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Highlights

• EXIT is a novel approach for cross-impact modeling and analysis
• EXIT models are based on expert-sourced data of the direct interac-

tions in a system
• EXIT can be used for structural analysis of many socio-techno-economic

systems
• The output is information about the higher-order interactions in the

system
• EXIT offers new analytical capabilities compared to existing approaches

Abstract

Cross-impact methods are planning, foresight and decision support tools
often used in conjunction with the scenario technique. They enable sys-
tems modeling in a theory-driven way, grounded in expert judgment and
understanding. This article presents the EXIT approach, a novel modeling
technique and a computational method for structural cross-impact analysis.
EXIT extracts insights from an expert-sourced cross-impact model, which
describes the structure of direct interactions within a system. The EXIT
transformation produces a relative quantification of the emergent, systemic
relationships between model components, effectuating over the complex web
of interactions in the system. Compared to the more established matrix
multiplication approach, EXIT produces novel and more detailed analytical
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outputs on the basis of similar input, and offers new analytical possibili-
ties in structural cross-impact analysis. A software implementing the EXIT
transformation is freely available.

Keywords: Cross-impact analysis, Interaction analysis, Structural
analysis, Systems analysis, Systems modeling, Expert methods

Acknowledgements

This article is based on the research work supported by the Strategic Re-
search Council (SRC) at the Academy of Finland under the project ”Tran-
sition to a resource efficient and climate neutral electricity system” (EL-
TRAN) (decision number 293437).

1. Introduction

Cross-impact methods are planning, foresight and decision support tools
often used in conjunction with the scenario technique (Gordon, 1994; Godet
et al., 1991, 1994). They enable systems modeling in a theory-driven way,
grounded in expert judgment and understanding. Cross-impact methods
as modeling and analysis approaches fall in between empirical data-driven
computational models and argumentative systems analysis, and they exhibit
a high degree of disciplinary heterogeneity and focus on expert-sourced soft
system knowledge (Weimer-Jehle, 2006).

The utility of cross-impact analysis is to provide deep insights into the
operating logic of a system with complex interactions between its elements.
A decision support-oriented utility for cross-impact models is to use them in
examining the impacts of strategic choices, policy interventions or changes
in the system. They are normally based on expert-sourced data on the inter-
actions between system components, and thus enable modeling of systems
that do not have ample empirical data that is required in use of traditional
data-driven modeling techniques. Cross-impact analysis has become a pop-
ular technique for systems and decision analysis and well established in the
fields of foresight and futures studies (Gordon, 1994; Godet et al., 1994;
Cagnin et al., 2016).

The cross-impact approach has a long history in systems analysis and
various foresight applications (Gordon and Hayward, 1968; Gordon, 1969;
Turoff, 1971; Dalkey, 1971; Kane, 1972; Blackman, 1973; Jackson and Law-
ton, 1976; Mitroff and Turoff, 1976; Godet, 1976; Bloom, 1977; Martino
and Chen, 1978; Nováky and Lóránt, 1978; Kaya et al., 1979; Burns and
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Marcy, 1979; Ishikawa et al., 1980; Brauers and Weber, 1988; Godet et al.,
1991, 1994; Gordon, 1994; Jeong and Kim, 1997; Weimer-Jehle, 2006; Choi
et al., 2007; Pagani, 2009; Thorleuchter et al., 2010; Agami et al., 2010;
Bañuls and Turoff, 2011; Bañuls et al., 2013; Lee and Geum, 2017; Ceric,
2016; Thorleuchter and den Poel, 2014; Mamdouh et al., 2015). The origi-
nal impetus for the development was to complement the Delphi method by
introducing analysis of interaction between elements of a given system (Gor-
don and Hayward, 1968; Gordon, 1969, 1994; Godet et al., 1994). However,
recent research has focused mainly on application of cross-impact analysis
(Chander et al., 2013; Alizadeh et al., 2016; Blanning and Reinig, 1999; Choi
et al., 2007; Gorane and Kant, 2013) and methodological development has
dwindled in recent years. In spite of the methodological discussion and de-
velopment efforts on cross-impact modeling and analysis, many approaches
are somewhat opaque in their documentation and lack software tools and
implementations, presenting barriers for easy utilization of the cross-impact
approach in modeling and research.

This article presents the EXIT (Express Cross-Impact Technique) method
for cross-impact modeling and analysis. EXIT is a structure-oriented cross-
impact modeling and analysis method for extracting insights from expert-
sourced system model that describes the direct interactions of the said sys-
tem. The EXIT transformation aims to reveal the emergent, indirect impact
network structure of the modeled system and to relate this emergent struc-
ture to the direct impact structure described by the input. The analytical
objective is an improved understanding of the true relationships between
the modeled system parts, forces and events. The proposed approach for
structural cross-impact analysis has several advantages compared to existing
approaches processing a similar input model. The EXIT approach is com-
pared to the matrix multiplication approach, which is a well established and
simple approach for structural cross-impact analysis of very similar input
data.

The process of information extraction from a cross-impact matrix used in
EXIT is previously unutilized. The process results in more detailed output
on the basis of equal input information and extends the analytical possibil-
ities of structural cross-impact analysis. An efficient computation strategy,
which allows for processing large cross-impact models, is presented. The
contribution of this paper is to present this new, analytically more valu-
able way of processing cross-impact data. It documents transparently the
method for which a freely available software implementation exists. The
paper adheres to design science approach, delivering an artefact in the form
of EXIT method and a descriptive evaluation (Siau and Rossi, 2011; Hevner
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et al., 2004; Prat et al., 2015; Cash et al., 2016).

2. Literature review

2.1. Overview to cross-impact analysis

Many quite different analytical techniques are called cross-impact anal-
ysis. The format of the inputs for the analysis, the computational process
of transforming the inputs into some higher-order information, the nature
of the outputs, and the details of the analysis of those outputs vary in
the different techniques and their implementations. The development of
the original cross-impact technique is attributed to Theodore Gordon and
Olaf Helmer (Gordon, 1994; Matic and Berry, 2013), and this technique has
largely inspired the other, more recent approaches. An important motiva-
tion for experimenting with the early cross-impact techniques was to find out
“whether forecasting could be based on perceptions about how future events
may interact” and enable analysis of interactions between events, which is
not present in the Delphi method (Gordon, 1994; Godet et al., 1994, 139).

In general terms, cross-impact analysis could be described as an analyt-
ical technique for studying a system, and particularly interaction within it,
consisting of several components, states, events and forces that are partially
dependent on each other and therefore have influence on each other. The
mentioned objects of the system are modeled as system descriptors. These
system descriptors are referred to by different terms by authors of different
cross-impact techniques. Gordon (1994) uses the term event, Godet et al.
(1994) use the word hypothesis, and Honton et al. (1984) use the term de-
scriptor. The influence the objects of the system have on each other are
given a representation in the system model. The influence can be expressed
in the model as conditional probabilities (see e.g. Gordon, 1994; Godet et al.,
1994, 142–149), references to probability-adjusting functions (Honton et al.,
1984; Luukkanen, 1994; Panula-Ontto, 2016), impact indices (Kane, 1972;
Godet et al., 1994, 90–101), or in some cases simply a boolean indicator of
interaction of some kind (Godet et al., 1994, 83).

The aim of cross-impact analysis is to extract information about the in-
direct and total interactions between the components of the modeled system
on the basis of the input information about the direct interactions. In a sys-
tem with a high number of components, the chains of impacts can be long
and the indirect interactions can effectuate over a complex web of mediating
components. Exploring these long impact chains and interaction webs can
bring forward surprising and counter-intuitive results. Cross-impact analysis
can reveal that a system component that is seemingly unrelated to another
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component of interest is actually of central importance and conversely that
the effect of some other seemingly important component might be cancelled
or reversed by the system’s web of interactions. It can be used to investi-
gate the effects of changes in the system and identification of effective policy
actions and interventions, and their effects in the system, with the aim of
discovering policy-relevant insights.

The cross-impact analysis inputs include the system descriptors, their
direct interactions and the valuations of the different properties of the de-
scriptors and interactions. Typically, this input data is provided by people
with expertise considered relevant for the modeled system or topic. Having
one person to supply all the necessary input data, regardless of the method,
is technically enough to build the cross-impact model. Normally, however,
there are several experts, perhaps a large number of them (Godet et al.,
1991, 49). It is possible to have the experts work as a group that interacts
during the process of providing the inputs; it is possible to have the experts
provide the inputs via a questionnaire; or it is possible to combine these
approaches in some way. An example of combining the approaches would
be having the experts vote about the inputs anonymously using an online
questionnaire and discuss about the results directly, then taking the vote
again (observing a Delphi-like process). As the focus of this paper is not
the process or facilitation of using experts in building a cross-impact model,
but rather the description of a new cross-impact modeling language and the
analysis of system models built with it, the questions of expert selection,
model building, facilitating expert group work in model valuation and other
processual intricacies are not examined in more detail. For further discus-
sion of the use of experts in providing inputs for cross-impact modeling and
analysis, see Enzer (1971); Linstone and Turoff (1977); Godet et al. (1991,
1994); Blanning and Reinig (1999); Seker (2015); Alizadeh et al. (2016).

Cross-impact approach enables the modeling of systems that do not have
a lot of statistical or empirical data available about them. As expertise, rel-
evant to the modeled system or problem, is used as the source material in
building the cross-impact models, many non-quantified or weakly quanti-
fied phenomena might be modeled with the approach. The expert-oriented
modeling approach can be viable also in cases where lack of data makes em-
ployment of traditional modeling and simulation methods unfeasible. The
cross-impact approach can be also seen as a way to process expert views
and opinions in a systematic and formalized way. The collection, process-
ing and synthesis of expert views are central methodological challenges in
foresight and futures studies; cross-impact methods are tools to process and
synthesize the expert-sourced data in a structured way.
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2.2. Structural cross-impact analysis

The documented cross-impact methods can be divided into two cate-
gories by whether they explicitly compute probability values associated to
the system descriptors or not. The methods computing probability values
require more inputs and the cross-impact model construction is more time-
consuming. They enable more analytical possibilities. These methods can be
called probability-focused. The methods that do not compute probability val-
ues require less and simpler inputs and the model construction is faster. The
analytical possibilities are reduced compared to methods that do compute
probability values. These methods can be called structure-focused. The ex-
isting documented structure-focused cross-impact analysis techniques, such
as MICMAC (Godet et al., 1994, 83) and its derivatives, and the ADVIAN
approach by Linss and Fried (2010), are based on matrix multiplication
method. EXIT falls in the category of structure-focused cross-impact meth-
ods as well, but while the inputs are similar to the inputs required by the
approaches based on matrix multiplication method, the computational ap-
proach is very different. EXIT can be meaningfully compared against other
structure-focused cross-impact approaches, of which MICMAC appears to
be the most widely used.

The structure-focused methods deliver their analytical contribution by
revealing the indirect impact chains and higher-order interactions of the
cross-impact model directly from the description of the direct impacts. They
do not compute probability changes for the cross-impact model. Methods
in this category include the MICMAC method (Godet et al., 1994, 84), the
ADVIAN method (Linss and Fried, 2010), and the EXIT method presented
in this paper. The structure-focused methods reveal the importance of sys-
tem components to each other and in the overall system. The structural
cross-impact modeling and analysis can be used to discover the higher-order
interactions, to give an understanding of the pivotal system components,
and to identify effective intervention points for strategic action and policy
on the basis of that information.

The motivation for using the structure-focused methods instead of the
probability-focused methods is the clearly lower cost of modeling, especially
model valuation, in time and effort. The trade-off is the reduction in an-
alytical possibilities. The cross-impact model valuation is the process of
defining the necessary values of model components and their properties for
analysis. This, as explained, is usually done by expert valuators in the
cross-impact approach. In probability-focused methods, initial or a priori
probabilities for system descriptors are required. The interactions need also
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be described in terms of probability changes. Defining conditional proba-
bilities in approaches such as Gordon’s method Gordon (1994) or SMIC is
extremely challenging and time-consuming. The description of interactions
is easier for model valuators if the probability adjustment function approach
is used (see Honton et al., 1984; Luukkanen, 1994; Panula-Ontto, 2016), but
the level of complexity in valuation is still high compared to the structural
cross-impact modeling approach. Valuation of a cross-impact model suitable
for probability-focused approach requires, in practice, a committed team of
experts for a considerable period of time. In comparison, experiments with
the EXIT approach have shown that the valuation of a model suitable for
structure-focused approach is possible to be completed in a single-day work-
shop, easing the requirement of deep expert valuator commitment to the
modeling effort.

The complexity and cost of constructing cross-impact models suitable
for probability-focused methods make the structure-focused approach a vi-
able alternative in many research and modeling cases. If the main research
interest is to generally understand the target system better and identify
the most important components from some specific perspective, the analyt-
ical possibilities of probability-focused approaches might not be necessary
or worth their cost. As the expert resources available for a cross impact
modeling effort are, in practice, often limited, the complexity and time re-
quirement of valuation phase limit the level of detail of the cross-impact
model. For this reason, using an approach in which the valuation phase
is easier makes it possible to a) build and study more expansive cross-im-
pact models with more components, b) use a wider base of expertise in
the valuation by involving more experts, and c) discuss, analyze and revise
the valuation choices more thoroughly. These points improve the quality
of the cross-impact model and make the resulting analysis more valuable.
On these grounds, the structure-focused cross-impact methods should be
preferred over the probability-focused methods, if their analytical output is
sufficient for the purposes of the research.

2.3. The matrix multiplication method and methodological improvements
proposed by EXIT

The structure-focused cross-impact modeling and analysis approaches,
comparable to the EXIT approach, are the techniques based on matrix
multiplication method. The most widely used technique in the category
is the MICMAC method developed by Godet et al. (1994). The MICMAC
method is, apparent by its relatively wide use, the established method for

7



structure-focused cross-impact analysis. Recent applications of the MIC-
MAC approach in research include Alizadeh et al. (2016), Dubey and Ali
(2014), and Gorane and Kant (2013). The MICMAC method is used as
a part of a larger analytical framework Godet calls ”structural analysis”.
According to Godet, structural analysis is used to study systems consist-
ing of interrelated elements, highlighting the structure of the relationships.
The system is described using a cross-impact matrix interconnecting all the
system components. Structural analysis aims to “permit analysis of the
relationships and identification of the main variables” (Godet et al., 1994,
83).

The key variables are identified in structural analysis by using the MIC-
MAC method. MICMAC is described as “a classification matrix using
cross multiplication factors” (Godet et al., 1991, 26). The MICMAC clas-
sification process takes a direct impact index matrix as input. This matrix
can have impact valuations that indicate the strength and direction of the
impact in the same vein as EXIT (the EXIT inputs are discussed in detail
in Section 3.1). The impact matrix can also just have values 0 or 1, 0 in-
dicating no impact from variable to another and 1 indicating an impact of
some strength and direction. This simple binary presence-of-impact style
is how impacts are modeled in the examples of MICMAC approach Godet
et al. (1991, 1994).

The impacts variable i has on other variables are marked as elements of
impact matrix on row i. This means that the impacts all other variables in
the model have on variable i can be read from column i of the matrix. The
customary impact markup logic is presented also in Table 2 on page 14. In
a cross-impact matrix with the aforementioned properties, the sum of the
impact values on a row expresses the degree of influence a variable has in the
entire system. The sum of the impact values on a column tells the degree
of dependence of a variable in the system. The variables can be ordered
by their general influence or dependence. In the MICMAC technique, this
ordering is the initial ordering. The initial ordering is based on the direct
impacts expressed in the impact matrix and it does not account for any
higher-order interactions.

The matrix multiplication approach to extracting information about the
indirect impacts is based on squaring the direct impact matrix iteratively.
When the cross-impact matrix describing the direct impacts is squared, the
second-order indirect impacts are revealed (Godet et al., 1994, 93–97). In
the new matrix obtained by squaring the original direct impact matrix,
the variables can again be ordered according to the row or column sums
like with the direct impacts. The ordering is likely to be different in the
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power matrix as compared to the original. This squaring of the matrix is
performed n times to reveal the (n + 1)th-order indirect impacts and the
variable ordering is produced by calculating the row or column sums for
each iteration.

As enough iterations have taken place, the ordering becomes stable, and
the iteration can be stopped. This stable ordering, which no longer changes
as the matrix is squared, is the MICMAC ordering or the a posteriori order-
ing. Godet et al. (1991, 26) state that this stable ordering often emerges at
iteration 4 or 5 and elsewhere an estimate is given that stability is reached
at iteration 7 or 8 (Godet et al., 1994, 94). The number of required itera-
tions, in general, is dependent on the number of variables and the number
of interactions in the cross-impact matrix.

The described matrix multiplication approach in structural cross-impact
analysis produces an a posteriori importance (or dependence) ordering for
the variables. This a posteriori ranking is based on the indirect impacts be-
tween the variables. The initial ordering of the variables is compared against
the a posteriori ordering to highlight the change in the importance of vari-
ables. This method gives the prioritization of driving forces in the modeled
system based on influence-dependence criteria, using the information about
the indirect impacts acquired with the iterative matrix multiplication.

The matrix multiplication approach for structural cross-impact analy-
sis is similar enough to the EXIT method in terms of the inputs and the
ultimate aims of the analysis for making direct comparisons between the
approaches. Both approaches start with an impact matrix describing the
direct impacts in the cross-impact model. Both perform a transformation
on the direct impact matrix to reveal the indirect impacts and consider the
hidden or unobvious importance of the matrix variables from the perspective
of these indirect impacts. However, the matrix multiplication approach has
shortcomings on which the EXIT approach proposes improvements. The
contribution of the EXIT method to the state of the art is highlighted by
the following list contrasting the issues related to matrix multiplication ap-
proach against the methodological improvements proposed in EXIT.

1. Information about the directed pairwise influence of system compo-
nents (or model variables) is not available. The rankings based on
matrix multiplication approach provide information only about the
overall influence or dependence of the variables in the system. The in-
formation on the relationship between individual variables is lost and
only a general systemic ranking is made available. EXIT outputs in-
formation on the systemic relationship between individual variables.
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A system-level quantification of the influence of an EXIT hypothesis
can also be made available, as Table 9 shows.

2. The matrix multiplication method only produces an ordering or rank-
ing by importance or weight of the variables. There is no measure of
how much the importance of variables might differ. A single variable
or small set of variables could dominate the system and the others
might be relatively insignificant, but these characteristics of the sys-
tem cannot be clearly observed from the mere ranking of the variables.
The EXIT transformation yields a relative quantification of the total
impact of all individual system components on all other individual
components, instead of a simple ordering of the components based on
general system-level influence or dependence.

3. The matrix multiplication method based approaches do not consider
the direction of the influence. This is a significant drawback, as strong
influences pulling to different directions can cancel each other out, and
only examining the magnitudes of the influences instead of their direc-
tion in terms of probability change or more abstract support or antag-
onism might give a very inaccurate picture of the real relationships of
the variables. EXIT is able to consider the directions of the impacts
and is able to reveal possible conflicting influences in the system.

4. The rankings based on matrix multiplication approach are ultimately
rankings of the variables considering the indirect effects specifically.
It might well be, however, that the direct impacts are the most sig-
nificant for majority of variables and the indirect impacts are of great
importance only for some variables. A better approach would be to
somehow quantify and sum the direct and indirect impacts instead of
presenting the indirect impacts specifically as the highest-order under-
standing that can be extracted from the cross-impact model. EXIT
considers both direct and indirect impacts, instead of an alternative
ranking based on indirect impacts specifically to be compared with the
obvious ranking based on direct impacts. As both direct and indirect
impacts are important, the cross-impact analysis technique should be
able to look at both under equal terms.

This paper presents in detail the novel EXIT method for cross-impact
modeling and analysis. EXIT is compared to the matrix multiplication
approach, the dominant technique used in structure-focused cross-impact
analysis. The matrix multiplication approach is used to answer questions

10



about indirect interactions and the importance of different system compo-
nents, in a system modeled as cross-impacts, using direct impact indices
to describe the impacts. Compared to the matrix multiplication approach,
EXIT operates on similar input data but provides more detailed analytical
output that is less ambiguous to interpret.

This paper focuses on presenting the modeling language of EXIT and the
computational transformation of the novel EXIT method clearly, and the
contribution is methodological. The computation process and the analyti-
cal outputs are illustrated with a small example model. The EXIT method
is implemented as a Java program. It is available at https://github.com/
jmpaon/EXIT, with source code and documentation. The current version
features a simple command line interface. The implementation efficiently
performs the EXIT transformation, detailed in Section 3.3, using a combi-
nation of full computation of impacts and a stratified sampling approach,
discussed in Section 3.5.

3. The EXIT approach

3.1. The EXIT model

An EXIT model is a high-level description of a system, using the EXIT
modeling primitives for definition of the system characteristics. An EXIT
cross-impact model consists of (a) a set of hypotheses, (b) valuations for the
direct impacts between the hypotheses, and (c) a value for the maximum
impact . Hypotheses represent system components, states, events and driving
forces. Direct impacts are unmediated influences of causal nature, of an
impactor hypothesis on an impacted hypothesis. The maximum impact
gives a scale or interpretation to the valuations of the direct impacts. These
three modeling primitives make up the EXIT modeling language.

3.1.1. Hypotheses

The hypotheses are verbalised, and ideally precise, descriptions of
states of the modeled system, its components or driving forces, or events
in it. The following examples of EXIT hypotheses are from an energy sys-
tem model:

• New nuclear plants will be constructed by year 2030

• Average electricity price will increase 25% from current level by 2030

• Electricity consumption in 2030 will be increased from current level
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A hypothesis in the model has an unknown boolean truth value, which is
“revealed as the future unfolds”. The hypotheses should be formulated in
an unambiguous way. In the examples provided, the assumed context of
the cross-impact modeling exercise provides the necessary additional details
to make the hypotheses unambiguous. The verbal formulation of the hy-
potheses should also be such that domain experts would be able, at least
in theory, to assign a probability value for them. In EXIT, probabilities
for the hypotheses are not assigned, as the object of the analysis is the
impact network structure. The hypotheses should nevertheless ideally be
formulated in such a way that assigning probabilities is possible. The aim
of such formulation of the EXIT hypotheses is to make the expert-elicited
impact valuations less ambiguous. When a hypothesis is formulated in a
way specific enough to be able to assign a probability, it is possible to try
to valuate its probability-changing impacts on other such hypotheses. If,
however, the hypotheses are formulated so that assigning a probability is
very difficult due to the vagueness of the hypothesis formulation, estimating
how it might influence the probabilities of other hypothesis is equally diffi-
cult. These strict requirements for hypothesis formulation can, however, be
applied more loosely if it makes sense in the context or for the purpose of
the analysis.

3.1.2. Direct impacts

Direct impacts are directed and non-symmetrical relationships be-
tween hypotheses. In this relationship, one hypothesis is an impactor hy-
pothesis and another is an impacted hypothesis. In a less formal way, the
direct impacts can be understood as factors of causal support or opposition
the hypotheses have on each other. The value of the impact describes the
direction (support or opposition) and the strength of the effect. Usually
impact values are integers, but any real numbers can be used. A positive
value for impact of hypothesis A (Ha) on hypothesis B (Hb) means that Ha

strengthens or supports Hb. A negative value for impact of Ha on Hb means
that Ha weakens or is in opposition to Hb. In EXIT, a direct impact mod-
els an assumed direct causal relationship of the impactor on the impacted
hypothesis: The impactor causes the effect on the impacted. Non-causal as-
sociation or dependence is not intended to be modeled in the EXIT approach
with direct impacts. The direct impact of hypothesis Ha on hypothesis Hb

can be written as Ha → Hb.
More formally, a direct impact Ha → Hb describes a probability-changing

influence of a direct causal nature of Ha on Hb. This influence is expressed
as an impact value, that conveys the direction of probability change and
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the strength or “size” of the influence. Therefore, a direct impact can be
expressed as a 3-tuple, where the first element is the impactor hypothesis,
the second one is the impacted hypothesis and the third one is the impact
value. The direct impact of hypothesis Ha on hypothesis Hb with a value of

i can be written as Ha
i→ Hb.

The impact value is interpreted so that if an impactor hypothesis is
known to be true, probability of impacted hypothesis changes according to
the impact index value: Increases, if impact value is positive, decreases,
if impact value is negative, at a rate determined by the impact strength.
Conversely, if the impactor hypothesis is known to be false, the probability
of the impacted hypothesis decreases if the impact value is positive, and
increases if the impact value is negative. Impact value can be interpreted
in a yet more general way: if the probability of the impactor hypothesis
changes, the probability of the impacted hypothesis changes according to
the impact index value. In a case of a positive impact index value, the
probability of the impacted hypothesis changes to the same direction as the
probability of the impactor hypothesis. In a case of a negative impact index
value, a decrease in the probability of the impactor hypothesis causes the
probability of the impacted hypothesis to increase. This interpretation of
impact values in terms of probability changes of impactor and impacted
hypotheses is shown in Table 1.

∆P (Ha) Ha
+→ Hb Ha

−→ Hb

P (Ha) increases P (Hb) increases P (Hb) decreases

P (Ha) decreases P (Hb) decreases P (Hb) increases

Table 1: Direct impacts and their interpretation in terms of probability change of the
impacted hypothesis

While the interpretation of the direct impacts is related to probabil-
ity change, the impact values do not correspond to a specific amount of
probability change. The impact values simply relate the impact “sizes” or

strengths to each other. The impact Ha
2i→ Hb is twice as strong as im-

pact Hb
i→ Hc and has half of the strength of impact Hc

4i→ Hd. Similarly,

Hd
i→ He is equal in strength to He

−i→ Hf , but the direction of the impact is
opposite. Relating the impacts to each other in terms of strength is sufficient
for extracting structural information about the cross-impact system.

The direct impacts between hypotheses can be presented in a cross-
impact matrix. Table 2 presents the impact markup logic in a cross-impact
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Table 2: Impact markup logic in EXIT cross-impact matrix

Ha Hb Hc Hd

Ha ∅ Ha→Hb Ha→Hc Ha→Hd

Hb Hb→Ha ∅ Hb→Hc Hb→Hd

Hc Hc→Ha Hc→Hb ∅ Hc→Hd

Hd Hd→Ha Hd→Hb Hd→Hc ∅

matrix displaying the direct impacts in an EXIT model. The direct impact
of Ha on Hb (or Ha → Hb) is read from matrix entry (1,2) (row 1, column 2);
The direct impact of Hd on Hc (Hd → Hc) is read from matrix entry (4,3)
(row 4, column 3). Table 3 in Section 3.2 presents a cross-impact matrix of
an EXIT model complete with hypotheses.

It is required from a direct impact Ha → Hb that in the cross-impact
model there are no intermediary hypotheses between impactor hypothesis
Ha and impacted hypothesis Hb. In the real system the cross-impact model
represents, there can be some intermediary mechanism or component that
mediates the impact of Ha on Hb, even if this component would not be
present in the model. If such intermediary system components are identified,
however, it warrants consideration of modeling these components in the
cross-impact model as additional hypotheses.

3.1.3. Maximum impact value

In the EXIT transformation, the indirect impacts extant in the model
are related to the direct impacts. To this end, relative impact values are
computed for both direct and indirect impacts. This process is discussed in
detail in Section 3.3. A maximum impact value is defined for an EXIT
model for computation of relative impacts. As explained in Section 3.1.2,
the impact index value is the “size” or strength of the impact, interpreted
relative to the other impact values. The maximum impact value is the
greatest absolute value that the direct impacts can be valued at and the
direct impact matrix is allowed to contain.

Normally the maximum impact value is a positive integer, but the maxi-
mum impact value can be any real greater than zero. As the impacts can also
be negative, the opposite number of maximum impact value is the smallest
impact index value allowed. It expresses the greatest possible probability-
decreasing influence a hypothesis can have on another.

The EXIT approach does not force a particular interpretation of the
maximum impact value. It is possible to think of an impact value equal
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to the maximum impact value as a fully determinate influence a hypothesis
might have on another hypothesis. If this is the interpretation taken, the
sum of impacts of impactors on any hypothesis in the model should not
exceed the maximum impact value. This interpretation also dictates that
the impacts are present only as positive values, without information about
the direction of the impact: they only represent the strength of the impact.
In this form, the analysis cannot consider the direction of the impact at all.
In a standard case where the maximum impact value is not interpreted as a
fully determinate impact, but simply as the greatest absolute impact value
available for describing the impacts, this requirement does not hold. Dis-
regarding the direction of the impacts might be useful in some applications
of the cross-impact approach, but generally the direction of the impact is
a very important aspect of an EXIT cross-impact model. Direct and sys-
temic impacts can pull to different directions and cancel each other out. It
is possible that the systemic impacts, when accounted for, negate the direct
or obvious impact a system component has on another component. This
is why consideration of the direction of the impact is generally of central
importance.

3.2. Example model

Table 3: Direct impact matrix of an energy system model

A B C D E F G

Electricity price will increase A ∅ +2.5 +1.7 +2.0 +1.6 +1.2 -1.6

Wind and solar power production will increase B -0.1 ∅ +2.6 +2.3 -2.1 +1.1 -0.2

Electricity storage will increase C -0.2 +2.2 ∅ 0 -0.5 -1.0 +0.1

Market based elasticity of electricity consumption will 

increase D -1.9 +1.1 +0.1 ∅ 0 -0.6 -0.1

New nuclear power plants will be constructed E -0.3 -1.6 -0.4 -0.4 ∅ +0.9 -0.8

Electricity transmission capacity from neighbouring 

countries will increase F -1.2 +0.1 -1.5 -0.8 0 ∅ +0.1

Subsidies for solar and wind power will increase G +0.2 +3.9 +1.5 +1.4 -1.0 +1.0 ∅

The EXIT approach is illustrated with a small EXIT cross-impact model
representing the Finnish energy system. The model hypotheses and the
direct impact valuations are presented in Table 3. The example model has
seven hypotheses, which are a subset of the hypotheses of a larger EXIT
model, created in a foresight-oriented energy system modeling exercise in
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the EL-TRAN project. The hypotheses describe the state of, and possible
developments in, the Finnish energy system with a timeframe of 2017–2030.
The first column of Table 3 presents the hypotheses. the impact valuations
of hypotheses on other hypotheses are read row-wise; the impacts of other
hypotheses on a particular hypothesis are read column-wise (see Table 2).
For example, the impact of hypothesis A (“Electricity price will increase”)
on hypothesis E (“New nuclear plants will be constructed”), valued at +1.6,
is read from matrix row 1, column 5.

The cross-impact model is expert-sourced both in its design (selection
and formulation of included hypotheses) and valuation (assignment of im-
pact values for the direct impacts). The hypotheses of the original model
were selected and formulated during several expert workshops, where the
central driving forces and upcoming developments were mapped from the
perspective of the EL-TRAN project premises. The participants were high-
level experts in electricity technology, energy economics, energy policy and
other fields related to the technological, economic and political aspects of
the Finnish energy system.

The valuation of the direct impacts was individually performed by 16
expert participants, each of whom supplied a cross-impact matrix via e-
mail. The matrix presented in Table 3 was obtained by averaging the impact
valuations of the 16 expert-sourced cross-impact matrices. This way, if the
valuating experts disagreed about the direction of the impact, the mean of
valuations would be close to zero and the unclear impact would be mostly
eliminated from the model. Another approach would have been to bring the
disagreed-upon valuations up for further discussion in an attempt to find
consensus on the valuations.

The values of the direct impact matrix (Table 3) relate the direct impacts
of the included hypotheses to each other. The defined maximum impact
value for the model is 4. The direct impacts are thought to be unmediated
in the system model: the influence of the impactor hypotheses on impacted
hypotheses do not effectuate through any other modeled system component.
For instance, increasing electricity price (hypothesis A) directly incentivizes
(with a direct impact valued at +2.5) to increase production of electricity
with solar and wind (hypothesis B) and nuclear power (E, +1.6). Increas-
ing electricity price will also directly support increase in electricity storage
capacity quite strongly (+1.7). The experts also saw that the rising price of
electricity makes the increase of subsidies for solar and wind power (hypothe-
sis G) less likely, the impact valued at −1.6. On the other hand, construction
of new nuclear capacity (hypothesis E) is modeled by the experts to be a
rather uninfluential factor in the energy system directly. Its direct impacts
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on electricity price, storage, or consumption elasticity have relatively low
impact values. The strongest direct impact new nuclear capacity is modeled
to have is on the increase of wind and solar power production (−1.6), as the
increased nuclear-sourced power supply to some extent eliminates the need
for increased wind and solar power production.

With the system’s direct impacts modeled and their valuations presented
in the direct impact matrix, the question is how to account for the numerous
possible indirect impacts possible in the system. For instance, the strong
influence of increasing electricity price (hypothesis A) on increasing wind and
solar power production (hypothesis B) can be thought to indirectly influence
the increase in electricity storage capacity (hypothesis C) through hypothesis
B, as B has a strong direct impact on C. The EXIT transformation detailed
in Section 3.3 describes how these indirect impacts are accounted for and
related to each other in the EXIT approach.

3.3. The EXIT transformation

The basic motivation for any type of simulation and modeling is to reveal
the emergent or systemic characteristics of the modeled system. In struc-
tural cross-impact modeling, this means specifically revealing the systemic
role of modeled components in the system, or the systemic relationship be-
tween system parts. This is done on the basis of input data about direct
impacts, by consideration of indirect impacts in the system. The EXIT ap-
proach for revealing the systemic impacts is based on relative quantification
of all the possible impacts in the system model, direct and indirect. The
sum of relative quantifications of the direct impact and all indirect impacts
of Ha on Hb is the summed impact of Ha on Hb.

The set of possible impacts in the system are represented by the set of
impact chains possible in the system model. Impact chains are directed sets
of model hypotheses. An impact chain can also be defined as an ordered set
of direct impacts, where each hypothesis included in the chain is present only
once. The direct impacts are impact chains of length 2, as they consist of two
hypotheses, the impactor hypothesis and the impacted hypothesis. The indi-
rect impacts are impact chains of length l | l > 2, l ≤ n, where n is the num-
ber of hypotheses in the model. The indirect impacts have, in addition to the
impactor hypothesis and impacted hypothesis, one or more mediating hy-
potheses, which convey the impact of the impactor on the impacted hypothe-
sis. An impact chain representing an indirect impact of Ha on Hb with y me-
diating hypotheses can be written as Ha → Hx1 → Hx2 → · · · → Hxy → Hb,
where Hx1 . . . Hxy are the mediating hypotheses in the impact chain. Fig-
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ure 1 presents the possible impact chains from impactor hypothesis Ha to
impacted hypothesis Hb in an EXIT model consisting of 5 hypotheses.
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Figure 1: A directed acyclic graph of the impact of hypothesis Ha on hypothesis Hb in
a system of 5 hypotheses. The nodes are model hypotheses. All edges are direct impacts,
which can also be links in impact chains representing indirect impacts of Ha on Hb. Dotted
edges are links in impact chains mediating the impact of Ha on Hb through H1, H2 and
H3 indirectly. Solid edges are the direct impacts on Hb, ultimately effectuating the impact
of Ha on Hb.

The EXIT transformation does not compute the influence of cyclic im-
pacts. In the matrix multiplication based approaches, cyclic impacts do have
an effect on the results. This characteristic of EXIT is a logical consequence
of the formal definitions of the EXIT modeling primitives, the hypothesis
and the direct impact. An example of cyclic interaction would be, in the
case of the system of Fig. 1, say, Ha influencing H1 and H1 in turn influenc-
ing Ha back. Allowing such cyclic interaction would mean that Ha would
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have indirect influence on itself through H1. This would be against the def-
inition of hypotheses as postulates or possible facts about the system state.
The EXIT direct impact, in turn, is the probability-changing influence of
the ’cause’ hypothesis on the ’effect’ hypothesis, conditional to the ’cause’
hypothesis being true. This being the definition, cyclic interaction would
not be logical in an EXIT model: A hypothesis being true cannot increase
its own probability of being true. In EXIT, the definitions of hypothesis
and direct impact are quite specific and formal, perhaps more so than in the
matrix multiplication based approaches, and the definition precludes cyclic
interaction. A technical or computational reason for not computing cyclic
interaction is the lack of any kind of terminating condition for computing
indirect impacts in a structural cross-impact model, if the cyclic interaction
would be allowed: If a hypothesis could occur multiple times in an impact
chains, there would be an infinite number of possible impact chains.

The relative quantification r of a direct impact a
i→ b is computed as i

m ,
the ratio of the direct impact valuation i and the maximum impact value m.

The relative quantification of an indirect impact Ha
i1→ Hx1

i2→ Hx2

i3→ . . .
iy−1→ Hxy

iy→ Hb

is computed as i1
m ×

i2
m × · · · ×

iy
m , the product of the relative quantifications

of the direct impacts involved in the impact chain. Table 4 shows a subset
of the impact chains of the example model presented in Table 3, and the
computation of their relative quantifications.

Table 4: Computing the relative quantification (r) of impact chain

Impact chain Computation r

(1) A
+2.5−→ B +2.5

4 +0.625

(2) A
+1.7−→ C

+2.2−→ B +1.7
4 ×

+2.2
4 = +3.74

42
+0.234

(3) A
+2.0−→ D

+0.1−→ C
+2.2−→ B +2.0

4 ×
+0.1
4 ×

+2.2
4 = +0.44

43
+0.007

(4) A
+1.6−→ E

−1.6−→ B +1.6
4 ×

−1.6
4 = −2.56

42
−0.160

(5) A
−1.6−→ G

−1.0−→ E
+3.9−→ B −1.6

4 ×
−1.0
4 ×

+3.9
4 = +6.24

43
+0.098

In Table 4, the relative quantification of chain 3 is close to zero, as the

direct impact D
+0.1−→ C included in the chain largely nullifies the impact of

the chain on C. In chain 4, the negative direct impact E
−1.6−→ B reverses

the direction of impact of the chain: Hypothesis A causes the probability of
hypothesis E to increase, which causes the probability of B to decrease, so
the indirect impact of A on B through E turns out negative. In chain 5, the
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negative impact A
−1.6−→ G is reversed by the negative G

−1.0−→ E, making the
relative quantification of A’s impact on B through G and E positive, as the
positive direct impact of E on B does not again reverse the direction of the
impact.

In the EXIT transformation, the relative quantification is computed for
all possible impact chains for all possible impactor-impacted pairs. The
summation of the relative quantifications yields a new matrix, the summed
impact matrix : The relative quantifications of impact chains where the im-
pactor hypothesis is Ha and impacted hypothesis is Hb are summed as the
value of entry (Ha, Hb) of the summed impact matrix. The values of the
summed impact matrix reflect the total impacts of all system parts on each
other, when all the systemic interactions have been accounted for; its values
relate the total impacts of hypotheses on each other, taking into consid-
eration, in addition to the direct impacts, the higher-order interactions in
the system. Table 5 presents the summed impact matrix that the EXIT
transformation yields from the example model of Table 3.

Table 5: Summed impact matrix resulting from the EXIT transformation

A B C D E F G

Electricity price will increase A ∅ +0,11 +0,16 +0,31 +0,22 +0,17 -0,40

Wind and solar power production will increase B -0,29 ∅ +0,68 +0,67 -0,74 -0,20 +0,20

Electricity storage will increase C -0,19 +0,66 ∅ +0,47 -0,51 -0,28 +0,14

Market based elasticity of electricity consumption will 

increase D -0,43 +0,27 +0,19 ∅ -0,30 -0,28 +0,17

New nuclear power plants will be constructed E +0,19 -0,80 -0,59 -0,65 ∅ +0,26 -0,20

Electricity transmission capacity from neighbouring 

countries will increase F -0,13 -0,28 -0,43 -0,44 +0,14 ∅ +0,05

Subsidies for solar and wind power will increase G -0,49 +1,31 +1,00 +1,17 -1,13 -0,26 ∅

The values of summed impact matrix are not directly comparable with
the values of the direct impact matrix, as the two matrices are not in
the same scale. The summed impact matrix values can only be meaning-
fully compared, without any further transformations, to other values in the
summed impact matrix. To enable comparison between corresponding en-
tries of the direct and summed impact matrices, both should be transformed
to have the same scale.

The summed impact matrix does not have a defined maximum impact
value, like the direct impact matrix has. A theoretical maximum impact
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Table 6: Normalized direct and summed impact matrices

A B C D E F G A B C D E F G

Electricity price will increase A ∅ +2.8 +1.9 +2.2 +1.8 +1.3 -1.8 A ∅ +0.3 +0.5 +0.9 +0.6 +0.5 -1.1

Wind and solar power production will 

increase B -0.1 ∅ +2.9 +2.6 -2.3 +1.2 -0.2 B -0.8 ∅ +1.9 +1.9 -2.1 -0.6 +0.6

Electricity storage will increase C -0.2 +2.5 ∅ 0 -0.6 -1.1 +0.1 C -0.5 +1.8 ∅ +1.3 -1.4 -0.8 +0.4

Market based elasticity of electricity 

consumption will increase D -2.1 +1.2 +0.1 ∅ 0 -0.7 -0.1 D -1.2 +0.8 +0.5 ∅ -0.8 -0.8 +0.5

New nuclear power plants will be 

constructed E -0.3 -1.8 -0.5 -0.5 ∅ +1.0 -0.9 E +0.5 -2.2 -1.6 -1.8 ∅ +0.7 -0.6

Electricity transmission capacity from 

neighbouring countries will increase F -1.3 +0.1 -1.7 -0.9 0 ∅ +0.1 F -0.4 -0.8 -1.2 -1.2 +0.4 ∅ +0.1

Subsidies for solar and wind power will 

increase G +0.2 +4.4 +1.7 +1.6 -1.1 +1.1 ∅ G -1.4 +3.7 +2.8 +3.3 -3.2 -0.7 ∅

Normalized direct impacts Normalized summed impacts

value for the summed impact matrix exists, and is dependent on the maxi-
mum impact value of the direct impact matrix and the number of hypotheses
in the model. This theoretical maximum impact value is, however, not well
suited to be used as the assumed maximum impact value of the summed
impact matrix, as it is, in all practical cases, bound to be very high in com-
parison to the summed impact values. A sensible approach to making the
matrices comparable is to normalize both matrices. This could be done in
different ways, but the recommendation of the authors is to divide the ma-
trix entry values by the mean of the absolute values of all matrix entries
(or the average distance of values from zero). After this normalization, the
‘unit’ of the cross-impact matrix is the cross-impact unit, the average impact
of an average impactor on an average impacted hypothesis in the system.
When both direct and summed impact matrices are normalized, their val-
ues can be directly compared between matrices. The effects of the systemic
and emergent interactions can be observed from the difference between the
normalized summed impacts and the normalized direct impacts.

The summed impact matrix values reflect a more ‘real’ valuation of the
interaction between the system components, as the systemic effects are ap-
praised alongside the obvious direct impacts. Comparing the summed im-
pact valuations to the direct impact valuations can reveal surprising systemic
properties, such as a) relationships that are seemingly important but whose
effects are cancelled out by other systemic effects, b) relationships that are
hidden and revealed only through mapping of the indirect impacts, or c) re-
lationships that are reversed as the indirect impacts are considered: the
total impact of a hypothesis on another might be opposite to the obvious
logic of the direct interaction.

21



Table 6 presents the normalized direct and summed impact matrices.
The consideration of indirect impacts in the system changes the picture of
the interactions considerably: 14 (33%) of the 42 directed pairwise impacts
change more than one cross-impact unit either positively or negatively. For
instance, while the direct impacts of hypothesis A (”Electricity price will in-
crease”) are substantial on all other hypotheses, the indirect impacts signif-
icantly curtail the direct impacts. The strong positive direct impact of price
increase on growing solar and wind power production is almost completely
neutralized by the impacts A has B through the other system components.
While the impacts of A do not change their direction after computation
of indirect impacts (A still supports hypotheses B–F and restrains G), the
impacts are greatly weakened. On the basis of the direct impacts only, the
increasing electricity price appears to be a strong driver in the system, but
in the systemic perspective, its influence is quite limited. The impact of A
on G (”Subsidies for solar and wind power will increase”) is the only total
impact that exceeds one cross-impact unit (with a value of −1.1).

On the other hand, the summed impact values of hypothesis G (”Subsi-
dies for solar and wind power will increase”) on other hypotheses are con-
siderably higher than the direct impact valuations. While the subsidies on
solar and wind do appear to be a quite strong driver in the energy system di-
rectly, their influence on several developments such as increase of electricity
storage, market-based elasticity of electricity consumption, and construction
of new nuclear capacity, is further amplified by the indirect impacts. In the
light of the example model of the energy system, increasing solar and wind
subsidies restrains the electricity price increase, but this effect is enacted
indirectly, as the direct impact is close to neutral.

Some relationships change in their nature altogether, going from sup-
porting to restraining or vice versa, when the higher-order interactions are
computed. Increased wind and solar power production (hypothesis B) and
increased subsidies on solar and wind power (hypothesis G) are modeled to
directly support the increase of electricity transmission capacity from neigh-
boring countries (hypothesis F), but their systemic impacts change the total
impact into negative. Section 3.4 presents further transformations which can
be used in facilitating analysis of the EXIT output.

3.4. Facilitation of interpretation and analysis

The difference of the summed impacts and direct impacts for each di-
rected hypothesis pair equals the indirect impacts of each directed hypothesis
pair. Table 7 presents a difference matrix, where the direct impact matrix
has been subtracted from the summed impact matrix. The difference matrix
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can be useful in observing for which interactions the higher-order, systemic
interactions change the relationship considerably. In the example model, the
relative quantification of all indirect impacts is less than the relative quan-
tification of the direct impact for 23 (55%) of the modeled relationships and
less than 50% of the direct impact in 16 (38%) of the relationships, so for
the majority of cases, the direct influence is still dominant even after con-
sideration of the emergent, systemic interactions. On the other hand, 19
(45%) of the relationships are such that the sum of the indirect impacts is
greater than the direct impact. Three relationships, namely (C,D), (D,E),
and (F,E) only effectuate indirectly through the system’s impact network,
as there is no direct impact in these relationships. From analytical stand-
point, the relationships that have substantial indirect impacts might often
be interesting for further analysis.

Table 7: Difference matrix of summed and direct impact matrices

A B C D E F G

Electricity price will increase A ∅ -2.5 -1.5 -1.4 -1.2 -0.9 +0.7

Wind and solar power production will increase B -0.7 ∅ -1.0 -0.7 +0.3 -1.8 +0.8

Electricity storage will increase C -0.3 -0.6 ∅ +1.3 -0.9 +0.3 +0.3

Market based elasticity of electricity consumption will 

increase D +0.9 -0.5 +0.4 ∅ -0.8 -0.1 +0.6

New nuclear power plants will be constructed E +0.9 -0.4 -1.2 -1.4 ∅ -0.3 +0.3

Electricity transmission capacity from neighbouring 

countries will increase F +1.0 -0.9 +0.5 -0.3 +0.4 ∅ 0

Subsidies for solar and wind power will increase G -1.6 -0.7 +1.1 +1.7 -2.0 -1.9 ∅

Information about the differences between the direct and summed im-
pact matrices can also be summarized with a matrix, where the nature of
the effect of the indirect impacts and emergent relationships between the
hypotheses is represented with an appropriate symbol. The utility of such
matrix is to highlight how the higher-order interactions change the rela-
tionship of system components. Table 8 presents a summary matrix with
the differences between direct and summed impacts are classified into seven
categories, listed in the table legend.

As the compared matrices have been normalized to cross-impact unit
scale, a threshold of 1

3 cross-impact units can be used to define what amount
of change is deemed significant and what range of impact values is consid-
ered to be a small or insignificant impact. The threshold and the way the
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Table 8: Summary matrix on the nature of the emergent relationships

A B C D E F G

Electricity price will increase A ∅ ↳ ↘ ↘ ↘ ↘ ↘

Wind and solar power production will increase B ↧ ∅ ↘ ↘ ↺ ↥

Electricity storage will increase C ↘ ∅ ↥ ↗
Market based elasticity of electricity consumption will 

increase D ↘ ↘ ↥ ∅ ↧ ↥

New nuclear power plants will be constructed E ↥ ↗ ↗ ↗ ∅ ↘
Electricity transmission capacity from neighbouring 

countries will increase F ↘ ↧ ↘ ↥ ∅

Subsidies for solar and wind power will increase G ↧ ↘ ↗ ↗ ↗ ↺ ∅

Absolute difference smaller than ⅓ CIU (cross-impact unit)

Significant direct impact, total impact close to 0

Direct impact close to 0, total impact negative

Direct impact close to 0, total impact positive

Impacts have same sign, total impact smaller than direct

Impacts have same sign, total impact greater than direct

Impact sign changes when indirect impacts are computed

↳

↧

↥

↘

↗

↺

No significant change

Systemic neutralization

Negative activation

Positive activation

Systemic curtailment

Systemic boost

Systemic negation

(empty)

understanding of the impact of a hypothesis on another changes as the in-
direct impacts are discovered are used in classifying the relationships. In
the summary matrix of Table 8, a) cases where absolute differences between
direct and summed impacts are smaller than the threshold are classified in
the ”no significant change” class, b) cases where the impact changes from
positive or negative to neutral are classified as ”systemic neutralization”,
as the systemic effects largely cancel out the direct impacts, c) cases where
the impact changes from neutral to negative are classified as ”negative ac-
tivation”, as the directly neutral relationship becomes negative through the
impact network, d) cases where the impact changes from neutral to posi-
tive are classified as ”positive activation”, e) relationships that retain the
direction of their influence after discovery of indirect impacts, but where the
influence is weakened by systemic effects, are classified in the ”systemic cur-
tailment” class, f ) relationships that retain the direction of their influence
but where the influence is strengthened by systemic effects, are classified
in the ”systemic boost” class, and g) relationships for which the systemic
effects overpower the direct impact, switching the direction of the influence,
from positive to negative or from negative to positive, are classified as ”sys-
temic negation”.
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For 8 (19%) relationships in the model, there is no significant change
when the indirect impacts are accounted for. One relationship (impact of
electricity price increase on increase of wind and solar power production)
is systemically neutralized. 10 (24%) of the relationships are neutral in the
light of direct impacts, but are systemically activated to have either positive
or negative impact. 21 (50%) of the relationships remain supporting or
restraining as the direct impacts indicate, but are boosted or curtailed more
than the threshold of 1

3 cross-impact unit. Two relationships (impacts of
increasing wind and solar production (B) and increasing subsidies for solar
and wind power (G) on (F) electricity transmission capacity) are reversed
by the systemic effects: both directly support the increase of electricity
transmission capacity from neighboring countries but systemically restrain
the development.

Table 9: Systemic influence and dependence in the energy system model.

Direct Summed Direct Summed

Electricity price will increase A 11.8 3.9 4.3 4.8

Wind and solar power production will 

increase B 9.4 7.8 12.7 9.6

Electricity storage will increase C 4.5 6.3 8.7 8.5

Market based elasticity of electricity 

consumption will increase D 4.2 4.5 7.7 10.4

New nuclear power plants will be 

constructed E 4.9 7.5 5.8 8.5

Electricity transmission capacity from 

neighbouring countries will increase F 4.1 4.1 6.5 4.1

Subsidies for solar and wind power will 

increase G 10.0 15.0 3.2 3.2

Influence Dependence

The MICMAC approach for structural cross-impact analysis produces a
ranking of the model descriptors based on systemwide influence or depen-
dence, reflecting the overall ‘impactingness’ or ‘impactedness’ of the system
components. This is done on the basis of direct impacts and also after the
iterative matrix multiplication, with the idea of observing how the ordering
of the descriptors changes. If a similar analytical output is required, it can
be extracted from the EXIT model by summing the absolute values of rows
or columns, for both direct and summed impact matrices. In EXIT, the sum
of absolute row values can be understood to reflect the systemwide influence
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of each hypothesis. Similarly, the sum of absolute column values reflects the
systemwide dependency. This information for the example energy system
model is presented in Table 9.

The influence-dependence quantification shows the relative sidelining of
the influence of electricity price in the systemic outlook. Also the intensifi-
cation of the influence of subsidies can be easily observed from the figures
of Table 9. Compared to the matrix multiplication approach, the informa-
tion could be seen as of higher value as a quantification is provided of the
influence and dependence, instead of mere ordering. However, important
aspects of the information provided by the EXIT transformation is lost if
the influence-dependence values of the hypotheses are used as the analytical
focal point. The influence-dependence valuations only provide a summary
of the general role of the components of the system, and the directed pair-
wise impact valuations offer far more insight into the relationships in the
modeled system.

3.5. Estimation strategies for large EXIT models

The number of impact chains that can be formed from a cross-impact
matrix is dependent on the number of hypotheses. The total number of
possible impact chains in a cross-impact model with n | n > 1 hypotheses is∑n−2

k=0
n!
k! , while the total number of impact chains longer than 2 hypotheses

(the number of impact chains that represent indirect impacts) is
∑n−3

k=0
n!
k! .

As the number of hypotheses in the cross-impact model grows, the number
of possible impact chains grows exponentially.

For models with 10 or less hypotheses, full computation of indirect im-
pacts is fast, but as the number of hypotheses grows, calculating the rel-
ative impacts of all possible impact chains quickly becomes unfeasible due
to computational cost. An efficient strategy for accurate estimation of the
summed impacts without full computation is needed to process big cross-
impact models. The possibilities for estimation of summed impacts are the
following:

1. Cutting computation of indirect impacts at a specified chain
length. Computing impacts fully for all impact chains that are shorter
than a given threshold is a straightforward approach and accounts for
the most important indirect impacts if the chain length threshold is
big enough (say, 7-8 hypotheses). Each individual uncomputed impact
chain will most likely have a low relative impact value. For example, in
a cross-impact system where 5 is the defined maximum impact value, a
very strong 8-hypothesis impact chain consisting of direct impacts all
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having absolute value of 4 (H1

± 4
5→ H2

± 4
5→ H3

± 4
5→ H4

± 4
5→ H5

± 4
5→ H6

± 4
5→

H7

± 4
5→ H8) would have an absolute relative impact of (45)

8 ≈ 0.168.
While this is still a quite significant relative impact, impact chains as
strong as this are highly improbable in normal cross-impact models.
Most likely the relative impact of an average 8-hypothesis impact chain
is close to zero. If the average direct impact value in a 8-hypothesis
impact chain would be 3, a very high average impact, the relative
impact of the impact chain would be only (35)8 ≈ 0.017, and with an
average direct impact of 2.5, the relative impact of such chain would
be as low as (2.55 )8 ≈ 0.004. Hence, full computation of only shorter
impact chains is sufficient for approximation of summed impacts in
many cases.

2. Pruning the search space using a threshold value for relative
impact of chains. Another solution for approximation of summed
impacts, satisfactory in most cases, is to only compute the impact
chains which are significant, having a impact value higher than a sig-
nificance threshold value defined by the analyst. If only significant
chains are considered, only a fraction of the set of possible impact
chains need to be examined. The threshold value should be a real in
the range ]0, 1[. If threshold is 0, all chains that have a relative impact
different from 0 are significant; if threshold is 1, no chains are seen as
significant. In practice, a suitable threshold value is close to 0.

Any impact chain in an EXIT model can be thought to have a (possibly
empty) set of immediate expansions. The set of immediate expansions
for an impact chain c includes the impact chains that are longer than
c by one hypothesis, which is in the cross-impact model but not in the

chain c. For instance, the chain H1
−2→ H4

−3→ H2 formed from a cross-
impact model of 5 hypotheses would have the immediate expansions

H1
−2→ H4

−3→ H2
−3→ H3 and H1

−2→ H4
−3→ H2

+1→ H5. The immediate
expansions of an impact chain have, in turn, their immediate expan-
sions, which are also non-immediate expansions of the original chain.
The immediate expansions of any impact chain can have, at most, the
same relative impact as the impact chain they expand. This means
that if the relative impact of an impact chain is lower than the thresh-
old, all its expansions will also have relative impacts lower than the
threshold.

When calculating the summed relative impacts for a cross-impact
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model, it is possible to start with the direct impacts and compute a
particular impact’s immediate expansions only if the relative impact of
the direct impact exceeds the threshold. The same principle is then ap-
plied recursively on the immediate expansions. This way only impact
chains that can possibly have an impact greater than the threshold
are considered. The impact chains that have a relative impact below
the threshold are not examined in the computation, greatly reducing
the computational cost. For big cross-impact models, the computation
can still be very slow when a low threshold value is used.

3. Using a sampling-based approach. The estimation of summed im-
pacts can also be based on sampling the population of possible impact
chains. As the number of chains of a given length for a cross-impact
system is known, this information can be used for sample stratifica-
tion. The number of impact chains of length L between Ha (impactor)

and Hb (impacted) is, in a system of n hypotheses, (n−2)!
((n−2)−L)! . The

number of intermediary chains of any length from Ha to Hb in such
system is

∑n
L=2

(n−2)!
((n−2)−L)! .

In estimating the summed impact of Ha on Hb, a sample is drawn for
each intermediary chain length that is possible in the system. This
means that in a system of of n hypotheses, samples are drawn from
the sets of chains between Ha and Hb with 1, 2, . . . , n−2 intermediary
hypotheses (producing n−2 samples). For each sample, a sample mean
is computed and it is multiplied by the number of possible impact
chains of that length. For each impactor-impacted pair (Ha, Hb) the
total relative impact of Ha on Hb is approximately

∑n
L=2 x̄L×

n!
(n−L)! ,

where x̄L is the sample mean of relative impacts of chains of length L:
the estimated summed impact between Ha and Hb is the sum of the
weighted sample means and the relative direct impact.

In any cross-impact model, the overwhelming majority of possible im-
pact chains will be long impact chains which involve more than half of the
hypotheses in the model. For instance, in a cross-impact system of 15 hy-
potheses, more than 90% of the possible impact chains are longer than 10
hypotheses; in a system of 20 hypotheses, only (1.02 × 10−5) % of possible
impact chains will consist of 10 or less hypotheses. The relative impacts of
these long chains will be very small in comparison to the relative impacts of
shorter chains. However, as there are great numbers of these small impacts
in the vast uncomputed set of possible impact chains, any possible structure
in these high-order impacts might have noticeable impact on the results; if
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the positive and negative impacts of these long impact chains do not can-
cel each other out, the estimates of summed impacts derived by approaches
1 or 2 might be inaccurate. The sampling-based approach to estimation,
when large samples (n > 106) are used, provides more than sufficiently
accurate estimates even for big cross-impact models, considering the some-
what rough and approximate nature of the expert-sourced input data. The
sampling-based approach is able to estimate the summed impacts in linear
time, making it a feasible approach for estimation of summed impacts in
large (15+ hypotheses) cross-impact models.

The EXIT approach to estimation is to fully compute short impact chains
and estimate the impacts of longer impact chains based on the stratified sam-
pling approach. In the EXIT implementation, the definition of a short chain
is dependent on the user-defined sample size k. The sample size defines, in
the estimation of the summed impact of hypothesis Ha on Hb, how many
impact chains of each possible chain length are sampled. If the number of
possible chains of length L is smaller or equal than the user-defined sam-
ple size k (and therefore it is faster to do the full computation instead of
drawing the sample) the chain length L is short and the full computation
is performed. Otherwise the impacts of impact chains between Ha on Hb of
length L are estimated by computing a sample mean of the relative impacts
of a sample of size k of such chains in the system. The user can also force a
minimum full computation length.

4. Discussion

This paper presents the EXIT approach for cross-impact analysis. EXIT
improves on the existing structure-focused cross-impact methods that pro-
cess expert-sourced system models to extract insights about the emergent,
higher-order and indirect interactions from the system of direct impacts
described in the model. EXIT method is positioned among other cross-
impact approaches and compared against the approaches based on multipli-
cation method, which is discussed in Section 2.3. The improved analytical
capabilities of the EXIT approach, as compared to the matrix multiplica-
tion approaches, and the additional information extracted from the cross-
impact model input are explained in Section 2.3. The enhanced analytical
power, the transparent documentation of the approach and the freely avail-
able software implementation make EXIT a strong candidate for structural
cross-impact analysis where the main interest lies in the structure of the
system and the role and importance of the system components in light of
higher-order interactions. The previously unutilized way of the extraction
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of information and insights on the higher-order impacts in the cross-impact
system is the main contribution and has been detailed in Section 3.

The broader framework of EXIT method includes several phases that
are of critical importance to the cross-impact modeling and analysis. These
include identifying the expertise relevant to the study, finding the experts
with this expertise, securing their commitment to participate, organizing
their work in both selecting the cross-impact model hypotheses and valu-
ating the impacts between the hypotheses and ultimately analysis of the
results. These challenges and the best practices concerning them are, how-
ever, discussed in existing literature (see e.g. Linstone and Turoff, 1977) and
fall outside the scope and focus of this paper introducing the EXIT approach
and detailing the EXIT modeling language and the process of information
extraction from models built using the language.

In Section 3.2, the use of EXIT in systems modeling has been illustrated
with a small example model, based on a larger modeling exercise of the
Finnish energy system. For practical purposes of clear presentation of the
EXIT approach and its methodological and computational details, the ex-
ample model presents only a subset of the components of the original system
model. The EXIT transformation, which quantifies the systemic and emer-
gent impacts on the basis of description of the system’s direct impacts, is
of the greatest utility when the analysed models are relatively large, con-
sisting of a big number of components. In a more extensive model, the
impact chains are longer and the analysis of the impact network can bring
forth results and insights which are difficult, if not impossible, to access
without a systematic computational approach like EXIT. While increasing
the number of components in the model obviously means more work for the
experts providing the model valuations, the cognitive cost of describing the
direct interactions in the simple modeling primitives used in EXIT remains
comparatively low, especially when compared to probability-oriented cross-
impact approaches. Design and valuation of extensive cross-impact models
is, while certainly labour-intensive, completely feasible using the described
approach.

Generally, the modeling approach of using experts as a principal in-
formation source in describing system characteristics has many interesting
possibilities. It makes modeling of systems and problem domains that are
characterized by lack of empirical data and difficulties of quantification more
natural or possible in the first place. Especially foresight-oriented model-
ing about phenomena whose modeling cannot be based on yet-nonexistent
empirical data will benefit from development of approaches and tools that
enable modeling of these domains for which the traditional data-driven ap-
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proaches are not well suited. It also makes incorporating less quantifiable
aspects of systems easier, helping to avoid the omission of possibly essential
system features and resulting limited strategic and policy scope, resulting
from methodological limitations in modeling. In light of the challenges that
occur in attempting to understand the uncertainty of impacts and interac-
tions of driving forces in complex systems, structural cross-impact analysis
and the EXIT approach have great potential to enhance the understanding
of the importance of the systemic and higher order interactions that may
significantly improve the foresight ability of futures techniques.
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