see Figure 4. As always, pick the vectors h+−k = gr+k−1,s+k−1,

h−+k = gs+k−1,r+k−1, k = 1, . . . , m, and h++
k = gr+++k−1,r+++k−1 = |r++ + k − 1〉,

h−−k = gs−−+k−1,s−−+k−1 = |s−−+k−1〉 from the diagonals of these boxes. Although we

have already dealt with the boxes B++ and B−−, we will use the operators |h±±k 〉〈h
±±
l |

arising from them to eliminate terms from the operators we obtain as linear combination

of |h±∓k 〉〈h
±∓
l |. Indeed, one can easily check that

|r + k − 1〉〈s+ l − 1| = 1

2

(
|k+−k 〉〈h

+−
l | − i|h

−+
k 〉〈h

−+
l |
)

+
i− 1

2

(
|h++
r−r+++k〉〈h

++
r−r+++l|+ |h

−−
s−s−−+k〉〈h

−−
s−s−−+l|

)
,

|s+ k − 1〉〈r + l − 1| = 1

2

(
|k+−k 〉〈h

+−
l |+ i|h−+k 〉〈h

−+
l |
)

− 1 + i

2

(
|h++
r−r+++k〉〈h

++
r−r+++l|+ |h

−−
s−s−−+k〉〈h

−−
s−s−−+l|

)
for all k, l = 1, . . . , m. We immediately see that the linear span of the rank-1 operators

|h±±k 〉〈h
±±
l |, k, l = 1, . . . , m±±, and |h±∓k 〉〈h

±∓
l |, k, l = 1, . . . , m, coincides with the

linear span of the operators |p〉〈q| where (p, q) runs through all the slots covered by the

boxes B++, B+−, B−+, and B−−.

Putting together what we have found for the diagonal boxes and for the non-

diagonal boxes, we find that the linear span of the set {|hjk〉〈hjl| | k, l = 1, . . . , mj, j =

1, . . . , N} coincides with the (m2
1 + · · · + m2

N)-dimensional operator system spanned

by |p〉〈q| where (q, p) runs through all the slots covered by the boxes. Thus, the set

{|hjk〉〈hjl| | k, l = 1, . . . , mj, j = 1, . . . , N} is linearly independent, i.e., the POVM M

constructed as described above is extreme.

6. Conclusions

Methods of creating new extreme POVMs from previously known ones have

been established and the consequences of these methods for finding possible rank

combinations of extreme POVMs have been discussed. We take the opportunity here

to also point to related results obtained in [10] providing other methods for deriving

new extreme POVMs out of known ones. Using our methods of finding new extreme

POVMs, we have introduced a novel ‘geometric’ method of establishing extreme POVMs

with rank combinations solving a certain packing problem. The method appearing in

the proof of Theorem 7 can be used to define a wide variety of new extreme POVMs.

Numerical and computer-algebraic evidence provided by Dr. Navascués and Dr.

Schmidt however reveals that this geometric method does not cater for all the possible

rank combinations of extreme POVMs. In particular, the rank vectors (3, 24)5 and

(26)5 solve neither the symmetric nor the general packing problem and yet, according

to numerics, extreme POVMs with these combinations of ranks exist. This means that

the necessary and sufficient rules a rank vector has to satisfy for the existence of an

extreme POVM with that particular combination of ranks are more subtle than what
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found here. However, the new class of extreme POVMs that can be established with

the methodology presented in this work greatly widens the set of extreme POVMs.

Especially the set of PVMs contributes only to a small fraction of the variety in the set

of extreme POVMs found here.
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