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The ability to measure every quantum observable is ensured by a fundamental result in quantum measurement
theory. Nevertheless, additive conservation laws associated with physical symmetries, such as the angular
momentum conservation, may lead to restrictions on the measurability of the observables. Such limitations
are imposed by the theorem of Wigner, Araki, and Yanase (WAY). In this paper a formulation of the WAY
theorem is presented rephrasing the measurability limitations in terms of quantum incompatibility. This broader
mathematical basis enables us to both capture and generalize the WAY theorem by allowing us to drop the
assumptions of additivity and even conservation of the involved quantities. Moreover, we extend the WAY
theorem to the general level of positive operator-valued measures.
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I. INTRODUCTION

Measurability of physical quantities is an integral part
of any scientific theory. Indeed, the whole endeavor of
understanding natural phenomena relies crucially on the ability
to assign values to the physical properties of the system of
interest by means of performing measurements. As physical
processes, measurements are subjected to and constrained
by the laws of physics. In particular, it is known that
quantum theory together with certain conservation laws can set
limitations to the measurability of the quantum observables.
More specifically, an observable which does not commute with
an additive conserved quantity does not admit a repeatable
and perfectly precise measurement; this limit is known as the
Wigner-Araki-Yanase (WAY) theorem [1,2].

In recent investigations the original theorem of WAY
has been generalized to more widely applicable contexts. In
particular, ways to omit the assumptions of the repeatability
of the measurement [3–5] and the additivity of the conserved
quantity [6] have been reported, and in addition, formulations
of the WAY theorem in the context of the resource theory of
asymmetry were recently reported in Refs. [7,8]. Moreover,
different quantitative generalizations of the WAY theorem
which relax the assumption of perfect precision have been
studied in Refs. [4–6,9–11]. With all its extensions the current
form of the WAY theorem covers a large class of physically
important scenarios and consequently has applications not
solely in quantum measurement theory, but also in the fields
of quantum information processing and quantum control. For
example, restrictions of quantum measurements imposed by
energy conservation laws were reported in Ref. [12] and the
limitations on the realizability of quantum logic gates due to
the WAY theorem have been discussed in Refs. [11,13–15], to
name a few.

Even though the WAY theorem has certainly been extended
from the days of its inception, its full scope is still unknown
and the formalism of WAY is not particularly intuitive. Our first
main result is to introduce an extension of the WAY theorem,
in which the assumptions of repeatability of the measurement
and not only the additivity, but also even the central assumption
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of conservation of a quantity commuting with the measured
observable can be omitted. Formally, our result states that,
whenever a quantity commutes with the evolved pointer of
the apparatus, a part of it also necessarily commutes with the
measured observable. In other words, in our explanation the
WAY theorem can be understood as a consequence of quantum
compatibility [16,17] of a given quantity with the evolved
pointer partially inherited by the measured observable. We
believe that the intuition behind this formalism is conceptually
clearer than in the preceding formulations listed above. We
also present examples that demonstrate the limitations of
measurability, even if the assumptions of the original WAY
theorem are violated.

Strictly speaking, the restrictions posed by the WAY
theorem affect only the special class of quantum observables
associated with the normalized projection-valued measures
(PVMs). In vague terms, these sharp observables correspond
to ideally precise measurements and the limitations of the WAY
theorem may, in principle, be circumvented by introducing
an arbitrarily small amount of inaccuracy in the measured
observable: such imprecision can be described by associating
the measured observable with a normalized positive operator-
valued measure (POVM). Since noise is inevitably present
in every real experiment, from a practical point of view the
measured observables are generally unsharp and it may seem
that the WAY theorem exists only as a theoretical phenomenon.

Our second main result is to show that quantitative versions
of the WAY theorem persist also at the level of the unsharp
observables. In particular, we reveal a natural relation in which
the sharpness of the measured observable and the amount of
compatibility of the evolved pointer with a given (additive
conserved) quantity govern the WAY-type limitations. These
results are then applied to expose restrictions in quantum
programming.

II. WAY LIMITATIONS

We begin by outlining the basic concepts of quantum
measurement theory relevant to our investigation. Let H be
a complex, separable, possibly infinite-dimensional, Hilbert
space associated with a quantum system and denote by
L(H), P(H), and T (H) the set of bounded operators, projec-
tions, and trace-class operators onH, respectively. The identity
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operator in L(H) is denoted 1. The properties of a quantum
system are encoded in a quantum state �, a positive operator in
T (H) with tr[�] = 1. Quantum states on H comprise a convex
set that is denoted S(H). The extremal elements of S(H) are
called pure and any such state is of the form |ϕ〉〈ϕ| for some
unit vector ϕ ∈ H; for this reason, we can call any unit vector
a quantum state without risk of confusion.

Let � be a set and � a σ algebra of subsets of �.
We associate quantum observables with normalized POVMs,
E : � → L(H),X �→ E(X). The number pE

� (X) = tr[E(X) �]
is interpreted as the probability that a measurement of E
performed on � ∈ S(H) leads to a result in X ∈ �. We call
the operators E(X) in the range of observable effects. An
observable all of whose effects are multiples of the identity,
that is, E(X) = p(X) 1 for some probability measure p : � →
[0,1], is called trivial. The normalized PVMs, A : � → P(H),
are called sharp observables. If � = {x1, x2, . . . } with n(�∞)
elements and � = 2� is the corresponding outcome space of
an observable E, we say that E is a discrete (n-valued) observ-
able. In particular, for any �m = (mx,my,mz) ∈ R3, || �m|| �
1, we define the discrete two-valued spin-observables S �m :
2{+,−} → L(C2) via S �m(±) = 1

2 (1 ± �m · �σ ), where �m · �σ =∑
i=x,y,z miσi . Here, σx, σy , and σz are the Pauli spin matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (1)

An observable S �m is sharp exactly when || �m|| = 1. We use the
notations x̂ = (1,0,0), ŷ = (0,1,0), and ẑ = (0,0,1).

The quantum description of a measurement is mathemati-
cally encoded in a 4-tuple 〈K,Z,V,ξ 〉, where K is the Hilbert
space associated with the measurement apparatus, Z : � →
L(K) is the pointer observable, the completely positive trace-
preserving linear map V : T (H ⊗ K) → T (H ⊗ K) describes
the measurement coupling, and ξ ∈ S(K) is the initial state of
the apparatus. Under the measurement process the initially
separable compound state of the system and apparatus � ⊗ ξ

evolves to V(� ⊗ ξ ) and after the evolution the measurement
outcome is read from the pointer scale. The observable
E : � → L(H) measured in 〈K,Z,V,ξ 〉 is reproduced by the
formula pE

� (X) = tr[1 ⊗ Z(X)V(� ⊗ ξ )], required to hold for
all X ∈ � and � ∈ S(H) [3].

In this study we focus on measurements of a particular form,
viz., assuming that Z : � → P(K) is sharp, V is conjugation
with a unitary operator U on H ⊗ K, and ξ = |φ〉〈φ| for
some unit vector φ ∈ K: such normal measurements [3]
we write as 〈K,Z,U,φ〉. From the physical point of view,
normal measurements describe ideally functioning measuring
devices, where the system-apparatus composite forms a closed
quantum system, the detectors work with perfect accuracy, and
the apparatus is initially prepared in a state of maximal infor-
mation. The observable E measured in a normal measurement
attains a simple form,

E(X) = V ∗
φ U ∗(1 ⊗ Z(X))UVφ, X ∈ �, (2)

where the isometry Vφ : H → H ⊗ K is defined via Vφ(ϕ) =
ϕ ⊗ φ for all ϕ ∈ H. The measured observable is sharp exactly
when [U ∗(1 ⊗ Z(X))U,VφV ∗

φ ] = 0 for all X ∈ � [18]; this
result is used frequently during the present work.

A normal measurement 〈K,Z,U,φ〉 is repeatable if any
recorded outcome of the measurement does not change upon its
immediate repetition, or equivalently E(X) = V ∗

φ U ∗(E(X) ⊗
Z(X))UVφ , for all X ∈ �. Not all measurements are re-
peatable, and furthermore, not all observables even admit
repeatable measurements. Indeed, only discrete observables
all of whose nonzero effects have eigenvalue 1 can be realized
in a repeatable normal measurement [19].

A fundamental result in quantum measurement theory
ensures that every quantum observable can be realized in
a measurement, even in a normal one [19]. As physical
processes, however, measurements are subjected to laws
of quantum physics that can impose restrictions on the
measurability of observables. One such limitation, first pointed
out in measurements of spin- 1

2 -systems by Wigner [1] and
later stated in a more general setting by Araki and Yanase
[2], is due to conservation laws for additive quantities that
do not commute with the observable to be measured. To
make this more exact, we call a bounded self-adjoint operator
L ∈ L(H ⊗ K) a conserved quantity (with respect to the
measurement coupling U ) if tr[L�] = tr[LU�U ∗] for all
� ∈ S(H ⊗ K) or, equivalently, [L,U ] = 0. If, furthermore,
L = L1 ⊗ 1 + 1 ⊗ L2, where L1 and L2 are self-adjoint
operators in L(H) and L(K), respectively, we say that L is an
additive conserved quantity. The theorem of Wigner, Araki,
and Yanase then states that, if L = L1 ⊗ 1 + 1 ⊗ L2 is an
additive conserved quantity with respect to the coupling U

of a repeatable normal measurement 〈K,Z,U,φ〉 of a sharp
(discrete) observable A, then necessarily [A(X),L1] = 0 for all
X ∈ �. From this point onward we use the shortened notation
[E,L] = 0 whenever [E(X),L] = 0 for all X ∈ �.

Many realistic measurements are not repeatable. However,
to ensure a stable record of the measurement, it is often
assumed that the pointer reading is subjected to a repeat-
able measurement. When this is the case, the above WAY
theorem persists at the pointer level, implying [Z,L2] = 0;
adapting the terminology used in the literature [5,9] we call
this commutation the Yanase condition. Importantly, it has
been shown in [3,5] that the same conclusion of the WAY
theorem can be drawn if the assumption of repeatability
is replaced by the Yanase condition. As a summary of the
above, we present the following theorem; see Ref. [5] for the
proof.

Theorem 1 (WAY theorem). Let 〈K,Z,U,φ〉 be a normal
measurement of a sharp observable A and let L1 ∈ L(H)
and L2 ∈ L(K) be bounded self-adjoint operators such that
L = L1 ⊗ 1 + 1 ⊗ L2 ∈ L(H ⊗ K) is an additive conserved
quantity. Assume that 〈K,Z,U,φ〉 is repeatable or satisfies the
Yanase condition. Then [A,L1] = 0.

An easy check confirms that under the conservation
[L,U ] = 0 of an additive quantity L = L1 ⊗ 1 + 1 ⊗ L2

the Yanase condition [Z,L2] = 0 is equivalent to [U ∗(1 ⊗
Z)U,L] = 0. In the following, we see that the weak Yanase
condition [U ∗(1 ⊗ Z)U,L] = 0 may be used to generalize the
WAY-theorem.

Proposition 1. Let 〈K,Z,U,φ〉 be a normal measurement
of a sharp observable A and let L ∈ L(H ⊗ K). If [U ∗(1 ⊗
Z)U,L] = 0, then [A,V ∗

φ LVφ] = 0. In particular, if L1 ∈ L(H)
and L2 ∈ L(K) are bounded self-adjoint operators such that

012127-2



WIGNER-ARAKI-YANASE THEOREM BEYOND . . . PHYSICAL REVIEW A 95, 012127 (2017)

FIG. 1. Our formalism (Proposition 1) gives the WAY theorem
the following interpretation: in a normal measurement 〈K,Z,U,φ〉
of a sharp observable A, the compatibility of the evolved pointer of
the measurement apparatus Z̃ = U ∗(1 ⊗ Z)U with a quantity L ∈
L(H ⊗ K) implies the compatibility of A with V ∗

φ LVφ . To this end,
the quantity L does not need to be additive or conserved.

L = L1 ⊗ 1 + 1 ⊗ L2 is an additive conserved quantity and
[Z,L2] = 0, then [A,L1] = 0.

Proof. We first recall that Vφ is an isometric operator, that
is, V ∗

φ Vφ = 1. Therefore, since A is assumed to be sharp, we
have

A(X) V ∗
φ LVφ = V ∗

φ U ∗(1 ⊗ Z(X))UVφ V ∗
φ LVφ

= V ∗
φ U ∗(1 ⊗ Z(X))ULVφ

= V ∗
φ LVφ V ∗

φ U ∗(1 ⊗ Z(X))UVφ

= V ∗
φ LVφ A(X). (3)

For the second claim, we note that V ∗
φ LVφ = L1 + 〈φ | L2φ 〉1

whenever L = L1 ⊗ 1 + 1 ⊗ L2 and that the assumption of L2

being bounded ensures that 〈φ | L2φ 〉 < ∞. �
The above result establishes the generalized WAY-type

limitations that hold for (continuous) observables without
the necessity of L being additive, or even conserved. For
instance, let us consider a multiplicative self-adjoint quantity
L = L1 ⊗ L2 ∈ L(H ⊗ K) for which 〈φ | L2φ 〉 �= 0, e.g., L2

is invertible. Supposing that the assumptions of Proposition 1
hold, the condition [U ∗(1 ⊗ Z)U,L] = 0 then implies that
[A,L1] = 0; a similar result was found for multiplicative
conserved quantities in [6].

In an informal manner of speaking, two quantum devices
are said to be compatible if there exists a measurement that is
capable of realizing both the devices as its parts; for precise
definitions of the terms we refer the reader to Refs. [16]
and [17]. For example, two observables are compatible if
and only if they are jointly measurable. Accordingly, the
compatibility of the (Heisenberg-)evolved pointer U ∗(1 ⊗
Z)U with a self-adjoint quantity L ∈ L(H ⊗ K) is equivalent
to their commutativity [U ∗(1 ⊗ Z)U,L] = 0. This implies
that Proposition 1, and therefore the WAY theorem, may
be understood as a consequence of the compatibility of the
evolved pointer with L inherited by the measured observable
(see Fig. 1).

Example 1. Any operator of the form L = U ∗(B ⊗ 1)U ,
B ∈ L(H), commutes with U ∗(1 ⊗ Z)U . Assuming that the
measured observable A is sharp, Proposition 1 implies
that [A,V ∗

φ U ∗(B ⊗ 1)UVφ] = 0. We note that E∗(B) :=
V ∗

φ U ∗(B ⊗ 1)UVφ defines the Heisenberg channel, a

completely positive unital linear map L(H) → L(H), asso-
ciated with the measurement 〈K,Z,U,φ〉. The commutativity
[A(X),E∗(B)] = 0 and X ∈ �,B ∈ L(H), implied by Propo-
sition 1, is then a restatement of the known result that the
compatibility of a channel with a sharp observable is equivalent
to their commutativity [16,19–21].

We fix H = C2 = K for the rest of this section and let
the following examples further demonstrate the power of
Proposition 1.

Example 2. Consider a controlled unitary U = 1 ⊗ |0〉〈0| +
σz ⊗ |1〉〈1|, where |0〉 and |1〉 are the eigenvectors of the Pauli
spin operator σz. Let U serve as a measurement coupling in
〈C2,Z,U,φ〉, where Z : 2{+,−} → L(C2) is sharp and φ ∈ C2

is a unit vector. We find that each L = diag(a,b) ⊗ 1, a,b ∈
R is an additive conserved quantity with L2 = 0 trivially
commuting with any Z. The WAY theorem then implies that
a sharp observable A realized in 〈C2,Z,U,φ〉 has to satisfy
[A,diag(a,b)] = 0 for all a,b ∈ R. In particular, [A,Sẑ] = 0,
or equivalently A and Sẑ, is jointly measurable. Indeed, it
can be confirmed that 〈C2,Z,U,φ〉 realizes nontrivial sharp
observables only when choosing Z = Sx̂ and φ = 1√

2
(|0〉 ±

|1〉) (up to a global phase): the measured sharp observables
are S±ẑ, respectively. With these choices the corresponding
measurements are also repeatable.

Example 3. Let us fix the unitary

U = 1√
2

⎛
⎜⎝

i 0 0 1
i 0 0 −1
0 i 1 0
0 i −1 0

⎞
⎟⎠ (4)

and consider the measurement 〈C2,Z,U,φ〉, where Z :
2{+,−} → L(C2) is sharp and φ ∈ C2 is a unit vector. We
note that the measured observable is sharp, that is, [U ∗(1 ⊗
Z)U,VφV ∗

φ ] = 0, for a nontrivial Z if and only if Z = S±x̂ ,
regardless of the choice of the unit vector φ ∈ C2. With these
choices the measurements are also repeatable. It may, however,
be confirmed that the only additive conserved quantities
with respect to U are of the form k1 ⊗ 1, k ∈ R. Therefore,
the measurement 〈C2,Z,U,φ〉 is not subjected to nontrivial
limitations in the traditional sense of the WAY theorem for
any choices of Z and φ. Although [Z,σz] �= 0 in the cases
Z = S±x̂ , it can be confirmed that the additive quantity
L = σz ⊗ 1 + 1 ⊗ σz commutes with U ∗(1 ⊗ Z)U . Therefore,
Proposition 1 implies that any sharp observable A realized in
〈C2,Z,U,φ〉 must satisfy [A,σz] = 0, which again is equivalent
to A and Sẑ being jointly measurable.

Example 4. Define a unitary U = S (1 ⊗ |0〉〈0| +
1√
2
(1 1
1 −1) ⊗ |1〉〈1|), where S is the SWAP gate

S =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, (5)

and fix Z = Sẑ. Again, the only additive conserved quantities
with respect to U are of the form k1 ⊗ 1, k ∈ R, and further-
more, any additive quantity L satisfying [U ∗(1 ⊗ Z)U,L] = 0
is trivial on the system side, 1 ⊗ diag(a,b), a,b ∈ R. We
conclude that the additive quantities will not set any limitations
for the measured observables via Proposition 1 in this case.
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However, it may be confirmed that there exist the two classes
of multiplicative self-adjoint quantities (a 0

0 b) ⊗ |0〉〈0| and

(a b

b a) ⊗ |1〉〈1|, a,b ∈ R, commuting with U ∗(1 ⊗ Z)U . With
the above choices, the probe states |0〉 and |1〉 realize sharp
observables Sẑ and Sx̂ , respectively, which clearly satisfy the
corresponding commutation relations set by Proposition 1.

One can also find cases of normal measurements which
are not subjected to WAY-type limitations even in the more
general sense of Proposition 1. Consider again the controlled
unitary of Example 2, U1 = 1 ⊗ |0〉〈0| + σz ⊗ |1〉〈1|. It can
be concluded that U1 may be used to realize nontrivial
sharp observables on H by choosing the pointer Z and
the probe state φ appropriately, for instance, Z = Sx̂ and
φ = 1√

2
(|0〉 + |1〉). By interchanging the roles of the system

and the apparatus, 〈H,Z,U1,φ〉 realizes a sharp observ-
able A : � → P(K) also on K defined via tr[A(X) ξ ] =
tr[Z(X) ⊗ 1U1(|φ〉〈φ| ⊗ ξ )U ∗

1 ], for all ξ ∈ S(K): this is im-
mediately verified by noting that U1 commutes with the
SWAP gate S defined in Eq. (5). Defining U2 = 1 ⊗ |0〉〈0| +
(0 i

1 0) ⊗ |1〉〈1|, however, does not serve as an interaction
in a normal measurement 〈K,Z,U2,φ〉 of any nontrivial
sharp observable on H with any choices of Z and φ.
On the other hand, 〈H,Z,U2,φ〉 may be used to realize
nontrivial sharp observables on K, for example, by choosing
Z = Sẑ and φ = |0〉. Finally, the unitary U3 = 1 ⊗ |0〉〈0| +
(1 0
0 i) ⊗ |1〉〈1| cannot be used to realize any nontrivial

sharp observables on either H or K. We summarize that
a coupling may be subjected to WAY-type limitations im-
posed by Proposition 1 either two-sidedly (e.g., U1) or only

one-sidedly (U2) or may not be subjected to such
limitations at all (U3), simply due to its ability to
serve as a measurement coupling for nontrivial sharp
observables.

III. GENERALIZATION TO POVMs

As discussed above, a way to circumvent the limitations
set by WAY is to consider, instead of sharp observables,
general (smeared) POVMs as measured observables. This
deviation from the PVM picture is often even reasonable from
the physical point of view, as imperfections are present in
all realistic measurement implementations. Therefore, since
restricting one’s attention only to sharp observables would
make the WAY theorem an unphysical curiosity, any step in
developing the WAY theorem in the broader context of unsharp
observables is well justified from both theoretical and practical
standpoints.

We next elucidate that the limitations posed by Proposi-
tion 1 persist also at the level of POVMs.

Proposition 2. Let 〈K,Z,U,φ〉 be a normal measurement of
an observable E : � → L(H). Then for all self-adjoint L ∈
L(H ⊗ K), the inequality

||[E(X),V ∗
φ LVφ]|| � 2||[U ∗(1 ⊗ Z(X))U,VφV ∗

φ ]|| ||L||
+ ||[U ∗(1 ⊗ Z(X))U,L]|| (6)

holds for all X ∈ �.
Proof. We first note that i[A,B] is a bounded self-adjoint op-

erator for all bounded self-adjoint A,B ∈ L(H). Furthermore,
V ∗

φ LVφ is a bounded self-adjoint operator on H whenever L

is bounded and self-adjoint on H ⊗ K. Therefore

||[E(X),V ∗
φ LVφ]|| = sup

||ϕ||�1
|〈ϕ | [V ∗

φ U ∗(1 ⊗ Z(X))UVφ,V ∗
φ LVφ]ϕ 〉|

= sup
||ϕ||�1

|〈ϕ | V ∗
φ [U ∗(1 ⊗ Z(X))UVφV ∗

φ L − LVφV ∗
φ U ∗(1 ⊗ Z(X))U ]Vφϕ 〉|

= sup
||ϕ||�1

|〈ϕ ⊗ φ | [U ∗(1 ⊗ Z(X))U,VφV ∗
φ ]Lϕ ⊗ φ 〉 + 〈ϕ ⊗ φ | [U ∗(1 ⊗ Z(X))U,LVφV ∗

φ ]ϕ ⊗ φ 〉|

� 2||[U ∗(1 ⊗ Z(X))U,VφV ∗
φ ]|| ||L|| + ||[U ∗(1 ⊗ Z(X))U,L]||, (7)

where we have used the fact that V ∗
φ VφV ∗

φ U ∗(1 ⊗ Z(X))ULVφ = V ∗
φ U ∗(1 ⊗ Z(X))ULVφV ∗

φ Vφ , elementary commutation
relations, the triangle inequality, and the Cauchy-Schwarz inequality. �

On the right-hand side of inequality (6) one recognizes
two terms: the first one related to the “sharpness” of the
measured observable [18] and the second one to the weak
Yanase condition. Proposition 1 follows as a corollary exactly
when these two terms vanish.

There are also different WAY-type limitations to be found,
as shown in the following. The proof is similar to that of the
previous proposition and we omit it.

Proposition 3. Let 〈K,Z,U,φ〉 be an E measurement. Then
for all self-adjoint L ∈ L(H), the inequalities

||[E(X),L]|| � ||[U ∗(1 ⊗ Z(X))U,L ⊗ 1]||
� 2||[U,L ⊗ 1]|| (8)

hold for all X ∈ �.

Propositions 2 and 3 become particularly powerful in cases
where their right-hand sides vanish. Although the two results
have apparent similarity, the limitations set by them can be very
different. We present the following examples for clarification.

Example 5. Let us denote by Ā the self-adjoint operator de-
fined as the first moment of the PVM, A : B(R) → P(L2(R)):
Ā = ∫

R x A(dx). Assume that one intends to measure a sharp
observable A by coupling it to the momentum observable P of
the apparatus via the unitary interaction U = exp(iλĀ ⊗ P̄),
where the parameter λ ∈ R quantifies the strength of the
measurement interaction. One natural choice for the pointer
in order to monitor the shifts generated by U is the position
observable Q of the apparatus. The resulting standard model of
measurement 〈L2(R),Q,U,φ〉 is one of the most widely used
forms of normal quantum measurements [3,22]. The actual
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observable measured in this process is E(X) = ∫
R pQ

φ (X −
λx) A(dx). As such, E is a smeared unsharp version of the
intended sharp observable A.

The observables E and A are clearly jointly measur-
able: [E(X),A(Y )] = 0, for all X,Y ∈ B(R). In fact since
[U,A ⊗ 1] = 0, Proposition 3 implies that all the observables
realizable with this coupling are jointly measurable with A,
regardless of the choice of the pointer observable and the probe
state. This same conclusion cannot be generally drawn from
Proposition 2. Namely, since the measured observable E in
the standard model can be sharp only if A is discrete [22], the
“sharpness” term in inequality (6) is generally nonvanishing.

For the rest of the examples of this section we will again
fix H = C2 = K.

Example 6. Recall the coupling U3 = 1 ⊗ |0〉〈0| +
(1 0
0 i) ⊗ |1〉〈1| introduced above as a measurement coupling

between one-qubit system and one-qubit apparatus. It may be
confirmed that [U,L ⊗ 1] = 0 for any L = (a 0

0 b), a,b ∈ R,
and Proposition 3 implies that [E,Sẑ] = 0, that is; all the
measured observables realizable with this coupling are always
jointly measurable with Sẑ. However, as mentioned, it is not
possible to use U3 as a coupling in the measurement of any
nontrivial sharp observable. Therefore, the right-hand side of
inequality (6) is always nonvanishing and Proposition 2 fails
to reproduce the same conclusion.

Example 7. Consider again the coupling U = S (1 ⊗
|0〉〈0| + 1√

2
(1 1
1 −1) ⊗ |1〉〈1|) and fix Z = Sẑ. It is pointed

out in Example 4 that, for a self-adjoint L ∈ L(H), both
the relations, [U,L ⊗ 1] = 0 and [U ∗(1 ⊗ Z)U,L ⊗ 1] = 0,
imply that L is trivial. Accordingly, either of the right-hand
sides in inequality (8) vanishes if and only if L is trivial. On the
other hand, the limitations set by the two classes of multiplica-
tive quantities, (a 0

0 b) ⊗ |0〉〈0| and (a b

b a) ⊗ |1〉〈1|, a,b ∈ R,
pointed out in Example 4 are captured by Proposition 2: the
right-hand side of inequality (6) vanishes for both of these
classes.

Example 8. Finally, let us consider the measurability
of qubit observables S �m(±)= 1

2 (1 ± �m · �σ ), �m ∈ R3, || �m||�1,

with a unitary coupling Uα = ( α
√

1 − α2√
1 − α2 −α

) ⊗ |0〉〈0| +
(1 0
0 i) ⊗ |1〉〈1|, where 0 � α � 1. For any sharp S�n(±) =

1
2 (1 ± �n · �σ ), �n ∈ R3, ||�n|| = 1, the quantity 2||[S �m,S�n]|| =
|| �m × �n|| constitutes a measure of the incompatibility of
the qubit observables S �m and S�n vanishing for compatible
observables and attaining its maximum value, 1, for maximally
incompatible ones, i.e., sharp spin measurements in perpen-
dicular directions. Proposition 3 implies that || �m × �n|| �
4||[Uα,S�n ⊗ 1]||. In other words, any unit vector �n ∈ R3

satisfying 4||[Uα,S�n ⊗ 1]|| < 1 implies a nontrivial constraint
for the set of realizable observables S �m.

For α = 1 the unitary Uα commutes with any quantity of the
form (a 0

0 b) ⊗ 1, a,b ∈ R, that is, the observables measurable
are exactly those compatible with Sẑ. On the other hand, for
α < 1 the commutator [Uα,S�n ⊗ 1] is nonvanishing for all unit
vectors �n ∈ R3, but limitations may nevertheless be found for
the realizability of the observables, as illustrated in Fig. 2. In
the figure, the minimum value of 4||[Uα,S�n ⊗ 1]|| optimized
over �n is plotted versus the parameter α. In addition, the xz

cross sections of these effects on the Bloch sphere satisfying
|| �m × �n|| � 4||[Uα,S�n ⊗ 1]|| for the minimizing �n, that is, the
effects that are in principle realizable with Uα , are presented for
five specific choices of α: 0.8, 0.85, 0.9, 0.95, and 1. The full
set of effects can be attained by rotating these cross sections
about the corresponding symmetry axes, denoted in black.

IV. APPLICATION TO QUANTUM PROGRAMMING

Looking at Eq. (2) one observes that altering the initial
state of the probe may lead to measurements of different
observables. We call this mapping from probe states to
observables quantum programming, the fixed triplet 〈K,Z,U 〉
a programmable quantum multimeter (also known as a pro-
grammable processor), and the variables of the multimeter
programming states.

The obvious advantage of a quantum multimeter over a
fixed setup is that one does not have to build multiple measure-
ment apparatuses in order to implement different observables.
It is known, however, that no multimeter is universal, that is,
one cannot construct a multimeter 〈K,Z,U 〉 that surjectively
maps S(K) to the full set of observables on H. This follows
from the fact that all unequal sharp observables demand mu-
tually orthogonal programming states, and consequently, the
number of programmable sharp observables is bounded by the
dimension of the multimeter [23–25]. As the proof of this result
is quite concise, we present it here for the readers’ convenience.

Proposition 4. Let 〈K,Z,U 〉 be a multimeter realizing sharp
observables Ai : � → P(H) with programming states φi, i =
1,2, respectively. If A1 �= A2, then 〈φ1 | φ2 〉 = 0.

Proof. Let X ∈ � be such that A1(X) �= A2(X). Since
V ∗

φ2
Vφ1 = 〈φ2 | φ1 〉, we have

〈φ2 | φ1 〉A1(X) = V ∗
φ2

Vφ1V
∗
φ1

U ∗(1 ⊗ Z(X))UVφ1

= V ∗
φ2

U ∗(1 ⊗ Z(X))UVφ2V
∗
φ2

Vφ1

= 〈φ2 | φ1 〉A2(X). (9)

�
Example 9. The multimeter 〈C2,Sẑ,U 〉 in Example 4 can

be programmed to realize the sharp observables Sẑ and Sx̂

with programming states |0〉 and |1〉, respectively. Clearly,
〈 0 | 1 〉 = 0.

It was anticipated in Ref. [6] that the WAY theorem
will set further restrictions for the programmable quantum
multimeters. It is the purpose of this section to validate this
expectation. To this end, consider a programmable multimeter
〈K,Z,U 〉 that realizes a sharp observable A1 : � → P(H) with
a programming state φ1 ∈ K, ||φ1|| = 1. Proposition 2 then
simplifies to

||[A1(X),V ∗
φ1

LVφ1 ]|| � ||[U ∗(1 ⊗ Z(X))U,L]||. (10)

Let E2 : � → L(H) be any other observable realizable
with the multimeter 〈K,Z,U 〉 and programming state
φ2 ∈ K, ||φ2|| = 1, and fix an unitary operator G on K
such that Gφ1 = φ2. Since Vφ2 = 1 ⊗ GVφ1 , we have
E2(Y ) = V ∗

φ1
L(Y )Vφ1 for a family of self-adjoint operators

L(Y ) := U ∗
G(1 ⊗ Z(Y ))UG, Y ∈ � , (11)

where UG = U 1 ⊗ G. Inserting L(Y ) into Eq. (10) results in
the following proposition.
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FIG. 2. The value of the quantity 4||[Uα,S�n ⊗ 1]|| minimized over �n, where Uα is as defined in Example 8 and S�n(±) = 1
2 (1 ± �n · �σ ), ||�n|| =

1, is plotted in terms of parameter α ranging from 0.6 to 1. Limitations to the measurability of the observables S �m(±) = 1
2 (1 ± �m · �σ ), || �m|| � 1,

set by the relation 2||[S �m,S�n]|| = || �m × �n|| � 4||[Uα,S�n ⊗ 1]||, are present whenever 4||[Uα,S�n ⊗ 1]|| < 1. These limitations have been
illustrated by mapping the cross sections on the xz plane of the effects that are, at least in principle, realizable with Uα for five values of α: (a)
α = 0.8, (b) α = 0.85, (c) α = 0.9, (d) α = 0.95, and (e) α = 1. The total set of effects can be attained by rotating cross sections (a)–(e) about
the corresponding symmetry axes, depicted as black lines.

Proposition 5. Let 〈K,Z,U 〉 be a multimeter realizing a
sharp observable A1 : � → P(H) and an observable E2 :
� → L(H) with programming states φ1 and φ2, respectively.
For any unitary operator G on K satisfying Gφ1 = φ2, the
relation

||[A1(X),E2(Y )]|| � ||[U ∗(1 ⊗ Z(X))U,U ∗
G(1 ⊗ Z(Y ))UG]||

(12)

holds for all X,Y ∈ �.
Proposition 5 confirms the existence of WAY-type limita-

tions in quantum programming of observables. It is noteworthy
that the two multimeters 〈K,Z,U 〉 and 〈K,Z,UG〉 differ only
by a local unitary transformation. Accordingly, they are
equivalent in the sense that they both program exactly the same
set of observables, only with different programming states
[26]. In this formalism Proposition 5 relates the amount of (in-)
compatibility of the evolved pointers of the two multimeters
with the (in-)compatibility of the programmed observables.
Such a relation can be useful in designing optimal multimeters,
e.g., for purposes of measurement-based quantum computing.

V. SUMMARY AND DISCUSSION

In summary, an approach to the theorem of Wigner, Araki,
and Yanase (WAY) is introduced which expresses the measur-
ability limitations in the language of quantum incompatibility.

Importantly, this formalism reveals a more intuitive and far
more generally valid mathematical structure behind the WAY
theorem. In addition, two quantitative generalizations of WAY-
type measurability restrictions to positive operator-valued
measures are presented. Finally, we demonstrate the potential
of our results in applications of quantum programming.

Even though this analysis focuses on the WAY limitations of
quantum observables, we wish to point out that the formalism
can be straightforwardly extended also to general quantum
devices, e.g., quantum channels or instruments. For example,
the similarity between unitary channels and sharp observables
noted in Ref. [24] would allow one to find limitations similar to
those proved here for quantum (unitary) channels. Although
the details are beyond the scope of this paper and will be
left as a topic for a separate investigation, this approach
could potentially lead to WAY-type limitations on quantum
logic gates and computation that are more straightforward and
general than those reported in Refs. [13–15].
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