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EXTENSION IN GENERALIZED ORLICZ SPACES

PETTERI HARJULEHTO AND PETER HÄSTÖ

ABSTRACT. We prove that a Φ-function can be extended from a domain Ω to all of Rn while
preserving crucial properties for harmonic analysis on the generalized Orlicz space LΦ.

1. INTRODUCTION

Generalized Orlicz spaces, also known as Musielak–Orlicz spaces, and related differen-
tial equations have been studied with increasing intensity recently, see, e.g., the references
[1, 2, 3, 4, 6, 7, 9, 14, 15, 16] published since 2018. This year, we published the monograph
[10] in which we present a new framework for the basics of these spaces. In contrast to earlier
studies, we emphasize properties which are invariant under equivalence of Φ-functions. This
means, in particular, that we replace convexity by the assumption that ϕ(t)

t
be almost increas-

ing. Within this framework we can more easily use techniques familiar from the Lp-context,
see for instance the papers [12, 13] with applications to PDE.

In the pre-release version of the book [10], we had included a section on extension of
the Φ-function. However, this was removed from the final, published version, as we could
not at that point prove a result with which we were satisfied. In this article we remedy this
short-coming.

In many places, extension offers an easy way to prove result in Ω ⊂ Rn from results in
Rn. For example, in variable exponent spaces we may argue

‖Mf‖Lp(·)(Ω) 6 ‖Mf‖Lp(·)(Rn) 6 ‖f‖Lp(·)(Rn) = ‖f‖Lp(·)(Ω)

where f is a zero extension of f : Ω → R to Rn, provided that p : Ω → [1,∞] can be
extended as well (cf. [8, Proposition 4.1.17]) and the maximal operator is bounded in Rn.

In generalized Orlicz spaces this is not as simple. In [10] we showed that many results of
harmonic analysis hold in Lϕ provided ϕ satisfies conditions (A0), (A1) and (A2) (see the
next section for definitions). However, the extension requires a stronger condition than (A1),
namely (A1)Ω, which is known to be equivalent with (A1) only in quasiconvex domains
(Lemma 3.3). Furthermore, we show in the main result of this paper, Theorem 3.5, that
(A1)Ω also is necessary. Thus we solve the extension problem for the assumptions of [10].
In some recent papers, e.g. [13], also stronger assumptions have been used to obtain higher
regularity. Whether the extension can be chosen to preserve those conditions remains an
open problem.

2. PRELIMINARIES

In this section we introduce the terminology and auxiliary results needed in this paper.
The notation f . g means that there exists a constant C > 0 such that f 6 Cg. The notation
f ≈ g means that f . g . f .

Date: October 10, 2019.
2010 Mathematics Subject Classification. 46E30, 26B25.
Key words and phrases. Generalized Orlicz space, Musielak–Orlicz space, Phi-function, extension.

1

http://arxiv.org/abs/1910.03893v1


2 PETTERI HARJULEHTO AND PETER HÄSTÖ

Definiton 2.1. A function g : (0,∞) → R is almost increasing if there exists a constant
a > 1 such that g(s) 6 ag(t) for all 0 < s < t. Almost decreasing is defined analogously.

Increasing and decreasing functions are included in the previous definition as the special
case a = 1.

Definiton 2.2. Let f : Ω× [0,∞) → R and p, q > 0. We say that f satisfies

(Inc)p if f(x,t)
tp

is increasing;

(aInc)p if f(x,t)
tp

is almost increasing;

(Dec)q if f(x,t)
tq

is decreasing;

(aDec)q if f(x,t)
tq

is almost decreasing;

all conditions should hold for almost every x ∈ Ω and the almost increasing/decreasing
constant should be independent of x.

Suppose that ϕ satisfies (aInc)p1 . Then it satisfies (aInc)p2 for p2 < p1 and it does not
satisfy (aDec)q for q < p1. Likewise, if ϕ satisfies (aDec)q1 , then it satisfies (aDec)q2 for
q2 > q1 and it does not satisfy (aInc)p for p > q1.

Definiton 2.3. Let ϕ : [0,∞) → [0,∞] be increasing with ϕ(0) = 0, limt→0+ ϕ(t) = 0 and
limt→∞ ϕ(t) = ∞. We say that such ϕ is a (weak) Φ-function if it satisfies (aInc)1 on (0,∞).
The set of weak Φ-functions is denoted by Φw.

We mention the epithet “weak” only when special emphasis is needed. Note that when we
speak about Φ-functions, we mean the weak Φ-functions of the previous definition, whereas
many other authors use this term for convex Φ-functions, possibly with additional assump-
tions as well. If ϕ is convex and ϕ(0) = 0, then we obtain for 0 < s < t that

(2.4) ϕ(s) = ϕ
(s

t
t+ 0

)

6
s

t
ϕ(t) +

(

1−
s

t

)

ϕ(0) =
s

t
ϕ(t),

i.e. (Inc)1 holds.

Definiton 2.5. A function ϕ : Ω × [0,∞) → [0,∞] is said to be a (generalized weak) Φ-

function, denoted ϕ ∈ Φw(Ω), if x 7→ ϕ(y, |f(x)|) is measurable for every measurable f ,
ϕ(y, ·) is a weak Φ-function for almost every y ∈ Ω and ϕ satisfies (aInc)1.

Unless there is danger of confusion, we will drop the word “generalized”. Note that if
x 7→ ϕ(y, t) is measurable for every t > 0 and t 7→ ϕ(x, t) is left-continuous for almost every
x ∈ Ω, then x 7→ ϕ(y, |f(x)|) is measurable for every measurable f , [10, Theorem 2.5.4].

Two functions ϕ and ψ are equivalent, ϕ ≃ ψ, if there exists L > 1 such that ϕ(x, t
L
) 6

ψ(x, t) 6 ϕ(x, Lt) for all x and all t > 0. Short calculations show that ≃ is an equivalence
relation. Note that if ϕ ≃ ψ, then Lϕ(Ω) = Lψ(Ω), see Theorem 3.2.6 in [10].

Let us define a left-inverse of ϕ by

ϕ−1(x, τ) := inf{t > 0 : ϕ(x, t) > τ}.

Note that ϕ−1 is left-continuous when ϕ is increasing and ϕ(0) = 0. Moreover if ϕ ∈ Φw,
then ϕ satisfies (aInc)p if and only if ϕ−1 satisfies (aDec)1/p; and ϕ satisfies (aDec)q if and
only if ϕ−1 satisfies (aInc)1/q . These and other properties can be found in [10, Chapter 2.3].

Definiton 2.6. Let ϕ ∈ Φw(Ω). We define three conditions:

(A0) There exists β ∈ (0, 1] such that β 6 ϕ−1(x, 1) 6 1
β

for almost every x ∈ Ω.
(A1) There exists β ∈ (0, 1) such that

βϕ−1(x, t) 6 ϕ−1(y, t)

for every t ∈ [1, 1
|B|

], almost every x, y ∈ B ∩ Ω and every ball B with |B| 6 1.
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(A2) For every s > 0 there exist β ∈ (0, 1] and h ∈ L1(Ω) ∩ L∞(Ω) such that

βϕ−1(x, t) 6 ϕ−1(y, t)

for almost every x, y ∈ Ω and every t ∈ [h(x) + h(y), s].

By [10, Lemma 4.2.7] (A2) is equivalent with the following condition: there exist ϕ∞ ∈
Φw, h ∈ L1(Ω) ∩ L∞(Ω), s > 0 and β ∈ (0, 1] such that

(2.7) ϕ(x, βt) 6 ϕ∞(t) + h(x) and ϕ∞(βt) 6 ϕ(x, t) + h(x)

for almost every x ∈ Ω.
Note how the conditions (A0)–(A2) are formulated in terms of the inverse function ϕ. This

turns out to be very convenient in many cases, since the appropriate range of t for which the
comparison can be done is easily expressed for the inverse function. We also use the inverse
function for the extension. In [10, Proposition 2.5.14], we showed that f is the inverse of
some Φ-function if and only if it satisfies the following conditions:

(1) f is increasing;
(2) f is left-continuous;
(3) f satisfies (aDec)1;
(4) f(t) = 0 if and only if t = 0, and, f(t) = ∞ if and only if t = ∞;
(5) x 7→ f(x, t) is measurable for all t > 0

3. EXTENSION

In the following version of (A1) we can use any size of t, but have to pay in terms of a
smaller constant for large t.

Definiton 3.1. Let Ω ⊂ Rn. We say that ϕ ∈ Φw(Ω) satisfies (A1)Ω, if there exist a constant
β ∈ (0, 1] such that β |x−y|t1/n+1ϕ−1(y, t) 6 ϕ−1(x, t) for all x, y ∈ Ω and t > 1.

By Theorem 2.3.6 of [10] we have ϕ ≃ ψ if and only if ϕ−1 ≈ ψ−1. Hence we obtain the
following lemma.

Lemma 3.2. The condition (A1)Ω is invariant under equivalence of weak Φ-functions.

A domain Ω ⊂ Rn is quasi-convex, if there exists a constant K > 1 such that every pair
x, y ∈ Ω can be connect by a rectifiable path γ ⊂ Ω with the length ℓ(γ) 6 K|x− y|.

Lemma 3.3. If Ω ⊂ Rn is quasi-convex, then ϕ ∈ Φw(Ω) satisfies (A1) if and only if it

satisfies (A1)Ω.

Proof. Assume first that (A1)Ω holds. Let B be a ball with |B| 6 1 and x, y ∈ Ω ∩B. Since
|x − y| 6 diam(B), |x − y|t

1
n 6 c(n) for t ∈ [1, 1

|B|
]. Hence (A1) holds with constant

βc(n)+1.
Assume then that (A1) holds. Let x, y ∈ Ω, t > 1 and γ ⊂ Ω be a path connecting x and

y of length at most K |x − y|. Let x0 := x and ωn be the measure of the unit ball. Choose
points xj ∈ γ such that ℓ(γ(x, xj)) = j

(ωnt)1/n
for j = 1, . . . , k − 1 when possible and

finally set xk = y. Then |xj−1 − xj | 6
1

(ωnt)1/n
for all j. Let Bj+1 be an open ball such that

xj , xj+1 ∈ Bj+1 and diam(Bj+1) = 2|xj − xj+1|, see Figure 1. Then 1
|B|

= 1
ωn|xj−xj+1|n

> t.

Thus t is in the allowed range for (A1) and so βϕ−1(xj+1, t) 6 ϕ−1(xj , t). With this chain
of inequalities, we obtain that βkϕ−1(y, t) 6 ϕ−1(x, t). On the other hand, at most

k =
ℓ(γ(x, xk−1))

diam(B)
+ 1 6

K|x− y|

diam(B)
+ 1 6

K|x− y|

2/(ωnt)1/n
+ 1 = c′Kt1/n |x− y|+ 1
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FIGURE 1. Points xj and balls Bj in the proof of Lemma 3.3.

points xj are needed, so that βc
′Kt1/n|x−y|+1ϕ−1(y, t) 6 ϕ−1(x, t) for all x, y ∈ Ω and t >

1. �

Question 3.4. Does there exist Ω ⊂ Rn and ϕ ∈ Φw(Ω) such that (A1) holds but (A1)Ω does
not?

We say that ψ ∈ Φw(R
n) is an extension of ϕ ∈ Φw(Ω) if ψ|Ω ≃ ϕ. Since we consider

properties which hold up to equivalence of Φ-functions this is a natural definition. However,
if one wants identity in Ω this is easily achieved by choosing ψ2 := ϕχΩ + ψχRn\Ω, which
is equivalent to ψ and hence has the same properties.

The next theorem was proved in [11, Proposition 5.2] but the proof was incorrect: the
function f constructed was not increasing, its measurability was unclear, and ψ|Ω ≃ ϕ was
shown only for t > 1.

Theorem 3.5. Suppose that Ω ⊂ Rn and ϕ ∈ Φw(Ω). Then there exists an extension

ψ ∈ Φw(R
n) of ϕ which satisfies (A0), (A1) and (A2), if and only if ϕ satisfies (A0), (A1)Ω

and (A2).
If ϕ satisfies (aInc)p and/or (aDec)q , then the extension can be taken to satisfy it/them, as

well.

Proof. Suppose first that there exists an extension ψ ∈ Φw(R
n) which satisfies (A0), (A1)

and (A2). Since ϕ ≃ ψ|Ω we find that ϕ satisfies (A0) and (A2). Let x, y ∈ Ω. Since ψ
satisfies (A1) and Rn is quasi-convex, Lemma 3.3 implies that ψ satisfies (A1)Rn , so that
βt

1/n|x−y|+1ψ−1(y, t) 6 ψ−1(x, t), Since ψ|Ω ≃ ϕ, this implies (A1)Ω of ϕ by Lemma 3.2.
So we can move on to the converse implication.

Let ϕ ∈ Φw(Ω) satisfy (A0), (A1)Ω, (A2) and (aInc)p for some p > 1. Then ϕ−1 satisfies
(aDec)1/p. Let β0 be a constant form (A0) of ϕ and β be from (A1)Ω of ϕ. Next we use (A2).
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By [10, Lemma 4.2.7], there exists ϕ∞ ∈ Φw and h ∈ L1(Ω) ∩ L∞(Ω) such that

ϕ(x, β2t) 6 ϕ∞(t) + h(x) and ϕ∞(t) 6 ϕ(x, β2t) + h(x)

for almost every x ∈ Ω when ϕ∞(t) 6 β0 and ϕ(x, t) 6 β0, respectively. Note that ϕ∞ is
equivalent to lim infx→∞ ϕ(x, ·); hence satisfies (A0) and (aDec)1/p if ϕ does.

Denote Ω̂ := Ω ∩Qn and define f : Rn × [0,∞] → [0,∞] by

f(x, t) :=











β2
0ϕ

−1(x, t)χΩ(x) + β2
0ϕ

−1
∞ (t)χRn\Ω(x) if t ∈ [0, 1];

min
{

(ϕ−
Ω)

−1(t), infy∈Ω̂ β
−|x−y|t1/nϕ−1(y, t)

}

if t ∈ (1,∞);

∞ if t = ∞.

The following properties follow directly from the corresponding properties of ϕ−1 and the
definition of f :

(1) f(x, t) = 0 iff t = 0, and f(x, t) = ∞ iff t = ∞.
(2) f satisfies (aDec)1/p in [0, 1].
(3) f satisfies (A0).

For properties (A0)–(A2) we think of f as the inverse in the conditions, i.e. ϕ−1 is replaced
by f , not f−1, in the inequalities. We next prove the following properties of f :

(4) f is increasing.
(5) f is left-continuous and measurable.
(6) f |Ω ≈ ϕ−1.
(7) f satisfies (A1).
(8) f satisfies (aInc)1/q provided that ϕ satisfies (aDec)q .

Claim (4): Sinceϕ−1, ϕ∞ and (ϕ−
Ω)

−1 are increasing, the claim follows in each subinterval.
To show that f(x, 1) 6 f(x, t) for 1 < t we note that (ϕ−

Ω)
−1(t) > (ϕ−

Ω)
−1(1) > β0 and

β−|x−y|t1/nϕ−1(y, t) > ϕ−1(y, 1) > β0. Thus f(x, t) > β0. On the other hand, f(x, 1) 6

β2
0(ϕ

−
Ω)

−1(1) 6
β2
0

β0
= β0.

Claim (5): Since ϕ−1, ϕ−1
∞ and (ϕ−

Ω)
−1 are left-continuous and the minimum of left-

continuous functions is left-continuous, the claim follows by the definition of f . By Lemma 2.5.12
of [10], y 7→ ϕ−1(y, t) is measurable. The infimum of measurable functions over countable
sets is measurable. Thus x 7→ f(x, t) is measurable for every t.

Claim (6): We show that f ≈ ϕ−1 in Ω. For t ∈ [0, 1] this holds by the definition of f . If
t > 1, then by (A1)Ω for x, y ∈ Ω we have

β−|x−y|t1/nϕ−1(y, t) > β−|x−y|t1/nβ |x−y|t1/n+1ϕ−1(x, t) = βϕ−1(x, t).

Since (ϕ−
Ω)

−1(t) > ϕ−1(x, t), this yields that f(x, t) > βϕ−1(x, t). On the other hand by
(A1)Ω we have for y ∈ Ω̂ that

f(x, t) 6 β−|x−y|t1/nϕ−1(y, t) 6 β−|x−y|t1/nβ−|x−y|t1/n−1ϕ−1(x, t) → 1
β
ϕ−1(x, t)

as y → x and hence f(x, t) 6 1
β
ϕ−1(x, t).

Claim (7): Let us then prove (A1). The required inequality for t = 1 follows from (A0),

so we take t ∈ (1, 1
|B|

] and x, y ∈ B. Note that |x− y|t1/n 6 c(n). Let z0 ∈ Ω̂ be such that

infz∈Ω̂ β
−|x−z|t1/nϕ−1(z, t) > 1

2
β−|x−z0|t1/nϕ−1(z0, t). Then by the definition of infimum, the
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triangle inequality, and the choice of z0 we obtain that

inf
z∈Ω̂

β−|x−z|t1/nϕ−1(z, t) 6 β−|y−z0|t1/nϕ−1(z0, t) 6 β−(|y−x|+|x−z0|)t1/nϕ−1(z0, t)

6 2β−c(n) inf
z∈Ω̂

β−|x−z|t1/nϕ−1(z, t).

The part (ϕ−
Ω)

−1 satisfies (A1) since it is independent of x. A short calculation shows that
the minimum of two functions that satisfy (A1) also satisfies it.

Claim (8): Assume that ϕ satisfies (aDec)q . Then ϕ−1 and ϕ−1
∞ satisfy (aInc)1/q , which

imply the condition for f when t ∈ [0, 1]. For 1 < t < s, we use the condition for ϕ−1 as
well as β−|x−y|t1/n 6 β−|x−y|s1/n to conclude that

f(x, t)

t1/q
= min

{(ϕ−
Ω)

−1(t)

t1/q
, inf
y∈Ω̂

β−|x−y|t1/nϕ
−1(y, t)

t1/q

}

. min
{(ϕ−

Ω)
−1(s)

s1/q
, inf
y∈Ω̂

β−|x−y|t1/nϕ
−1(y, s)

s1/q

}

6
f(x, s)

s1/q
.

The case 1 = t < s follows as ε→ 0+ since f is increasing:

f(x, 1)

11/q
6 (1 + ε)1/q

f(x, 1 + ε)

(1 + ε)1/q
. (1 + ε)1/q

f(x, s)

s1/q
.

The function f does not satisfy (aDec)1, so it is not the inverse of any Φ-function. We
therefore make a regularization to ensure this growth condition. Recall that ϕ satisfies (aInc)p
for some p > 1. We define g(x, 0) := 0, g(x,∞) := ∞ and

g(x, t) := t1/p inf
0<s6t

f(x, s)

s1/p
.

Since f satisfies (aDec)1/p on [0, 1], we have

(3.6) t1/p inf
0<s6t

f(x, s)

s1/p
≈ f(x, t)

for t ∈ [0, 1], so that g ≈ f in the same range of t. From the corresponding properties of f
we conclude that g is left-continuous and satisfies (A0).

Let us prove the following properties for g:

(i) g is measurable.
(ii) g satisfies (Dec)1/p.

(iii) g|Ω ≈ ϕ−1.
(iv) g satisfies (A1).
(v) g(x, t) = 0 iff t = 0, and g(x, t) = ∞ iff t = ∞.

(vi) g is increasing; and g satisfies (aInc)1/q provided that ϕ satisfies (aDec)q .

Claim (i): Since f is left-continuous, we obtain that

g(x, t) = t1/p inf
s∈(0,t]∩Q

f(x, s)

s1/p
.

Since x 7→ f(x, t) is measurable, this implies that x 7→ g(x, t) is measurable as the infimum
of countable many measurable functions.

Claim (ii): Let us next show that g satisfies (Dec)1/p. For that let 0 < t < τ . By the
definition of g we obtain

g(x, t)

t1/p
= inf

0<s6t

f(x, s)

s1/p
> inf

0<s6τ

f(x, s)

s1/p
=
g(x, τ)

τ 1/p
.
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Claim (iii): Since f ≈ ϕ−1 in Ω and ϕ−1 satisfies (aDec)1/p, we obtain g|Ω ≈ ϕ−1 in the
same way as in (3.6).

Claim (iv): Then we show that g satisfies (A1). Let B be a ball with |B| 6 1, t ∈ [1, 1
|B|

]

and x, y ∈ Ω. Since f satisfies (aDec)1/p in (0, 1], we have

(3.7) g(y, t) ≈ t1/p inf
16s6t

f(y, s)

s1/p
.

Thus by (A1) of f we obtain

g(x, t) ≈ t1/p inf
16s6t

f(x, s)

s1/p
. t1/p inf

16s6t

f(y, s)

s1/p
≈ g(y, t).

Claim (v): Using the inequality f(x, 1) 6 f(x, s) 6 f(x, t) and (A0), we obtain by (3.7)
for 1 < t, that

0 < β0 6 g(x, t) 6 t1/pf(x, t) <∞.

By (3.6) we have f ≈ g for s ∈ [0, 1]. Thus by the corresponding property of f we have
g(x, t) = 0 if and only if t = 0, and g(x, t) = ∞ if and only if t = ∞.

Claim (vi): Assume that f satisfies (aInc)1/q with constant L > 1. Let 0 < t < s, ε > 0

and choose θ ∈ (0, 1] such that g(x, s) > θ−1/pf(x, θs) − ε. Then by the definition of g,
(aDec)1/q of f and the choice of θ, we obtain that

g(x, t)

t1/q
6 t1/p−1/q f(x, θt)

(θt)1/p
= θ1/q−1/p f(x, θt)

(θt)1/q
6 Lθ1/q−1/p f(x, θs)

(θs)1/q
6 L

g(x, s) + ε

s1/q
.

Thus letting ε → 0+, we find that g satisfies (aInc)1/q . If we take L = 1 and 1/q = 0, this
implies that g is increasing (since f is increasing).

We set ψ := g−1. Using (v)–(ii), increasing from (vi) and Proposition 2.5.14 in [10] we
obtain that ψ ∈ Φw(R

n) and ψ−1 = (g−1)−1 = g. Since ϕ−1 ≈ g = ψ−1, it follows that
ψ|Ω ≃ ϕ [10, Theorem 2.3.6]. Now properties (A0) and (A1) for ψ follow. Moreover, if ϕ
satisfies (aDec)q , then by (vi) ψ satisfies it as well.

When x ∈ Rn \ Ω and t ∈ [0, 1], we have g(x, t) ≈ f(x, t) = β2
0ϕ

−1
∞ (t). It follows that

ψ(x, t) ≃ ϕ∞(t) for sufficiently small values of t and x as before. Therefore, ψ satisfies the
condition of (2.7), and so ψ satisfies (A2). �
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