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A B S T R A C T

Electronic transitions involving core-level orbitals offer a localized, atomic-site and element specific peek
window into statistical systems such as molecular liquids. Although formally understood, the complex relation
between structure and spectrum – and the effect of statistical averaging of highly differing spectra of individual
structures – render the analysis of an ensemble-averaged core-level spectrum complicated. We explore the
applicability of machine learning for molecular structure — core-level spectrum interpretation. We focus on
the electronic Hamiltonian using the H2O molecule in the classical-nuclei approximation as our test system.
For a systematic view we studied both predicting structures from spectra and, vice versa, spectra from
structures, using polynomial approaches and neural networks. We find predicting spectra easier than predicting
structures, where a tighter grid (even unphysical) of the spectrum improves prediction, possibly inviting for
over-interpretation of the model. The accuracy of the structure prediction worsens when moving outwards
from the center of mass of the training set in the structural parameter space, which cannot be overcome by
model selection based on generalizability.
1. Introduction

Machine learning (ML) is becoming a standard tool in research ques-
tions where numerous repeated evaluations of a complicated model are
required. In such cases using ML as an emulator may provide enormous
relief in computational burden [1]. In the context of physics, ML means
building a fundamentally unphysical model such as a neural network
(NN) to describe data and to make predictions for new input. Light
evaluation cost of a model would then allow for numerous predictions
to be performed to simulate a statistical average, or to iteratively solve
a given problem.

Statistical studies of core-level spectra fit to the category of repeat-
edly evaluated physical models by their definition. Core-level spec-
troscopic methods can be used for characterization of materials and
their function on the atomic level [2–4]. The spectra reflect transitions
between electronic states and, therefore, their energies and transition
probabilities are dictated by quantum mechanics. The benefit of using
core-level excitations is, that the initial orbital for the electronic tran-
sition is localized at one atomic site in the system, which means that
the process is a local probe, although the measured signal represents
an explicit ensemble average. In interpretations it is a typical approx-
imation to consider only the electronic system (fixing the positions of
the nuclei), which renders the underlying quantum mechanics, and the
resulting spectra, to be functions of the atomic coordinates. Although
the connection of the two is clear, the interpretation of these spectra
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in terms of underlying atomistic structure or changes therein is not
trivial. One reason for this difficulty rises from complexity, as the data
linking the individual structural parameters to the line intensities, can
be heavily scattered due to statistical phenomena [5,6].

The idea of collaborative action of the structural parameters as
predictors of X-ray spectra raises hope that more structural information
from experiments could be obtained with simulations of X-ray spectra
and ML, as found in the works of Refs. [7–9]. In addition, application
of the machine learning approaches demonstrated great performance in
the prediction of the electronic structures of the atomic systems [10]
as well as in the prediction of UV/Vis [11] and X-ray absorption
spectra [12] of simple molecules. In this work, we study the use of
ML to yield predictions for oxygen K-edge spectra and structures for
the H2O molecule from a statistical simulation. The problem belongs
to the supervised regression learning category as two separate tasks: (i)
training ML on known data to predict spectra for new configurations,
and (ii) training ML on known data to predict configurations for new
spectra.

We benchmark these ideas for a simple system, H2O in the gas
phase, which provides a manageable system both for calculations and
for human intuition, owing to the few structural degrees of freedom,
the two OH bonds and one H-O-H angle (see Fig. 1). Although not
achieved here, our work is motivated by the interpretation of structures
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Fig. 1. The H2O molecule and its structural parameters (a), linked by a multilayer
feed-forward perceptron (b) (polynomial models were also studied), to the lines in the
O K-edge absorption spectrum (c). Intensity in spectral regions of interest (ROI) I, II,
and III is studied. A neural network for the reversed direction addresses the structure
prediction from the ROI intensities.

from spectra in condensed phases, where the classical-nuclei model
is the contemporary standard. Therefore, we deliberately choose to
use the classical framework for the nuclear subsystem even though
more accurate calculation with quantum vibrations would also be
possible [13,14]. Moreover, we generate the structures for ML by
sampling ab initio molecular dynamics trajectories, instead of sampling
the ground state probability distributions in the harmonic approach,
which would have been a suitable option in this case [15].

2. Methods

We studied four prediction tasks based on simulated structures and
spectra: structure prediction from a full (75 points) and from a coars-
ened spectrum, and spectrum prediction (full and coarsened) from the
structure. In each case, we trained ML systems with structure–spectrum
data based on ab initio molecular dynamics (AIMD) simulations and
spectrum evaluation for obtained structures. We study the effect of
spectral binning by presenting the data either on a 0.1-eV-spaced grid
and by coarsening it to a few values by integration over regions of
interest (ROI) that were chosen to match the minima of the ensemble
averaged spectrum. We first trained the models with data obtained
at initial kinetic energy equivalent to 480 K (low-E set). To study
the generalizability of the estimators, we repeated the structural and
spectral simulation at initial kinetic energy equivalent to 10000 K
(high-E set). This study provided us with a data set of the same size
with larger coverage of the configuration space.

We applied mean-standard-deviation normalization (based on val-
ues of the training set) for both input and output variables and applied
the inverse transform to the output after prediction. Contrary to the
coarsened spectral ROI data, the tight-gridded data has channels of near
zero intensity and no spectral information (e.g. below 533 eV), which
caused instabilities with independent normalization of channel inten-
sities. Therefore we standardized the tight-gridded spectral data by
using the mean and the standard deviation of all channels and spectra
collectively, instead of individual transformation for each channel.

We divided the data to training sets (80%), and to test sets (20%)
and used cross-validation (CV) to evaluate the goodness of a particular
model — and choose the best-performing model from this hypothesis
space. Then we evaluate the final learning ability of the model by using
the test set. For NN with rectified linear unit (ReLU) activation, we ran
a 3-dimensional grid-search model selection. We studied the regulariz-
ing parameter alpha (𝛼 = 10𝑛, 𝑛 = −10,−9,… , 4), as well as the network
depth (2,… , 5) and width (5, 10, 50, 100, 200, 500) to obtain 360 NN
models in each case. We used the scikit-learn [16] package, and
the Adam [17] solver, with upper limit for the number of iterations
of 107. For comparison, polynomial models up to the 9th order were
2

Fig. 2. Simulated low-E and high-E excitation spectra of H2O compared to experimen-
tal O K-edge excitation spectrum. The standard deviation (±𝜎) of the simulation results
are shown as shading.

used, with regularizing parameter 𝛼 = 10𝑛, 𝑛 = −10,−9,… , 4. Here, a
singular-value decomposition algorithm was used.

For the structures we performed independent 100 1-ps-long AIMD
runs sampling the NVE ensemble (initial T = 480 K, 𝛥t = 0.5 fs) to sam-
ple a set of phase space points (basis TZV2P-MOLOPT-GTH [18], pseu-
dopotentials: GTH-PBE [19], exchange–correlation potential PBE [20],
cutoff 300 Ry). From each of these trajectories (first 250 fs ignored) 100
structures were sampled randomly. As structural parameters we use the
bond angle, the length of the shorter bond, and the length of the longer
bond as from this information the molecular electronic Hamiltonian,
and its excitation spectrum, are uniquely defined. For the high-E data,
the simulation time step 𝛥t = 0.1 fs was used.

We used transition-potential density functional theory (TP-DFT)
[21] in the half-core-hole approximation to evaluate 10000 O K-edge
spectra (energies and intensities) for the structural data sets. We apply
an explicit 𝛥-DFT energy correction for each spectrum by finding the
shift for the lowest excited state. The 𝛿-peak spectra were convoluted by
a Gaussian of 1 eV full-width-at-half-maximum (FWHM). The aug-cc-
pV5Z [22,23] basis was used for all atoms in the spectrum evaluation.
Calculations for structures and spectra were carried out using the CP2K
software [24].

3. Results

Fig. 2 shows the average of simulated K-edge spectra of H2O for the
two data sets, in comparison experimental gas phase spectrum (black
solid line; raw data from [25,26]). Fig. 3 shows the corresponding
structural data in the three-dimensional phase space. Higher energy
allows the system to cover a wider region in the configuration space.
The results are divided to two sections according to the spectral binning
(ROI or tight grid), and the optimal models in each studied case are
listed in Table 1. For our set of hyperparameters, we observed a variety
of NN architectures to converge with similar goodness. Moreover, for
different grid search runs, the ‘best’ configuration was observed to vary
with score differences within the tolerance interval, which we interpret
to rise from the stochastic nature of the used algorithms. Learning
curves for the best-performing models are presented in the Appendix,
and show convergence with training set size in all studied cases.

3.1. Coarsened spectral data

The studied ROIs are indicated by gray shading in Fig. 2. Fig. 4
shows the ROI intensities as a function of the three structural parame-
ters: the data is transferred into structural-parameter — ROI-intensity
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Table 1
Typical best-performing models found in the work; several NNs performed equally well and the result depended on the stochastic
search. The average cross-validation mean squared error (MSE) for the normalized prediction output values is also provided. For
structure prediction, the optimal parameter-limited models are given. For details, see text.

Prediction Training data 3 ROIs 75-point grid

Best model CV-MSE Best model CV-MSE

Spectra low-E 3rd order Poly, 𝛼 = 10−1 0.027 4th order Poly, 𝛼 = 1 0.0003
Spectra high-E 9th order Poly, 𝛼 = 10−1 0.0016 9th order Poly, 𝛼 = 10−1 0.0004
Structure low-E 2 × 500, ReLU, 𝛼 = 10−4 0.084 3 × 200, ReLU, 𝛼 = 10−1 0.0044
Structure high-E 4 × 200, ReLU, 𝛼 = 10−4 0.053 2 × 500, ReLU, 𝛼 = 10−2 0.001
Structure (lim) low-E 3 × 100, ReLU, 𝛼 = 10−1 0.083 2 × 50, ReLU, 𝛼 = 10−1 0.0053
Structure (lim) high-E 3 × 100, ReLU, 𝛼 = 10−7 0.055 3 × 100, ReLU, 𝛼 = 10−1 0.0013
Fig. 3. Sampling of the phase space in the two simulations. For clarity, only 1000
points are shown for the high-E simulation.

Fig. 4. The ROI intensities in regions (I, II, III) plotted against the underlying structural
parameters for the simulation of O K-edge spectrum of H2O of these structures.

representation as in Ref. [6]. This view, however, misses the collabora-
tive effect of parameters as the analysis focuses on individual structure
— ROI dependencies.

Spectrum ROI-intensity prediction via polynomial models is more
accurate than via any NN configuration. Given the dimensions of the
argument vector, the studied polynomial models are always overde-
fined. For an accurate model, we observe an expected feature of bad
3

Fig. 5. Spectrum ROI prediction for the two test sets presented in different colors.
Model trained with low-E data (a, b, c) and model trained with high-E data (d, e, f).
Complete match is represented by the gray line.

generalization outside the training data, as shown in Fig. 5. A good
correspondence with the test set data is obtained by training with data
of the same spread.

For structure prediction from the 3 ROIs, NNs are more accurate
(Table 1) than polynomials. Even with training data covering the region
of prediction, performance on the level of the corresponding spec-
trum ROI prediction is not observed, although the match is improved
compared to training with a set of smaller coverage (Fig. 6).

Unlike the studied polynomial models, for the studied NN architec-
tures the number of free parameters can exceed that of the training
points. Here, among the top-performing models we found architectures
of notably different complexity, especially for low-E structure predic-
tion. For example, a NN built of 3 layers with 100 neurons in each
(∼20000 trainable parameters) can show the same performance as the
network of 2 layers with 500 neurons (> 250000 trainable parameters).

Although the presented top performers do not show drastic overfit-
ting in the respective learning curves (see the Appendix), we investi-
gated the NN configurations which have smaller number of parameters
than the number of training data (samples × features) themselves. The
results of this study are presented in Fig. 7. From the average cross-
validation MSE scores (Table 1), as well as from the plot, we conclude
that a performance similar to the unlimited-parameter-number case
can be obtained. From the learning curves (Appendix) we conclude
quite similar behavior of the parameter-limited models: a few thousand
training samples are needed when spectral data was coarsened to three
regions of interest.

3.2. Tight-gridded spectral data

Polynomial models, as implemented in this work, are independent
for each target parameter, whereas NNs are not. As polynomials ex-
celled in predicting the spectral channel intensity for the 3-ROI case,
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Fig. 6. Structure prediction for the two test sets presented in different colors. Model
trained with low-E data (a, b, c) and model trained with high-E data (d, e, f). Complete
match is represented by the gray line.

Fig. 7. Free-parameter-limited structure prediction for the two test sets presented in
different colors. Training with low-E data 3 × 100 layers, 20903 parameters (a, b, c).
Training with high-E data 3 × 100 layers, 20903 parameters (d, e, f). Performance
equal to the unlimited case can be obtained using models with limited number of
parameters. Complete match is represented by the dashed line.

it is not tremendously surprising to find polynomials similar to those
for the coarsened data to perform best, as summarized in Table 1.
Fig. 8 depicts sample predicted spectra using either the low-E or high-
E training data sets. In addition histograms of root-mean-square errors
for the test set are depicted. As in the case for the coarse-gridded data,
good prediction is obtained using polynomials with adequately broad
training sets. We note however, that for a tight-gridded spectrum gen-
eralized high-E spectra are somewhat better produced by NN models
from the low-E training data, i.e. NN generalize slightly better.

However, polynomials contain cross terms of the input features.
Therefore the number of the free coefficients grows rapidly with their
number, causing a drawback for prediction of structure. For structure
prediction we studied the polynomial models up to the second order
and did not limit the architecture of the neural network. In all 4 cases
of structure prediction (low-E/high-E,limited/unlimited), we observed
better accuracy with NN-based models (see Table 1 for details). The
results for structural prediction are presented in Fig. 9 and for the
limited-parameter case in Fig. 10. Again, sufficient training set spread
plays a crucial role on the goodness of the prediction.
4

Fig. 8. Full spectrum prediction by generalized polynomial model for a sample
spectrum (a, b, d, e). Labels in the top left corner of each panel indicate the prediction
model, e.g. H→L shows low-energy spectrum predicted by the high-energy-trained
model. Distributions of RMSE for all predicted spectra with target value scaling (c, f).

Fig. 9. Structure prediction for the two test sets presented in different colors for tight-
gridded spectra. Model trained with low-E data (a, b, c) and model trained with high-E
data (d, e, f). Complete match is represented by the gray line.

Fig. 10. Free-parameter-limited structure prediction for the two test sets presented
in different colors for tight-gridded spectra. Model trained with low-E data (a, b, c)
and model trained with high-E data (d, e, f). Complete match is represented by the
gray line. Performance equal to the unlimited case can be obtained using models with
limited number of parameters.
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Training of NNs to their full potential with tight-gridded spectra
may require a slightly larger dataset when compared to the coarse spec-
tra (see the learning curves in Appendix). Moreover, we find a model
with limited number of parameters, that has performance similar to the
optimal choice from our full grid search. Analogously to the integrated-
ROI case, the training data set must cover the points of prediction.
Most interestingly for structural prediction, we find extremely good
performance with tight-gridded spectra, when compared to the ROI
intensities.

4. Discussion

Owing to the Taylor expansion, polynomial models are typical
approximators in physics, and sometimes coined a particular physical
property (such as ‘heat capacity’). The drawback of polynomials is their
poor extrapolation capability, especially of the higher degree models.
In the models of this work, the number of degrees of freedom of
polynomials explodes with increasing number of input features, but the
model is not sensitive to the number of target variables.

For an alternative approach, we also used multi-layered percep-
trons (MLP) [27,28] of 2 to 5 layers, which was motivated by their
known ability to capture and approximate nonlinear behavior. In many
learning tasks, MLPs are nowadays common, including physical sci-
ences [29–31]. The classic MLP serves as a reasonably well understood
test case for a neural network, and its properties have also been
studied analytically for a long period. It has, for example, been shown
that multilayer feedforward networks are universal approximators with
saturating activation functions [32,33] and also with a wider set of
activation functions [34]. Even in the conceptually simple feedforward
networks there are crucial free hyperparameters such as its architecture
and the chosen activation functions. The potential for using such a
network for interpretation of quantum-transitions is clear: it is able to
learn complex, non-linear behavior from a limited set of data.

By using a test set separate from training and model selection data,
independent ‘correct’ data points are used for evaluation of prediction
goodness. We observe that for good performance, the training data
must cover the region for which predictions are made. Indeed, predict-
ing the low-E values works well for all cases, as the training set is from
equal or from larger cover of configuration space. When predicting the
high-E case, we observe that the low-E-trained model cannot generalize
well.

We also observe that spectrum prediction is easier than structure
prediction. A potential reason for this is that while there is a function
(Hamiltonian and its spectrum) from structure to spectrum, the inverse
function is not guaranteed to exist. Moreover, the degree of spec-
trum coarsening has a significant effect on the spectrum-to-structure
predictions, and thus crucial detail may be hidden from the learner
by inadvertently combining separable features. As a counter argu-
ment, integration to broader ROIs captures considerable detail from
the underlying system and sums over spectral details (e.g. vibrational
profiles) that are not produced with the adequate level of theory.
Indeed, such calculations are typical for X-ray spectra in the condensed
phase. Furthermore, spectra can be simulated with arbitrarily tight grid
spacing beyond any experimental meaning, which should not affect
the analysis. Even though superior structure-prediction performance is
obtained by tight-gridded spectra, it can be argued that this might be
sensitive to the ad hoc line shape used for convolution, which could
cause biases (for discussion about the lineshape in XAS of H2O, see e.g.
Ref. [15]). Details of the sensitivity of structural prediction by ML to
the used line shape are left for future work.

In the ideal case, a model trained with a limited set of samples
would predict accurately beyond its training set. Good generalizability
would obviously be beneficial, because sufficient coverage of relevant
structures of the training set may be difficult to guarantee a priori.
For this purpose, we studied the generalization performance of the
structure-prediction approach. We quantify error of prediction for a
5

Fig. 11. Mean structure prediction error (in low-E training-set standard deviations)
of the parameters as a function of deviation of the known structure from the low-E
training set mean. The performance of the models for tight-gridded spectral data are
marked with dashed lines.

Table 2
The best-generalizing models for the two paradigms.

Prediction Best model

Spectra 2nd order polynomial, 𝛼 = 103

Structure 4 × 10 unit ReLU, 𝛼 = 10−6

Spectra (tight grid) 1st order polynomial, 𝛼 = 104

Structure (tight grid) 3 × 5 ReLU, 𝛼 = 10−4

data point against its known distance from the low-E mean value 𝐏cen
in the units of standard deviations (𝜎𝑖) of the parameters 𝑃𝑖 in the low-E
training data. For points 𝐏 and 𝐏′ in the structural parameter data, we
defined this deviation 𝜒 as mean-absolute deviation (MAD):

𝜒(𝐏,𝐏′) = 1
𝑁

∑

𝑖

|

|

|

|

|

𝑃𝑖 − 𝑃 ′
𝑖

𝜎𝑖

|

|

|

|

|

(1)

where 𝜎𝑖 are their standard deviations in the low-E training set (𝑖 =
𝛼, 𝑏𝑠, 𝑏𝑙, 𝑁 = 3). This choice allows for studying the high-E set in the
same units, in which the high-E data set has larger spread.

Fig. 11 shows that with the chosen metrics the error for struc-
tural prediction grows with distance from low-E training set mean. As
expected, use of the broader (high-E) training set results in superior
performance, especially when tight-gridded data is used. The latter also
holds for the low-E-trained model within its training set.

The apparent problem with generalizability could, in principle, be
solved by model selection. We studied this idea by selecting the low-
E-trained model with the best mean squared error on high-E training
data. We find the performance obtained is somewhat better than that
of the low-E model, and list the best performing models in Table 2. We
observe that the best generalizing models are simpler than their coun-
terparts used within the training set; the intuitively clear phenomenon
that complicated models are best for interpolative use, whereas simpler
models generalize best (i.e. least badly).

Rules or best practices of sampling the phase space for ML of
core-level spectroscopy have not been agreed about yet, as the task
is different to sampling a given statistical ensemble. In this work
we opted to run the simplest simulations (NVE) to produce data of
different configuration-space coverage, but see no objections to use
thermostatted AIMD for the canonical ensemble. For a given pressure
or volume, temperature increase may indeed provide a way to sample
a large enough configuration space for a training set of sufficient
coverage. However, reasonable sampling may also be hindered for
other reasons, such as unaccounted quantum-probability-distribution
effects, or simply because the numerical simulation might not visit
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Fig. A.12. Structure to spectrum learning curves for the parameter-number-unlimited
ROI-integrated case.

Fig. A.13. Spectrum to structure learning curves for the parameter-number-unlimited
ROI-integrated case.

allowed relevant structures, e.g. a neighborhood of a transition state.
For example, using a variety of thermodynamic parameters, applying
path-integral formalism and metadynamics may be needed for MD
to provide enough configurational coverage to reliably interpret the
spectra of the system.
6

Fig. A.14. Spectrum to structure learning curves for the parameter-number-limited
ROI-integrated case.

Fig. A.15. Structure to spectrum learning curves for the tight-gridded case, polynomial
models.

It might be an appealing idea to teach an ML system and then
apply it for prediction of structures in the experiment. We see a large
potential for error in this kind of mixed approach. First, such an idea
is intrinsically assuming that spectrum evaluation (for ML learning) is
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Fig. A.16. Spectrum to structure learning curves for the parameter-number-unlimited
tight-gridded case.

Fig. A.17. Spectrum to structure learning curves for the parameter-number-limited
tight-gridded case.

accurate enough for the system not to distort the analysis. Second, en-
semble averaging effects will pose a hard problem, that may potentially
be underdetermined (due to number of possible structures) with any
number of ROIs. Third, the experiment comes with instrumental errors,
7

biases, and statistical noise, which could affect the outcome of the
interpretation. To us it remains an open question, how surmountable
these conditions are for reliable interpretation of experiments with
ML trained by simulated data. As a safer route towards structural
interpretation of spectral trends we propose the following method: (i)
simulate over sufficient configuration space and (ii) train an ML model
based on this data. Now the lightness of evaluation of the model allows
for iterative algorithms to (iii) optimize the parameters of a model
structural distribution for an ensemble-averaged simulated spectrum.
Last, to avoid the mismatch of experiment to skew interpretation, we
propose to (iv) apply changes to the simulated ensemble averaged
spectrum (as seen from the corresponding experiment) and observe
changes in the predicted structural distribution. This could potentially
be done for example by a SpecSwap-RMC [35–38] approach.

5. Conclusions

Collaborative action of structural parameters in core-level excitation
spectra of discrete transitions can be captured by the simplest machine
learning applications. For XAS of the H2O molecule this holds both for
the prediction of a spectrum (or region of interest therein) and the pre-
diction of a structure, as long as the training set covers the portions of
phase space within which predictions are made. The latter shortcoming
could not be cured by model selection based on best generalizability.
For the interpretation of spectra from more complicated systems, this
coverage may be hard to guarantee or prove, but variants of molecular
dynamics may constitute a feasible means of covering sufficiently large
yet physically meaningful portions of the phase space.

The task of predicting spectra was simpler than predicting struc-
tures, in agreement with the fact that to this direction of prediction
a function is guaranteed to exist, via solution of the Schrödinger
equation. This finding favors statistical interpretation algorithms that
root on repeated prediction of spectra rather than structure. In the
test system, we even found polynomial models to outperform neural
networks in the former question, and vice versa for the latter one. Last,
we found structure-predicting machine learning models operating with
tight-gridded spectra to outperform ones with coarse grid with the same
data. This may invite for over-interpretation, as it is possible to present
simulation results on an arbitrarily dense grids, beyond experimental
resolution or accuracy of the calculation.
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