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Abstract For any mixing SFT X we construct a reversible shift-commuting
continuous map (automorphism) which breaks any given finite point of the
subshift into a finite collection of gliders traveling into opposing directions. As
an application we prove a finitary Ryan’s theorem: the automorphism group
Aut(X) contains a two-element subset S whose centralizer consists only of shift
maps. We also give an example which shows that a stronger finitary variant
of Ryan’s theorem does not hold even for the binary full shift.
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1 Introduction

Let X ⊆ AZ be a one-dimensional subshift over a symbol set A. If w is a
finite word over A, we may say that an element x ∈ X is w-finite if it begins
and ends with infinite repetitions of w. In this paper we consider the problem
of constructing reversible shift-commuting continuous maps (automorphisms)
on X which decompose all w-finite configurations into collections of gliders
traveling into opposing directions. As a concrete example, consider the binary
full shift X = {0, 1}Z and the map g = g3 ◦ g2 ◦ g1 : X → X defined as follows.
In any x ∈ X, g1 replaces every occurrence of 0010 by 0110 and vice versa, g2

replaces every occurrence of 0100 by 0110 and vice versa, and g3 replaces every
occurrence of 00101 by 00111 and vice versa. In Figure 1 we have plotted the
sequences x, g(x), g2(x), . . . on consecutive rows for some 0-finite x ∈ X. It
can be seen that the sequence x eventually diffuses into two different “fleets”,
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the one consisting of 1s going to the left and the one consisting of 11s going to
the right. It can be proved, along similar lines as in the proofs of Lemma 6 and
Lemma 7, that this diffusion happens eventually no matter which finite initial
point x ∈ X is chosen. In Section 4 we construct, on all nontrivial mixing
SFTs, a function that we call a diffusive glider automorphism and that has
the same diffusion property as the binary automorphism g above.

Fig. 1 The diffusion of x ∈ X under the map g : X → X. White and black squares
correspond to digits 0 and 1 respectively.

The existence of such a diffusive glider automorphism g on a subshift X
is interesting, because g can be used to convert an arbitrary finite x ∈ X into
another sequence gt(x) (for some t ∈ N+) with a simpler structure, which nev-
ertheless contains all the information concerning the original point x because g
is invertible. Such maps have been successfully applied to other problems. We
give some examples. The paper [6] contains a construction of a finitely gen-
erated group G of automorphisms of AZ (when |A| = 4) whose elements can
implement any permutation on any finite collection of 0-finite non-constant
configurations that belong to different shift orbits. An essential part of the
construction is that one of the generators of G is a diffusive glider automor-
phism on AZ. Another example is the construction of a physically universal
cellular automaton g on AZ (when |A| = 16) in [7]. Also here it is essential that
g is a diffusive glider automorphism (but g also implements certain additional
collision rules for gliders).

We also consider a finitary version of Ryan’s theorem. Let X be a mixing
SFT and denote the set of its automorphisms by Aut(X), which we may
consider as an abstract group. According to Ryan’s theorem [2,5] the center
of the group Aut(X) is generated by the shift map σ. There may also be
subsets S ⊆ Aut(X) whose centralizers C(S) are generated by σ. Denote
the minimal cardinality of such a finite set S by k(X). In [6] it was proved
that k(X) ≤ 10 when X is the full shift over the four-letter alphabet. In
the same paper it is noted that k(X) is an isomorphism invariant of Aut(X)
and therefore computing it could theoretically separate Aut(X) and Aut(Y )
for some mixing SFTs X and Y . Finding good isomorphism invariants of
Aut(X) is of great interest, and it is an open problem whether for example
Aut({0, 1}Z) ∼= Aut({0, 1, 2}Z) (Problem 22.1 in [1]). We show that k(X) = 2
for all nontrivial mixing SFTs, the proof of which uses our diffusive glider
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automorphism construction and Lemma 1 (Main lemma). It is then a simple
corollary that k(X) = 2 for every transitive SFT X that does not consist of the
orbit of a single periodic point. The diffusive glider automorphism construction
and the proof of k(X) = 2 was done for mixing SFTs containing a fixed point
in the paper [3] published in the proceedings of AUTOMATA 2018.

Lemma 1 is a criterion saying essentially that if S is a collection of auto-
morphisms that acts together with the diffusive glider automorphism g in a
special way, then C(S ∪ {g}) is not very complicated. We have formulated a
reasonably general version of the lemma to allow its application in other con-
texts. To further showcase our Main lemma, we consider an alternative finitary
variant of Ryan’s theorem. In Section 7.3 of [6] the question was raised whether
for a mixing SFT X and for every G ⊆ Aut(X) such that C(G) = 〈σ〉 there
is a finite subset S ⊆ G such that also C(S) = 〈σ〉. In the same section it
was noted that to construct a counterexample it would be sufficient to find a
locally finite group G ⊆ Aut(X) whose centralizer is generated by σ. We use
a different strategy based on Lemma 1 to construct a counterexample in the
case when X is the binary full shift.

2 Preliminaries

A finite set A containing at least two elements (letters) is called an alphabet
and the set AZ of bi-infinite sequences (configurations) over A is called a
full shift. Formally any x ∈ AZ is a function Z → A and the value of x
at i ∈ Z is denoted by x[i]. It contains finite and one-directionally infinite
subsequences denoted by x[i, j] = x[i]x[i+ 1] · · ·x[j], x[i,∞] = x[i]x[i+ 1] · · ·
and x[−∞, i] = · · ·x[i− 1]x[i]. Occasionally we signify the symbol at position
zero in a configuration x by a dot as follows:

x = · · ·x[−2]x[−1].x[0]x[1]x[2] · · · .

A factor of x ∈ AZ is any finite sequence x[i, j] where i, j ∈ Z, and we interpret
the sequence to be empty if j < i. Any finite sequence w = w[1]w[2] · · ·w[n]
(also the empty sequence, which is denoted by λ) where w[i] ∈ A is a word
over A. The concatenation of a word or a left-infinite sequence u with a word
or a right-infinite sequence v is denoted by uv. A word u is a prefix of a word
or a right-infinite sequence x if there is a word or a right-infinite sequence v
such that x = uv. Similarly, u is a suffix of a word or a left-infinite sequence
x if there is a word or a left-infinite sequence v such that x = vu. The set
of all words over A is denoted by A∗, and the set of non-empty words is
A+ = A∗ \ {λ}. More generally, for any L ⊆ A∗, let

L∗ = {w1 · · ·wn | n ≥ 0, wi ∈ L} ⊆ A∗,

i.e. L∗ is the set of all finite concatenations of elements of L. The set of words
of length n is denoted by An. For a word w ∈ A∗, |w| denotes its length, i.e.
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|w| = n ⇐⇒ w ∈ An. Given x ∈ AZ and w ∈ A+ we define the sets of left
(resp. right) occurrences of w in x by

occ`(x,w) = {i ∈ Z | x[i, i+ |w| − 1] = w}
(resp.) occr(x,w) = {i ∈ Z | x[i− |w|+ 1, i] = w}.

Note that both of these sets contain the same information up to a shift in
the sense that occr(x,w) = occ`(x,w) + |w| − 1. Typically we refer to the
left occurrences and we say that w ∈ An occurs in x ∈ AZ at position i if
i ∈ occ`(x,w). We define the shift map σA : AZ → AZ by σA(x)[i] = x[i + 1]
for x ∈ AZ, i ∈ Z. The subscript A in σA is typically omitted. The set AZ is
endowed with the product topology (with respect to the discrete topology on
A), under which σ is a homeomorphism on AZ. For any S ⊆ AZ the collection
of words appearing as factors of elements of S is the language of S, denoted
by L(S). Any closed set X ⊆ AZ such that σ(X) = X is called a subshift. The
restriction of σ to X may be denoted by σX , but typically the subscript X is
omitted. The orbit of a point x ∈ X is O(x) = {σi(x) | i ∈ Z}.

For any word w ∈ A+ we denote by ∞w and w∞ the left- and right-
infinite sequences obtained by infinite repetitions of the word w. We denote
by wZ ∈ AZ the configuration defined by wZ[in, (i + 1)n − 1] = w (where
n = |w|) for every i ∈ Z. We say that x ∈ AZ is w-finite if x[−∞, i] = ∞w and
x[j,∞] = w∞ for some i, j ∈ Z.

We say that subshifts X ⊆ AZ and Y ⊆ BZ are conjugate if there is a
continuous bijection (a conjugacy) ψ : X → Y such that ψ ◦ σX = σY ◦ ψ.

Definition 1 A (directed) graph is a pair G = (V,E) where V is a finite set of
vertices (or nodes or states) and E is a finite set of edges or arrows. Each edge
e ∈ E starts at an initial state denoted by ι(e) ∈ V and ends at a terminal
state denoted by τ(e) ∈ V . We say that e ∈ E is an outgoing edge of ι(e) and
an incoming edge of τ(e). For a state s ∈ V , Es denotes the set of outgoing
edges of s and Es denotes the set of incoming edges of s.

Although the notation for the set Es of incoming edges of s is similar to the
notation for the set En of words of length n over E, in practice the distinction
should be clear from the context.

A sequence of edges e[1] · · · e[n] in a graph G = (V,E) is a path (of length n)
if τ(e[i]) = ι(e[i+ 1]) for 1 ≤ i < n, it is a cycle if in addition τ(e[n]) = ι(e[1])
and it is a simple cycle if in addition ι(e[i]) for 1 ≤ i ≤ n are all distinct. We
say that the path starts at ι(e[1]) and ends at τ(e[n]). A graph G is irreducible
if for every v1, v2 ∈ V there is a path starting at v1 and ending at v2 and it
is primitive if there is n ∈ N+ such that for every v1, v2 ∈ V there is a path
of length n starting at v1 and ending at v2. For any graph G = (V,E) we call
the set

{x ∈ EZ | τ(x[i]) = ι(x[i+ 1]) for all i ∈ Z}

(i.e. the set of bi-infinite paths on G) the edge subshift of G.
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Fig. 2 The golden mean shift.

Definition 2 A subshift X ⊆ AZ is a subshift of finite type (SFT) if it is
conjugate to some edge subshift. It is a transitive SFT if it is conjugate to the
edge subshift of an irreducible graph G = (V,E). It is a mixing SFT if G is
primitive and it is a nontrivial mixing SFT if G contains at least two edges.
We will mostly consider an SFT X as being equal to an edge subshift instead
of just being conjugate (in which case E ⊆ A).

Example 1 Let A = {0, a, b}. The graph in Figure 2 defines a mixing SFT X
also known as the golden mean shift. A typical point of X looks like

· · · 000abab0ab00ab000 · · ·
i.e. the letter b cannot occur immediately after 0 or b and every occurrence of
a is followed by b.

Definition 3 An automorphism of a subshift X ⊆ AZ is a continuous bijec-
tion f : X → X such that σ ◦ f = f ◦ σ. We say that f is a radius-r auto-
morphism if f(x)[0] = f(y)[0] for all x, y ∈ X such that x[−r, r] = y[−r, r]
(such r always exists by continuity of f). The set of all automorphisms of X
is a group denoted by Aut(X). (In the case X = AZ automorphisms are also
known as reversible cellular automata.)

The centralizer of a set S ⊆ Aut(X) is

C(S) = {f ∈ Aut(X) | f ◦ g = g ◦ f for every g ∈ S}
and the subgroup generated by S ⊆ Aut(X) is denoted by 〈S〉. The following
definition is from [6]:

Definition 4 For a subshift X, let k(X) ∈ N ∪ {∞,⊥} be the minimal car-
dinality of a set S ⊆ Aut(X) such that C(S) = 〈σ〉 if such a set S exists, and
k(X) =⊥ otherwise.

It is proven in [5] and as Theorem 7.7 in [2] that k(X) 6=⊥ whenever X is
a mixing SFT. The following observation is from Section 7.6 of [6].

Theorem 1 Let X be a subshift. The case k(X) = 0 occurs if and only if
Aut(X) = 〈σ〉. The case k(X) = 1 cannot occur.

Proof. The statement k(X) = 0 is equivalent to 〈σ〉 = C(∅) = Aut(X).
The statement k(X) = 1 means that C({f}) = 〈σ〉 for some f ∈ Aut(X).

Because f commutes with itself, it follows that f = σi for some i ∈ Z. But all
g ∈ Aut(X) commute with σi and so Aut(X) = C({f}) = 〈σ〉 and k(X) = 0,
a contradiction.

For conjugate subshifts X and Y it necessarily holds that k(X) = k(Y ).
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3 Main Lemma

In this section we prove as our main lemma a useful criterion which can be used
to significantly restrict the kinds of automorphisms that can occur in C(G)
when G ⊆ Aut(X) is chosen carefully. We state a reasonably general version
of the lemma to make it applicable in many different contexts. A special case
occurs as part of the proof of Theorem 14 in [3].

Definition 5 Given a subshift X ⊆ AZ, an abstract glider automorphism
group is any tuple (G,0, I, spd, ς,GF) (or just G when the rest of the tuple is
clear from the context) where G ⊆ Aut(X) is a subgroup, I is an index set,
0 ∈ A+ and

– spd : I → Z is called a speed map and ς : I → G (image at i ∈ I is denoted
by ςi) is called a local shift map

– GF is a map from I to subsets of X whose image at i ∈ I is

GFi = {x ∈ X | x is 0-finite and ςi(x) = σspd(i)(x)} ) O(0Z)

and is called a glider fleet set. Elements of GFi are called glider fleets.

This tuple is an abstract diffusive glider automorphism group if in addition

– for every 0-finite x ∈ X and every N ∈ N there is a g ∈ G such that for
every i ∈ Z, g(x)[i, i+N ] ∈ L(GFj) for some j ∈ I.

If G is generated by a single automorphism g ∈ Aut(X), we say that g is an
abstract (diffusive) glider automorphism.

The idea of an abstract diffusive glider automorphism group is the follow-
ing. For any 0-finite x ∈ X there is a g ∈ G that can be used to “diffuse” x
into a point g(x) such that elements of O(g(x)) locally look like elements of
some GFi, and in practice GFi will be in some sense simpler subshifts than
X. The local shift maps ςi are used to dynamically distinguish the points in
GFi \ O(0Z). In the proof of our main lemma we will also require that the
points of GFi consist of gliders in a more concrete sense. We encode this in
the following definition.

Definition 6 Given a subshift X ⊆ AZ, a (diffusive) glider automorphism
group is any tuple (G,0, I,↔ , spd, ς,GF) (or just G when the rest of the tuple
is clear from the context) where (G,0, I, spd, ς,GF) is an abstract (diffusive)
glider automorphism group and

– ↔ : I → A+ is a map whose image at i ∈ I is denoted by ↔ i and is called
a glider

– for every i ∈ I there is some n ∈ N such that GFi = ∞0(↔ i0
n0∗)∗0∞;

note that these configurations are 0-finite
– for every i ∈ I and x ∈ GFi it holds that |i − j| ≥ |↔ i| whenever i, j ∈

occ`(x,↔ i) are distinct, i.e. the occurrences of ↔ i do not overlap in any
point of GFi.
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If G is generated by a single automorphism g ∈ Aut(X), we say that g is a
(diffusive) glider automorphism.

Example 2 Let B = {0, 1}, A = B × B and X = AZ, i.e. X is the four-letter
full shift. Any point x ∈ X can be naturally identified with a point (x1, x2) ∈
BZ × BZ such that x[i] = (x1[i], x2[i]) for all i ∈ Z. We define g ∈ Aut(X)
by g(x) = (σ(x1), x2). This map is a diffusive glider automorphism with an
associated diffusive glider automorphism group (G,0, I,↔ , spd, ς,GF) where
G = 〈g〉, 0 = (0, 0) ∈ A, I = {0, 1}, ↔0 = (0, 1) ∈ A, ↔1 = (1, 0) ∈ A,
spd(i) = i, ςi = g (for i ∈ I) and GF0 (resp. GF1) consists of those 0-finite
points x = (x1, x2) ∈ BZ×BZ such that x1 (resp. x2) contains no occurrences
of the digit 1.

For X and 0 as above we let Aut(X,0) = {f ∈ Aut(X) | f(O(0Z)) =
O(0Z)}. For x, y ∈ AZ and i ∈ Z we denote by x⊗i y ∈ AZ the “gluing” of x
and y at i, i.e. (x⊗i y)[−∞, i− 1] = x[−∞, i− 1] and (x⊗i y)[i,∞] = y[i,∞].
Typically we perform gluings at the origin and we denote x⊗ y = x⊗0 y.

In the next lemma we need the notion of a bipartite non-directed graph. By
this we mean a pair B = (V,E) where V is the set of vertices with a nontrivial
partition V = V1 ∪ V2 and E ⊆ V1 × V2 is the set of edges, i.e. an edge cannot
connect two vertices belonging in the same element of the partition. V and E
are not necessarily finite. We say that B is connected if the equivalence relation
on V generated by E is equal to V ×V , which is equivalent to saying that it is
possible to traverse between any two vertices by a finite path in which edges
can be crossed in both directions.

Lemma 1 (Main lemma) Let X ⊆ AZ be a subshift with a diffusive glider
automorphism group (G,0, I,↔ , spd, ς,GF) such that 0-finite configurations
are dense in X. Let I1 ∪ I2 = I be a nontrivial partition and let B = (I, E)
be a bipartite non-directed graph with an edge from i ∈ I1 to j ∈ I2 if and
only if there are d, e ∈ N+, a strictly increasing sequence (Nm)m∈N ∈ NN and
(gm)m∈N ∈ GN such that for any x↔ i0

∞ ∈ GFi,
∞0↔ jy ∈ GFj we have

– x↔ i.0
Nm↔

jy ∈ X
– gm(x↔ i.0

N↔
jy) = x↔ i0

d.0N0e↔
jy for every N > Nm

– gm(x↔ i.0
Nm↔

jy) = x0d↔
i.0

Nm↔
j0

ey.

If B is connected then C(G) ∩Aut(X,0) = 〈σ〉.

Before the proof we continue our previous example and show how this
lemma can be applied to it.

Example 3 We use the notation of the previous example. Furthermore, we
denote ← = ↔1 and = ↔0 to reflect the fact that occurrences ← move
to the left and occurrences of remain stationary under the action of the map
g. Note that (G,0, I,↔ , spd, ς,GF) remains a diffusive glider automorphism
group even when G is replaced by a larger group G′ ⊇ G. We let G′ = 〈g, f〉
where f = f2 ◦ f1 for automorphisms f1, f2 : X → X such that
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– f1 replaces every occurrence of (0, 1)(0, 0)(0, 0)(1, 0) = 00← by
(0, 1)(0, 0)(1, 0)(0, 0) = 0←0 and vice versa

– f2 replaces every occurrence of (0, 1)(0, 0)(1, 0) = 0← by
(0, 0)(0, 1)(1, 0) = 0 ← and vice versa.

The map f has two important properties. First, it replaces any occurrence
of 00← by 0 ←0. Second, if x ∈ X is a configuration containing only
gliders and ← and every occurrence of is sufficiently far from every
occurrence of ← , then f(x) = x.

We use the lemma to show that C(G′) ∩ Aut(X,0) = 〈σ〉. The bipartite
graph B in the statement of the lemma has in this case the set of vertices
{0, 1} with the partition I1 = {0} and I2 = {1}, so it suffices to show that
there is an edge between 0 and 1.

Still using the same notation as in the statement of the lemma, let d = e =
1, (Nm)m∈N with Nm = 2+m and (gm)m∈N with gm = σ◦g−(m+2)◦f ◦gm. Let
x 0∞ ∈ GF0 = ∞0{0, }∗0∞, ∞0←y ∈ GF1 = ∞0{0,←}∗0∞ be arbi-
trary. Fix some m ∈ N. Since X is a full shift, it is clear that x .0Nm←y ∈ X
and it is easy to verify that

– gm(x .0N←y) = x 0.0N0←y for N > Nm

– gm(x .0Nm←y) = x0 .0Nm←0y.

It follows that there is an edge between 0 and 1, so C(G′) ∩Aut(X,0) = 〈σ〉.
In other words, if h ∈ Aut(X) has 0Z as a fixed point and if it commutes with
both f and g, then h = σi for some i ∈ Z.

In our example the construction of a nontrivial diffusive glider automor-
phism g was simple because of the existence of a decomposition AZ = BZ×BZ.
On more general subshifts we cannot rely on such decompositions. In the ex-
ample we also augmented G by an automorphism f and got a group G′ sat-
isfying the assuptions of Lemma 1. The construction of such a map f will
be essentially the same in all our later applications of the lemma. To gain a
better understanding of Main Lemma, it may be helpful to consider how the
following proof would go in the case of the previous example.

Proof of Lemma 1. Assume that f ∈ C(G) ∩ Aut(X,0) is a radius-r auto-
morphism whose inverse is also a radius-r automorphism. Since we aim to
prove that f ∈ 〈σ〉, we lose no generality by transforming f throughout the
proof by taking inverses and composing it with some shift. We start by noting
that without loss of generality (by composing f with a suitable power of σ if
necessary) 0Z is a fixed point of f .

We have that f(GFi) ⊆ GFi for i ∈ I. To see this, assume to the contrary
that x ∈ GFi but f(x) /∈ GFi. Then f(ςi(x)) = f(σspd(i)(x)) = σspd(i)(f(x)) 6=
ςi(f(x)), contradicting the assumption f ∈ C(G).

For all i ∈ I1, j ∈ I2 and all x1 ∈ GFi and x2 ∈ GFj not in O(0Z) we
define the right and left offsets

offr(x1) = max{occr(f(x1),↔ i)} −max{occr(x1,↔ i)},
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off`(x2) = min{occ`(f(x2),↔ j)} −min{occ`(x2,↔ j)}.

We claim that off`(x2)−offr(x1) = 0. To see this, assume to the contrary that
this does not hold. Since B is connected, there is a path from i to j, along which
there is an edge from i′ ∈ I1 to j′ ∈ I2 and some x′1 ∈ GFi′ , x

′
2 ∈ GFj′ not

in O(0Z) such that off`(x
′
2)− offr(x′1) 6= 0. Then we can assume without loss

of generality that offr(x′1) = 0 (by replacing f with f ◦ σoffr(x′
1) if necessary),

that off`(x
′
2) > 0 (by replacing f with f−1, x′1 with f(x′1) and x′2 with f(x′2)

if necessary) and that min{occ`(x
′
2,↔ j)} = Nm, max{occr(x′1,↔ i)} = −1

with m ∈ N such that Nm ≥ 2r + 1 (by shifting x′1 and x′2 suitably). Then
consider x = x′1⊗x′2 and note that f(x) = f(x′1)⊗ f(x′2) by the choice of Nm.
By our assumption on offsets and the map gm it follows that

f−1(gm(f(x))) = f−1(σ|0|d(f(x′1))⊗ σ−|0|e(f(x′2)))

= σ|0|d(x′1)⊗ σ−|0|e(x′2) 6= gm(x)

and thus gm ◦ f 6= f ◦ gm, contradicting the assumption f ∈ C(G). In the
following we may therefore assume that off`(x2) = offr(x1) = 0 for all i ∈ I1,
j ∈ I2 and all x1 ∈ GFi and x2 ∈ GFj not in O(0Z).

If x ∈ GFi is a configuration containing exactly one occurrence of ↔ i, then
f(x) = x. To see this, assume to the contrary (without loss of generality), that
f(x) contains at least two occurrences of ↔ i, that i ∈ I1 (the case i ∈ I2

being similar), that y ∈ GFj is a configuration containing a single ↔ j for j
such that there is an edge from i to j in B and that min{occ`(y,↔ j)} = Nm,
max{occr(x,↔ i)} = −1 with m ∈ N such that Nm ≥ 2r + 1 (by shifting
x and y suitably). Then consider z = x ⊗ y and note that gm(z) = z but
gm(f(z)) 6= f(z) because gm at least shifts the leftmost glider in f(z). Thus
f(gm(z)) = f(z) 6= gm(f(z)), contradicting the assumption f ∈ C(G).

Now let us prove that if x ∈ GFi, then f(x) = x. To see this, assume to
the contrary that f(x) 6= x, that i ∈ I1 (the case i ∈ I2 being similar), that x
contains a minimal number of occurrences of ↔ i (at least two by the previous
paragraph) and that the distance from the rightmost ↔ i to the second-to-
rightmost ↔ i in x is maximal. Let y ∈ GFj be a configuration containing
a single ↔ j for j such that there is an edge from i to j in B and assume
that min{occ`(y,↔ j)} = Nm, max{occr(x,↔ i)} = −1 with m ∈ N such that
Nm ≥ 2r + 1 (by shifting x and y suitably). Then x[−∞,−1], f(x)[−∞,−1]
are of the form z1

↔
i, z2
↔

i ∈ ∞0L(GFi) with z1 6= z2. Consider z = x ⊗ y
and note that

gm(z)[−∞,−1] = z10
d↔

i

f(gm(z))[−∞,−1] = gm(f(x))[−∞,−1] = z20
d↔

i.

It follows that

f(z10
d↔

i.0
∞) = z20

d↔
i.0
∞ 6= z10

d↔
i.0
∞,

contradicting the maximal distance between the two rightmost occurrences of
↔

i in x.
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If x is a 0-finite configuration, then f(x) = x. Namely, let N ≥ 2r+ 1, and
because G is a diffusive glider automorphism group of X, there exists g ∈ G
such that for every i ∈ Z, g(x)[i, i+N ] ∈ L(GFj) for some j ∈ I. Because F
acts like the identity on all GFj , it follows that f(g(x)) = g(x). By using the
assumption f ∈ C(G) it follows that

f(x) = f(g−1(g(x))) = g−1(f(g(x))) = g−1(g(x)) = x.

Finally, because f is a continuous map that agrees with the identity map
on the dense set of 0-finite configurations, it follows that f is the identity map
and in particular f ∈ 〈σ〉.

4 Diffusive Glider Automorphisms for Mixing SFTs

In this section we construct for an arbitrary nontrivial mixing SFT X (with
a distinguished periodic point 0Z) an automorphism g which breaks every 0-
finite point of X into a collection of gliders traveling in opposite directions.
More precisely, we will construct a diffusive glider automorphism g : X ′ → X ′

for a subshift X ′ which is conjugate to X (via some conjugacy φ : X → X ′)
but has a graph presentation that makes our constructions simpler. Then the
map φ−1 ◦ g ◦ φ is an abstract diffusive glider automorphism on X.

To begin, consider a nontrivial mixing SFT X defined by a graph G =
(V,E) and let 0 = 01 · · · 0p ∈ Ep be some fixed simple cycle in G. We will
want, among other things, that occurrences of the letters 0i can only occur
within occurrences of the word 0 in points of X. We start with some auxiliary
definitions.

Definition 7 Given a graph G = (V,E), we say that a path w ∈ E+ has a
unique successor in G (resp. a unique predecessor) if wa (resp. aw) is a path
for a unique a ∈ E. Then we say that a is the unique successor (resp. the
unique predecessor) of w.

Definition 8 Let G = (V,E) be a graph and let w = w[1] · · ·w[n] be a path. If
w[i] have unique successors for 1 ≤ i < n, we say that w is future deterministic
in G and if w[j] have unique predecessors for 1 < j ≤ n, we say that w is past
deterministic in G. If w is both future and past deterministic in G, we say that
w is deterministic in G.

We emphasize that if w is a deterministic path, we do not require that w[1]
has a unique predecessor or that w[n] has a unique successor.

Lemma 2 Let X1 be a nontrivial mixing SFT defined by the graph G = (V,E)
and let 0 = 01 · · · 0p ∈ Ep be a simple cycle in G. Then X1 is conjugate to a
subshift X2 defined by a graph H = (V ′, E′) such that 0 is a past deterministic
simple cycle in H.
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s2 s3 s4 s2 s3

s′3
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a2 = b2

b′2

0′3

Fig. 3 In-splitting at state s3.

Proof. The proof is by induction. We assume that 01 · · · 0i−1 is past deter-
ministic for some 1 < i ≤ p in G and we will construct a conjugate subshift
Y defined by H = (V ′, E′) such that 01 · · · 0i is past deterministic in H. The
induction can be started because 01 is vacuously past deterministic in G, and
the claim will follow by repeating the argument for increasing i.

Denote sj = ι(0j) for 1 ≤ j ≤ p. Let us assume that 01 · · · 0i is not
past deterministic in G, because otherwise we could choose H = G. Then
Esi = {0i−1, a1, . . . , ak} for some k ≥ 1 and a1, . . . , ak ∈ E. We denote by
b1, . . . , b` the outgoing edges of si different from 0i (some may be equal to an
edge aj) and construct an in-split graph H = (V ′, E′) where V ′ = V ∪ {s′i},
E′ = E∪{0′1, b′1, . . . , b′`} with the starting and ending nodes of e ∈ E the same
as in G with the exception of τ(aj) = s′i. Let ι(0′i) = s′i, τ(0′i) = si+1 and for
all bj let ι(b′j) = s′i. For bj equal to some aj′ let τ(b′j) = s′i and for bj distinct
from any aj′ , τ(b′j) = τ(bj) (see Figure 3). The edge subshift of H is conjugate
to X1 (see Section 2.4 of [4]), H contains the cycle 01 · · · 0p with ι(0i) = si,
and all the states s2, . . . , si have only one incoming edge so 01 · · · 0i is past
deterministic.

Lemma 3 Let X2 be a nontrivial mixing SFT defined by the graph G = (V,E)
and let 0 = 01 · · · 0p ∈ Ep be a past deterministic simple cycle in G. Then X2

is conjugate to a subshift X3 defined by a graph H = (V ′, E′) such that 0 is a
deterministic simple cycle in H.

Proof. The proof is by induction. We assume that 0i · · · 0p is future determin-
istic for some 1 < i ≤ p in G and we will construct a conjugate subshift X3

defined by H = (V ′, E′) such that 0i−1 · · · 0p is future deterministic and 0 is
still past deterministic in H.

Denote sj = ι(0j) for 1 ≤ j ≤ p and assume that 0i−1 · · · 0p is not future
deterministic in G. Then Esi = {0i, a1, . . . , ak} for some k ≥ 1 and a1, . . . , ak ∈
E and it would be possible to construct an out-split graph H = (V ′, E′) where
V ′ = V ∪{s′i}, E′ = E∪{0′i−1} with the starting and ending nodes of e ∈ E the
same as in G with the exception of ι(aj) = s′i and ι(0′i−1) = si−1, τ(0′i−1) = s′i
(see Figure 4). The edge subshift of H is conjugate to X2 (see again Section
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s′3
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02 03

a1
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0′2

03

a1

Fig. 4 Out-splitting at state s3.

2.4 of [4]), G contains the cycle 01 · · · 0p with ι(0i) = si, and all the states
si, . . . , sp have only one outgoing edge.

Lemma 4 Let X3 be a nontrivial mixing SFT defined by the graph G = (V ,E)
and let 0 = 01 · · · 0p ∈ Ep be a deterministic simple cycle in G. Then X3 is
conjugate to a subshift X defined by a graph G = (V,E) such that 0 is a
deterministic simple cycle in G and the graph

G′ = (V ′, E′) = (V \ {si | 1 < i ≤ p}, E \ {0i | 1 ≤ i ≤ p})

gained by removing the cycle 0 from G is primitive (here we denote si = ι(0i)).
Furthermore, G′ contains a cycle 1 = a1 · · · aq ∈ E′q with p and q coprime such
that ι(a1) = τ(aq) = s1 and ι(ai) 6= s1 for 1 < i ≤ q.

Proof. We denote si = ι(0i) in G. Let Es1 = {0p, d1, d2, . . . , dk}, Es1 =
{01, e1, . . . , e`} and construct the graph

G = (V,E) = (V ∪ {s′1, . . . , s′p}, E ∪ {0′1, . . . , 0′p, d′1, . . . , d′k})

with ι(0′1) = s1, τ(0′1) = s′2, ι(0′i) = s′i, τ(0′i) = s′i+1, ι(0′p) = s′p, τ(0′p) = s′1,
τ(dj) = s′1 = ι(em), ι(d′j) = ι(dj) and τ(d′j) = s1 for 1 < i < p, 1 ≤ j ≤ k,
1 ≤ m ≤ ` with the other initial and terminal vertices remaining the same as
in G (see Figure 5). If X is the edge subshift of G, then it is easy to see that
the map Φ : X → X3 defined by

Φ(x)[i] =

0i when x[i] = 0′i,
di when x[i] = d′i,
x[i] otherwise.

is a conjugacy. Since X is mixing, there is a large enough prime number p′ > p
such that G contains a path of length p′ from s1 to s1. If all cycles 0 are

removed from this path, we get a path wcp′−np = c1 · · · cp′−np ∈ E
p′−np

from
s1 to s1, where n is the number of removed 0-cycles. In particular, the length
of wcp′−np is coprime with p. Then 1 = 0′1 · · · 0′pwc′p′−np is a path in G which
visits s1 only at the beginning and ending and |1| is coprime with p. Moreover,
the graph G′ is primitive, because it contains cycles wcp′−np and 1 of coprime
length.
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Fig. 5 Creating a graph with suitable cycles 0 and 1 (in this case p = 2).

Now let X be a nontrivial mixing SFT. By applying the three previous
lemmas consecutively, we may assume up to conjugacy that X is defined by
a graph G = (V,E) such that G′, 0, 1, etc. are as in the conclusion of the
previous lemma. In the rest of this section we will construct a diffusive glider
automorphism g : X → X with the associated diffusive glider automorphism
group (〈g〉 ,0, I,↔ , spd, ς,GF). Let I = {`, r}, spd(`) = pq and spd(r) = −pq,
which reflect the fact that we will have left- and rightbound gliders. The gliders
will be

↔
` = ← = 0q1 ↔r = → = 1p+1;

note that these are of equal length (p+ 1)q. We define the glider fleet sets

GF` = ∞0(←00∗)∗0∞ GFr = ∞0(0∗0→)∗0∞

and languages

L` = (←00∗)∗ ⊆ L(GF`) Lr = (0∗0→)∗ ⊆ L(GFr).

Since G′ is primitive, it has a mixing constant n ≥ |1|p+2, i.e. a number such
that for every n′ ≥ n and s, s′ ∈ V ′ there is a path of length n′ in G′ from s to s′.
Denote N = 2n and for each a ∈ E′ ∪ {01} let W ′a = {wa,1, . . . , wa,ka

} ⊆ E′N
be the set of all those words over E′ of length N such that wa,i does not have
prefix 1p+2 and 0pwa,ia ∈ L(X) for 1 ≤ i ≤ ka, let wa ∈ E′N be some single
word with prefix 1p+2 such that 0pwaa ∈ L(X) (such a word wa exists by
the choice of the mixing constant n), and denote Wa = W ′a ∪ {wa}. For each
j ∈ {1, . . . , p} let u′j = 1p+1+j and let U ′j = {u′j,1, . . . , u′j,nj

} ⊆ E′+ be all the

cycles from s1 to s1 (which may visit s1 several times) of length at most N −1
such that |u′j,i| ≡ |u′j | (mod p) and u′j,i does not have prefix 1p+2, with the

additional restriction that 1,1p+1 /∈ U ′p. Finally, these words are padded to
constant length; let uj = 0cju′j and uj,i = 0cj,iu′j,i, where cj , cj,i ≥ 100N are
chosen in such a way that all uj , uj,i are of the same length for any fixed j. The
words in Wa and U ′j have been chosen so as to allow the following structural
definition.

Definition 9 Let x /∈ GF` be a 0-finite element of X not in O(0Z). Then
there is a maximal i ∈ Z such that

x[−∞, i− 1] ∈ ∞0L`,
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and there is a unique word w ∈ {10} ∪ {1p+10} ∪ {1p+2} ∪ (
⋃p

j=1 U
′
j0) ∪

(
⋃

a∈E′∪{01}W
′
aa) such that w is a prefix of x[i,∞]. If w = 1p+10 or w ∈ U ′j0,

let k = i+ |w| − 1 and otherwise let k = i+ |10| − 1. We say that x is of left
bound type (w, k) and that it has left bound k (note that k > i).

We outline a deterministic method to narrow down the word w of the
previous definition in a way that clarifies its existence and uniqueness. First,
by the maximality of i it follows that x[i] ∈ E′. If x[i, i + N − 1] ∈ E′N ,
then w ∈ W ′x[i+N ]x[i + N ] directly by the definition of the sets W ′a unless

x[i,∞] has prefix 1p+2, in which case w = 1p+2 is the only option. Otherwise
x[i, i+N − 1] /∈ E′N and there is a minimal m < N such that x[i, i+m− 1] ∈
E′m and x[i+m, i+m+ p− 1] = 0. Then x[i, i+m− 1] is a cycle of length
m < N from s1 to s1 and w ∈ U ′j0 for some j ∈ {1, . . . , p} unless we have
specifically excluded x[i, i + m − 1] from all the sets U ′j . But this happens

precisely if x[i, i+m−1] ∈ {1,1p+1} or x[i, i+m−1] has prefix 1p+2. In these
cases w ∈ {10,1p+10,1p+2}.

The point of this definition is that if x is of left bound type (w, k), then
the diffusive glider automorphism g defined later will eventually create a new
leftbound glider at position k and break it off from the rest of the configuration.
(A possible exception to this is if w = 1p+10 = →0, in which case it might
happen that the rightbound glider just travels to the right.)

We define four automorphisms g1, g2, g3, g4 : X → X as follows. In any
x ∈ X,

– g1 replaces every occurrence of 0(0q1)0 by 0(1p+1)0 and vice versa.
– g2 replaces every occurrence of 0(1p+1)0 by 0(10q)0 and vice versa.
– g3 replaces every occurrence of 0q+1(1p+2) by 0q+1(10q1) and vice versa.
– g4 replaces every occurrence of 0waa, 0wa,ia and 0wa,kaa by 0wa,1a, 0wa,i+1a

and 0waa respectively (for a ∈ E′ ∪ {01} and 1 ≤ i < ka) and every occur-
rence of 0uj0, 0uj,i0 and 0uj,nj

0 by 0uj,10, 0uj,i+10 and 0uj0 respectively
(for j ∈ {1, . . . , p} and 1 ≤ i < nj).

It is easy to see that these maps are well-defined automorphisms of X. The
automorphism g : X → X is defined as the composition g4 ◦ g3 ◦ g2 ◦ g1. We
commence arguing that g is a diffusive glider automorphism with respect to
(〈g〉 ,0, I,↔ , spd, ς,GF), where we choose ς` = ςr = g.

Lemma 5 If x ∈ GF` (resp. x ∈ GFr), then g(x) = σpq(x) (resp. g(x) =
σ−pq(x)).

Proof. Assume that x ∈ GF` (the proof for x ∈ GFr is similar) and assume
that i ∈ Z is some position in x where ← occurs. Then

x[i− p, i+ (pq + q) + p− 1] = 0←0 = 0(0q1)0

g1(x)[i− p, i+ (pq + q) + p− 1] = 0(1p+1)0

g2(g1(x))[i− p− pq, i+ q + p− 1] = 0q0(10) = 0←0

g(x) = g4(g3(g2(g1(x)))) = g2(g1(x))),



Glider Automorphisms and a Finitary Ryan’s Theorem 15

so every glider has been shifted by distance pq to the left and g(x) = σpq(x).

We first give a heuristic argument showing that g could be a diffusive glider
automorphism. It is easier to convince oneself that with the choices g′ = g2◦g1,
G = 〈g′, g3, g4〉 and ς ′` = ς ′r = g′ the tuple (G,0, I,↔ , spd, ς ′,GF) is a diffusive
glider automorphism group. Namely, the previous lemma would hold even if
g were replaced by g′, and it also seems reasonable that GF`, GFr are glider
fleet sets with respect to ς ′`, ς

′
r in the sense of Definitions 5 and 6, so g′ is a

glider automorphism. It remains to show diffusiveness. If x ∈ X is 0-finite,
then x1 = g′i(x) for large i ∈ N contains gliders very far from the origin going
to opposing directions and possibly there is an occurrence of a word 0Mw
(with large M ∈ N) that does not look like a glider near the origin. Then for
some j, the occurrence of this word is replaced in x2 = gj4(x1) by 0M ′

1p+2,
and then g3 separates an occurrence of a glider from this pattern; x3 = g3(x2)
contains ← near the origin which can be shifted away by sufficiently many
applications of g′. By repeating this argument we find an element g ∈ G such
that g(x) contains only leftbound gliders far to the left and rightbound gliders
far to the right, so in particular the last item in Definition 5 is satisfied.

The reason why g = g4◦g3◦g′ could also have the diffusion property is that
the words in points x ∈ X on which g′, g3 and g4 can act nontrivially are for
the most part distinct, e.g. g3 can change occurrences of the word 0q+1(1p+2)
but in the definition of g4 this occurs as a subword only in 0q+1waa and 0uj0.
Therefore, whenever one component in the map g does something conductive
to the diffusion of x, it is unlikely that this effect is immediately reversed by
some other component. We proceed with the actual proof that g is a diffusive
glider automorphism.

Lemma 6 If x ∈ X has left bound k, then there exists t ∈ N+ such that the
left bound of gt(x) is strictly greater than k. Moreover, the left bound of gt

′
(x)

is at least k for all t′ ∈ N.

Proof. Let x ∈ X be of left bound type (w, k) with w ∈ {10} ∪ {1p+10} ∪
{1p+2} ∪ (

⋃p
j=1 U

′
j0) ∪ (

⋃
a∈E′∪{01}W

′
aa). The gliders to the left of the oc-

currence of w near k move to the left at constant speed pq under action of g
without being affected by the remaining part of the configuration. We show
by case analysis that the left bound of gt(x) increases for sufficiently large t.
The cases from 1 to 5 correspond to different left bound types and Case 3.1
can be reached as a subcase from Case 1 and Case 3. From each case it is pos-
sible to proceed only to a case with a higher numbering, which prevents the
possibility of circular arguments. The fact that the left bound never decreases
can be extracted from the case analysis.

Case 1. Assume that w = 1p+10. Then g1(x)[k − (q + 2p) + 1, k] = 010 and
we proceed to Case 3.1.

Case 2. Assume that w = u′j,i0 for 1 ≤ j ≤ p, 1 ≤ i ≤ nj . There is a minimal
t ∈ N such that g3(g2(g1(gt(x))))[k − (2p + |uj |) + 1, k] = 0uj,i0. Denote
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y = gt+nj−i+1(x) so in particular y[k − (2p + |uj |) + 1, k] = 0uj0. Then
g(y)[−∞, k] = g3(g2(g1(y)))[−∞, k] has suffix 0q+110q1j0 and g(y) is of
left bound type (1j0, k). If j = 1, we proceed as in Case 3. If j > 1, then
|1j | ≡ |1p+j | = |u′j−1| (mod p) and 1j = u′j−1,i′ ∈ U ′j−1 for some i′. Thus
g(y) is of left bound type (u′j−1,i′ , k) and we may repeat the argument in
this paragraph with a smaller value of j.

Case 3. Assume that w = 10. Then x[k−(q+2)p−q+1, k] 6= 0(0q1)0 = 0←0
because otherwise the left bound of x would already be greater than k.
Therefore g1(x)[k − (q + 2p) + 1, k] = 010 and we proceed to Case 3.1.

Case 3.1. Assume that g1(x)[k− (q+ 2p) + 1, k] = 010. If g1(x)[k− (q+ 2p) +
1, k + qp] = 0(10q)0, then g(x)[k − (q + 2p) + 1, k + qp] = g2(g1(x))[k −
(q+ 2p) + 1, k+ qp] = 01p+10 so g(x) is of left bound type (1p+10, k+ qp)
and we are done. Let us therefore assume that g1(x)[k − (q + 2p) + 1, k +
qp] 6= 0(10q)0, in which case g2(g1(x))[k − (q + 2p) + 1, k] = 010. Denote
y = g3(g2(g1(x))).

If y[k − (q + 2p) + 1, k] = 010, then g(x)[−∞, k] = g4(y)[−∞, k] ∈
∞0L` and g(x) has left bound strictly greater than k. Otherwise y[k− (q+
2p) + 1, k+ (−p+ (p+ 1)q)] = 01p+2. If y[−∞, k+ (p+ j)q] has suffix 0uj0
for some j ∈ {1, . . . , p}, then g(x)[−∞, k+ (p+ j)q] has suffix 0uj,10, g(x)
is of left bound type (u′j,10, k + (p + j)q) and we are done. On the other
hand, if y[−∞, k+ (p+ j)q] does not have suffix 0uj0 for any j, then g(x)
is of left bound type (w′, k) for some w′ ∈ W ′aa ∪ {1p+2} (a ∈ E′ ∪ {01})
and we proceed as in Case 4 or Case 5.

Case 4. Assume that w = wa,ia for a ∈ E′ ∪ {01} and 1 ≤ i ≤ ka. Then
gka−i+1(x)[k − |10|+ 1,∞] has prefix 1p+2 and we proceed as in Case 5.

Case 5. Assume that w = 1p+2. Then g2(g1(x))[k − (q + 2)p − q + 1, k − p +
(p+ 1)q] = 0q+1(1p+2), g3(g2(g1))[k − (q + 2)p− q + 1, k − p+ (p+ 1)q] =
0q+1(10q1) = 0←0q1 and the left bound of g(x) is strictly greater than
k + (q − 1)p.

Definition 10 Let x /∈ GFr be a 0-finite element of X not in O(0Z). Then
there is a minimal k ∈ Z such that

x[k + 1,∞] ∈ Lr0
∞

and we say that x has right bound k.

Lemma 7 If x ∈ X has right bound k, then there exists t ∈ N+ such that the
right bound of gt(x) is strictly less than k. Moreover, the right bound of gt

′
(x)

for 0 ≤ t′ ≤ t is at most k +C for some C that does not depend on x, k or t.

Proof. We prove that the right bound of gt(x) eventually decreases by case
analysis and that we can choose C = pq. The constant C does not play any role
in the first case but it can be extracted from the second case and its subcases.
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Case 1. Assume that the right bound of gt(x) is at most k for every t ∈ N+.
By the previous lemma the left bound of gt(x) tends to ∞ as t tends to
∞, which means that for some t ∈ N+ gt(x) contains only ← -gliders to
the left of k + 3pq and only → -gliders to the right of k. This can happen
only if gt(x)[k + 1, k + 3pq − 1] does not contain any glider of either type.
Then the right bound of gt+1(x) is at most k − pq and we are done.

Case 2. Assume that the right bound of gt(x) is strictly greater than k for some
t ∈ N+ and fix the minimal such t. This can happen only if g1(gt−1(x))[k−
(p + q) + 1, k + (q + 1)p] = 010q0 and then g2(g1(gt−1(x)))[k − (p + q) +
1, k + (q + 1)p] = 01p+10. We proceed to Case 2.1 or Case 2.2.

Case 2.1. Assume that g2(g1(gt−1(x)))[−∞, k+ (q+ 1)p] does not have suffix
0q+110q1p+10. Then g3(g2(g1(gt−1(x))))[−∞, k+(q+1)p] and gt(x)[−∞, k+
(q + 1)p] have suffix 01p+10 = 0→0. This contradicts the choice of t, be-
cause the right bound of gt(x) is at most k − (p+ q).

Case 2.2. Assume that g2(g1(gt−1(x)))[−∞, k+(q+1)p] has suffix 0q+110q1p+10.
Then g3(g2(g1(gt−1(x))))[−∞, k + qp] and gt(x)[−∞, k + qp] have suffix
0q+1(12p+2) and the configuration gt(x) has right bound k + pq. By the
previous lemma the left bound of gs(x) tends to ∞ as s tends to ∞, so we
may fix a minimal s > t such that gs(x)[k + qp − q, k + qp] /∈ E′q+1. We
proceed to Case 2.2.1 or Case 2.2.2.

Case 2.2.1. Assume that gt
′
(x)[k−(p+q)+1, k+qp] = 01p+1 = 0→ for some

t < t′ < s and fix the minimal such t′. Then the right bound of gt
′
(x) is at

most k − (p+ q) < k and we are done.
Case 2.2.2. Assume that gt

′
(x)[k−(p+q)+1, k+qp] 6= 01p+1 for all t < t′ < s,

so in particular gs−1(x)[k−(p+q)+1, k+qp] 6= 01p+1 and from gs−1(x)[k+
qp−q, k+qp] ∈ E′q+1 it follows that gs−1(x)[k−(p+q)+1, k+qp] 6= 0q+11.
Therefore g1(gs−1(x))[k+ qp− q, k+ qp] ∈ E′q+1, g1(gs−1(x))[k− (p+ 1) +
1, k + qp] 6= 01p+1 and thus g2(g1(x))[k + qp − q, k + qp] ∈ E′q+1. By the
choice of s, the map g3 must act now so that g3(g2(g1(gs−1(x))))[−∞, k+
qp] and gs(x)[−∞, k + qp] have suffix 0q+110q1. Then g1(gs(x))[−∞, k +
qp+ (q+ 1)p] has suffix 01p+10q10q+1 and gs+1(x)[−∞, k+ qp+ (q+ 1)p]
has suffix 0q0q1p+10 = 02q→0. Therefore the right bound of gs+1(x) is at
most k − (p+ 1)q < k and we are done.

Lemma 8 If x ∈ X is a 0-finite configuration, then for every M ∈ N there ex-
ist t,N`, Nr,M

′ ∈ N, N`, Nr ≥M such that gt(x)[−N`, Nr] = 0M ′
, gt(x)[−∞,−(N`+

1)] ∈ ∞0L` and gt(x)[Nr + 1,∞] ∈ Lr0∞.

Proof. By inductively applying the previous two lemmas we see that if t ∈ N+

tends to ∞, then the left bound (resp. the right bound) of gt(x) tends to ∞
(resp. to −∞).

Theorem 2 The map g is a diffusive glider automorphism associated to the
tuple (〈g〉 ,0, I,↔ , spd, ς,GF) constructed in this section.
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Proof. By Lemma 5 we know that for i ∈ I,

GFi ⊆ {x ∈ X | x is 0-finite and g(x) = σspd(i)(x)} + Si.

We prove the other inclusion when i = `, the case i = r being similar. Assume
therefore that x /∈ GF` is 0-finite and apply the previous lemma for sufficiently
large M . By Lemma 5 the set GFi is invariant under the map g, so gt(x) /∈ GF`

and gt(x) contains an occurrence of → which is shifted to the right by the
map g. Therefore g(gt(x)) 6= σpq(gt(x)) = σspd(`)(gt(x)) and gt(x) /∈ S`. Since
S` is invariant under the map g, it follows that x /∈ S`.

The other conditions necessary for showing that g is a glider automorphism
are easy to check. Then the fact that g is a diffusive glider automorphism
follows from the previous lemma.

5 Finitary Ryan’s Theorem for Transitive SFTs

In this section we prove our finitary version of Ryan’s theorem. This is done
by applying Lemma 1. As in Example 3, we need a suitable automorphism f
to augment the diffusive glider automorphism group of Theorem 2.

As earlier, let X be a mixing SFT from the conclusion of Lemma 4 and
consider the notation of the previous section. First we define maps f1, f2 :
X → X as follows. In any x ∈ X,

– f1 replaces every occurrence of 0→000←0 by 0→00←00 and vice versa
– f2 replaces every occurrence of 0→00←0 by 00→0←0 and vice versa.

It is easy to see that these maps are well-defined automorphisms of X. The
automorphism f : X → X is then defined as the composition f2 ◦f1. Similarly
to Example 3, f has the following properties. First, it replaces any occurrence
of 0→000←0 by 00→0←00. Second, if x ∈ X is a configuration containing
only gliders ← and → and every occurrence of ← is sufficiently far from every
occurrence of → , then f(x) = x.

Proposition 1 Let X ⊆ AZ and g, f : X → X be as above. Then C(〈g, f〉) =
〈σ〉.

Proof. Consider the diffusive glider automorphism group (〈g〉 ,0, I,↔ , spd, ς,GF)
from Theorem 2. If we defineG = 〈g, f〉, then it directly follows that (G,0, I,↔ , spd, ς,GF)
is also a diffusive glider automorphism group of X. We want to use Lemma 1
to show that C(G)∩Aut(X,0) = 〈σ〉. The bipartite graph B in the statement
of the lemma has in this case the set of vertices I = {r, `} with the partition
I1 = {r} and I2 = {`}, so it suffices to show that there is an edge between r
and `.

Recall that we denote p = |0|, q = |1|. Using the same notation as in
the statement of Lemma 1, let d = e = 1, (Nm)m∈N with Nm = 2mq + 3
and (g′m)m∈N with g′m = g−(m+1) ◦ f ◦ gm. Let x→ ∈ ∞0Lr, ←y ∈ L`0

∞

be arbitrary. Fix some m ∈ N. Since X is an edge shift, it is clear that
x→ .0Nm←y ∈ X and it is easy to verify that
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– g′m(x→ .0N←y) = x→0.0N0←y for N > Nm

– g′m(x→ .0Nm←y) = x0→ .0Nm←0y.

It follows that there is an edge between r and `, so C(G) ∩Aut(X,0) = 〈σ〉.
Now let h ∈ C(G) be arbitrary. Let us show that h ∈ Aut(X,0). Namely,

assume to the contrary that h(0Z) = wZ /∈ O(0Z) for some w = w1 · · ·wp (wi ∈
A). The maps gk in the definition of g have been defined so that gk(x)[i] =
x[i] whenever x contains occurrences of 0 only at positions strictly greater
than i, so in particular g(wZ) = wZ. Consider x = ∞0.←0∞ ∈ GF` with
the glider ← at the origin. Note that h(x)[(i − 1)p, ip − 1] 6= w for some
i ∈ Z (otherwise h(x) = wZ = h(0Z), contradicting the injectivity of h) and
h(x)[−∞, ip−(jq)p−1] = · · ·www for some j ∈ N+. By the earlier observation
on the maps gk it follows that gt(h(x))[−∞, ip−(jq)p−1] = · · ·www for every
t ∈ Z but h(gj(x))[ip−(j+1)qp, ip−(jq)p−1] = h(σ(pq)j(x))[ip−(j+1)qp, ip−
(jq)p − 1] = h(x)[ip − qp, ip − 1] 6= wq, contradicting the commutativity of h
and g. Thus h ∈ Aut(X,0).

We have shown that h ∈ C(G) ∩Aut(X,0) = 〈σ〉, so we are done.

Theorem 3 k(X) = 2 for every nontrivial mixing SFT X.

Proof. Every nontrivial mixing SFT is conjugate to a subshift X of the form
given in the conclusion of Lemma 4, so k(X) ≤ 2 follows from the previous
proposition. Clearly Aut(X) 6= 〈σ〉, so by Theorem 1 it is not possible that
k(X) < 2 and therefore k(X) = 2.

Corollary 1 (Finitary Ryan’s theorem) k(X) = 2 for every transitive
SFT X which is not the orbit of a single point.

Proof. Let X be a transitive SFT given as the edge subshift of a graph G =
(V,E) containing more than a single cycle. By Section 4.5 in [4] there is a
partition E =

⋃n
i=1En with the following properties. First, the ending states

of Ei can be starting states only for edges of Ei+1 (where i + 1 is considered
modulo n) and this induces a partition X =

⋃n
i=1Xi such that Xi = {x ∈

X | x[0] ∈ Ei} and σ(Xi) = Xi+1. Second, the edge shift X ′ of the graph
G′ = (V ′, E′) is a nontrivial mixing SFT where V ′ ⊆ V contains the starting
states of edges in E1 and E′ contains all paths w = w1 · · ·wn of length n in
G with w1 ∈ E1 and we let ι(w) = ι(w1), τ(w) = τ(wn). There is a natural
homeomorphism φ : X ′ → X1 such that φ ◦ σ = σn ◦ φ. By the previous
theorem there are f ′1, f

′
2 ∈ Aut(X ′) which commute with only 〈σX′〉 and there

are unique f1, f2 ∈ Aut(X) such that fi�X1
= φ ◦ f ′i ◦ φ−1. By Theorem 1 it

remains to show that C({f1, f2}) = 〈σ〉. Assume therefore that h commutes
with f1 and f2 and without loss of generality (by composing h with some
power of σX if necessary) that h(X1) = X1. There is h′ ∈ Aut(X ′) commuting
with f ′i such that φ ◦ h′ = h ◦ φ. It follows that h′ = σk

X′ and h = σnk
X .

6 A Nontrue Finitary Version of Ryan’s Theorem

Finitary Ryan’s theorem can be interpreted as a compactness result saying
that, for nontrivial mixing SFT X, the group Aut(X) has a finite subset S such
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that C(S) = 〈σ〉. One may wonder whether this compactness phenomenon is
more general: if G ⊆ Aut(X) is an arbitrary infinite set such that C(G) = 〈σ〉,
does there exist a finite F ⊆ G such that C(F ) = 〈σ〉? We will show by an
example that this is not true for general G even if X is the binary full shift.

In this section let X = {0, 1}Z. For every n ∈ N+ we define two automor-
phisms gn,1, gn,2 : X → X as follows. In any x ∈ X,

– gn,1 replaces every occurrence of 0012n−10 by 0112n−10 and vice versa.
– gn,2 replaces every occurrence of 012n−110 by 012n−100 and vice versa.

It is easy to see that these maps are well-defined automorphisms of X. The
maps gn : X → X are defined as the compositions gn,2 ◦ gn,1. We will define
a tuple (G′, 0, I,↔ , spd, ς,GF), which will turn out to be a diffusive glider
automorphism group for the binary full shift X. Let G′ = 〈{gn | i ∈ N+}〉 and
let I = {(n, r) | n ∈ N+}∪{(n, `) | n ∈ N+} be the index set. We define gliders
↔

n,` = ←n = 012n−1 and ↔n,r = →n = 12n and glider fleet sets

GFn,` = ∞0(←n00∗)∗0∞ GFn,r = ∞0(0∗0→n)∗0∞.

We define languages

Ln,` = (←n00∗)∗ Ln,r = (0∗0→n)∗.

For n ∈ N+ we let spd(n, `) = 1, spd(n, r) = −1 and ς(n,r) = ς(n,`) = gn.

Lemma 9 The tuple (G′, 0, I,↔ , spd, ς,GF) defined above is a glider auto-
morphism group of X, i.e. for n ∈ N+

– GFn,` is the set of 0-finite configurations x for which gn(x) = σ(x)
– GFn,r is the set of 0-finite configurations x for which gn(x) = σ−1(x).

Proof. We prove the first claim, the proof of the second claim being similar.
Assume first that x ∈ GFn,` and assume that i ∈ Z is some position in x where
←

n occurs. Then

x[i− 1, i+ 2n] = 0←n0 = 0(012n−1)0

gn,1(x)[i− 1, i+ 2n] = 0(12n)0

gn(x)[i− 2, i+ 2n− 1] = gn,2(gn,1(x))[i− 2, i+ 2n− 1]

= 00(12n−10) = 0←n0,

so every glider has been shifted by distance 1 to the left and gn(x) = σ(x).
Assume next that x ∈ X is 0-finite and gn(x) = σ(x). First of all, x cannot

contain an occurrence of the pattern 01n
′
0 at any position i ∈ Z for any

n′ /∈ {2n−1, 2n}, because otherwise x[i, i+n′+1] = gn(x)[i, i+n′+1] = 01n
′
0.

Second, if x contains an occurrence of the pattern 012n0 at a position i ∈ Z,
then gn,1(x)[i, i+ 2n+ 1] = 0012n−10 and gn(x)[i+ 1] = 0, which contradicts
gn(x)[i+ 1] = σ(x)[i+ 1] = 1. Therefore, every occurrence of 1 in x is part of
a segment of exactly 2n− 1 consecutive ones. If it were that x /∈ GFn,`, then
x would contain an occurrence of the pattern 1012n−10 at some position i.
Then gn,1(x)[i, i+ 2n+ 1] = 1012n−10 and gn(x)[i+ 1] = 0, which contradicts
gn(x)[i+ 1] = σ(x)[i+ 1] = 1.
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Lemma 10 The tuple (G′, 0, I,↔ , spd, ς,GF) defined above is a diffusive
glider automorphism group of X.

Proof. By the previous lemma G′ is a glider automorphism group. For the
diffusion property it is sufficient to prove for all 0-finite x ∈ X and N ∈ N
the existence of a g ∈ G′ such that g(x) ∈ ∞0((∪i∈SLi)0

N )∗0∞. To do this we
define for every 0-finite x ∈ X the quantity

Nx =

∞∑
i=1

| occ`(x, 01n0)|,

i.e. the total number of consecutive runs of ones in x. We remark that Nx =
Ng(x) for g ∈ G′, because this clearly holds for g ∈ {gn,1, gn,2 | n ∈ N+}
and these generate a group containing G′. We prove the diffusion property by
induction on Nx. As the base case we choose x ∈ GFs (s ∈ I), for which the
claim is trivial. Assume therefore that x /∈ GFs for all s ∈ I and fix N ∈ N. If
the leftmost occurrence of 1 in x is at position i ∈ Z, then x[i− 1,∞] has the
prefix 012n−10 or 012n0 for some n ∈ N+. We assume without loss of generality
that the prefix is of the form 012n−10 (otherwise in the following we replace
the map gn by its inverse g−1

n ).
Note that by definition gn treats words of the form 012n−10 and 012n0 in

all 0-finite y ∈ X as gliders which rebound from words of the form 012n′−10
and 012n′

0 (n′ 6= n) that remain stationary under the action of gn. For every
t ∈ N there is a maximal it ∈ Z such that gtn(x)[−∞, it] ∈ ∞0(←n00∗)∗,
so fix t′ ∈ N such that gt

′

n (x)[−∞, it′ ] contains a maximal number of oc-
currences of ←n. It is easy to see that also every t ≥ t′ has this property.
Similarly, for every t ∈ N there is a minimal jt ∈ Z such that gtn(x)[jt,∞] ∈
(0∗0→n)∗0∞, so fix t ≥ t′ such that gtn[jt,∞] ∈ (0∗0→n)∗0∞ contains a
maximal number of occurrences of →n. If jt ≤ it, this indicates that gtn(x)
is of the form gtn(x) ∈ ∞0(0∗0←n)∗(0∗0→n)∗0∞ and therefore gTn (x) ∈
∞0(0∗0←n)∗0N (0∗0→n)∗0∞ for sufficiently large T ∈ N, proving our claim.
Let us therefore assume in the following that it < jt.

Let y = gtn(x) and y = y1 ⊗it+1 y2 ⊗jt y3, where y1 (resp. y2 or y3) agrees
with y on the interval (−∞, it] (resp. on the interval (it, jt) or [jt,∞)) and
contains zeroes at all other positions. By the choice of t, it, and jt it follows
that

gTn (y) = σT (y1)⊗it+1 g
T
n (y2)⊗jt σ

−T (y3)

and supp(gTn (y2)) ⊆ (it, jt) for every T ∈ N, where we denote supp(x) = {i ∈
Z | x[i] 6= 0} for x ∈ X. Since Nx = NgT

n (x) < NgT
n (y2), it follows from the

induction assumption that for every T ∈ N there is gT ∈ Aut(X) such that

gT (gTn (y2)) ∈ ∞0((∪i∈SLi)0
N )∗0∞.

Furthermore all gT can be chosen so that they are all radius-r automorphisms
for some uniform r ∈ N+, since there are only finitely many different configu-
rations gTn (y2). Fix therefore T = 2r +N . Note also that g(GFn,r ∪GFn,`) =
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GFn,r ∪GFn,` for g ∈ G′, because this clearly holds for g ∈ {gn′,1, gn′,2 | n′ ∈
N+}. We see that

gT (gTn (y)) = gT (σT (y1))⊗it+1−r gT (gTn (y2))⊗jt+r gT (σ−T (y3))

∈ ∞0(Ln,` ∪ Ln,r)0N ((∪i∈SLi)0
N )∗0N (Ln,r ∪ Ln,`)0

∞;

which proves our induction step.

We construct the group G generated by G′ and all automorphisms fn,m =
fn,m,2 ◦ fn,m,1 for n,m ∈ N+ defined as follows. In any x ∈ X,

– fn,m,1 replaces every occurrence of 0→n000←m0 by 0→n00←m00 and
vice versa

– fn,m,2 replaces every occurrence of 0→n00←m0 by 00→n0←m0 and vice
versa.

It is easy to see that these maps are well-defined automorphisms ofX. Similarly
to Example 3, the map fn,m has two important properties. First, it replaces
any occurrence of 0→n000←m0 by 00→n0←m00. Second, if x ∈ X is a
configuration containing only gliders ←m and →n and every occurrence of
←

m is sufficiently far from every occurrence of →n, then fn,m(x) = x.
The following two propositions conclude our current example.

Proposition 2 C(G) = 〈σ〉

Proof. SinceG′ ⊆ G, it follows from the previous lemma that (G, 0, I,↔ , spd, ς,GF)
is also a diffusive glider automorphism group of X. We want to use Lemma
1 to show that C(G) ∩ Aut(X, 0) = 〈σ〉. The bipartite graph B in the state-
ment of the lemma has in this case the set of vertices I with the partition
I1 = {(n, r) | n ∈ N} and I2 = {(n, `) | n ∈ N}, so it suffices to show that
there is an edge between (n, r) and (k, `) for any fixed n, k ∈ N+.

Using the same notation as in the statement of Lemma 1, let d = e = 1 and
(Nm)m∈N with Nm = 2m+3. Let gn,k = gn if n = k, gn,k = gn◦gk if n 6= k and

let (g′m)m∈N with g′m = g
−(m+1)
n,k ◦ fn,k ◦ gmn,k. Let x→n ∈ ∞0Ln,r and ←ky ∈

Lk,`0
∞ be arbitrary. Fix some m ∈ N. It is clear that x→n.0

Nm←
ky ∈ X and

it is easy to verify that

– g′m(x→n.0
N←

ky) = x→n0.0N0←ky for N > Nm

– g′m(x→n.0
Nm←

ky) = x0→n.0
Nm←

k0y.

It follows that there is an edge between (n, r) and (k, r), so C(G)∩Aut(X, 0) =
〈σ〉.

Now let h ∈ C(G) be arbitrary. Let us show that h ∈ Aut(X, 0). Namely, if
it were that h(0Z) = 1Z, consider x = ∞0.←10∞ with the glider ←1 = 01 at
the origin and note that h(x)[i] = 0 for some i ∈ Z and h(x)[−∞, j] = ∞1 for
some j ∈ N+. Then gt1(h(x))[−∞, j] = ∞1 for every t ∈ Z but h(gi−j1 (x))[j] =
h(σi−j(x))[j] = h(x)[i] = 0 6= 1, contradicting the commutativity of h and g1.
Thus h ∈ Aut(X, 0).

We have shown that h ∈ C(G) ∩Aut(X, 0) = 〈σ〉, so we are done.
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Proposition 3 If F ⊂ G is finite, then C(F ) ) 〈σ〉.

Proof. Fix some finite F ⊆ G. It is a simple observation that for every f ∈
F there is nf such that f does not change occurrences of the words un =
01n+100n01n+10 and vn = 01n+101n01n+10 in any configurations for n ≥ nf .
Let n = maxf∈F {nf} and let h ∈ Aut(X) be the automorphism that replaces
every occurrence of un by vn (and vice versa) in any configuration x ∈ X.
Now it is evident that h ∈ C(F ) even though h /∈ 〈σ〉.

7 Conclusions

We have constructed diffusive glider automorphisms g for nontrivial mixing
SFTs X (with some fixed periodic point 0Z) that decompose all 0-finite con-
figurations into two fleets of gliders traveling into opposing directions. This
construction was somewhat complicated and finding a simpler construction
(and/or a simpler proof) would be desirable. One might also want to con-
struct diffusive glider automorphisms on general mixing SFTs with several
different types of gliders that travel at different speeds and that would satisfy
some carefully specified collision rules (this is simpler on full shifts when the
cardinality of the alphabet is not a prime, see e.g. [7] for the case of the full
shift AZ with |A| = 16).

We have applied these glider maps to prove for any nontrivial mixing SFT
X that k(X) = 2. As a simple corollary we have also shown that k(X) = 2 for
any transitive SFT X that consists of more than a single orbit. It would be
interesting to find more sensitive isomorphism invariants of Aut(X). As one
possible invariant related to k(X) we suggest

k2(X) = min{|S| | S ⊆ Aut(X) contains only involutions and C(S) = 〈σ〉}.

It is previously known by Theorem 7.17 of [6] that k2(AZ) ∈ N when |A| = 4.
Some upper bounds for this quantity for general transitive SFTs can be given
by noting that the automorphisms in Proposition 1 can be represented as
compositions of involutions. However, it might be difficult to recognize an
optimal upper bound when it has been found. For example, we do not know
the answer to the following.

Problem 1 Does there exist a mixing SFT X such that k2(X) = 2? Do all
mixing SFTs have this property?

We have also given an example of a finitary variant of Ryan’s theorem
which is not true, i.e. there exists G ⊆ Aut({0, 1}Z) such that C(G) = 〈σ〉 but
C(F ) ) 〈σ〉 for every finite F ⊆ G.
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