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Abstract: Severe obesity is a major risk for chronic kidney disease (CKD). Early detection and careful
monitoring of renal function are critical for the prevention of CKD during obesity, since biopsies
are not performed in patients with CKD and diagnosis is dependent on the assessment of clinical
parameters. To explore whether distinct lipid and metabolic signatures in obesity may signify early
stages of pathogenesis toward CKD, liquid chromatography-mass spectrometry (LC-MS) and gas
chromatography-high resolution accurate mass-mass spectrometry (GC-HRAM-MS) analyses were
performed in the serum and the urine of severely obese patients with and without CKD. Moreover,
the impact of bariatric surgery (BS) in lipid and metabolic signature was also studied, through
LC-MS and GC-HRAM-MS analyses in the serum and urine of patients with severe obesity and
CKD before and after undergoing BS. Regarding patients with severe obesity and CKD compared to
severely obese patients without CKD, serum lipidome analysis revealed significant differences in
lipid signature. Furthermore, serum metabolomics profile revealed significant changes in specific
amino acids, with isoleucine and tyrosine, increased in CKD patients compared with patients without
CKD. LC-MS and GC-HRAM-MS analysis in serum of patients with severe obesity and CKD after
BS showed downregulation of levels of triglycerides (TGs) and diglycerides (DGs) as well as a
decrease in branched-chain amino acid (BCAA), lysine, threonine, proline, and serine. In addition, BS
removed most of the correlations in CKD patients against biochemical parameters related to kidney
dysfunction. Concerning urine analysis, hippuric acid, valine and glutamine were significantly
decreased in urine from CKD patients after surgery. Interestingly, bariatric surgery did not restore all
the lipid species, some of them decreased, hence drawing attention to them as potential targets for
early diagnosis or therapeutic intervention. Results obtained in this study would justify the use of
comprehensive mass spectrometry-based lipidomics to measure other lipids aside from conventional
lipid profiles and to validate possible early markers of risk of CKD in patients with severe obesity.
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1. Introduction

According to World Health Organization, in 2016, over 55 million adults suffered from
severe obesity supporting the current consideration of obesity as a global pandemic [1,2].
Obesity is the entry point for the development of different comorbidities, such as type
2 diabetes (T2D), dyslipidemia, or hypertension. Furthermore, obesity and diabetes are
primary causes for the appearance and progression of chronic kidney disease (CKD) [3].
The deleterious effects of obesity on kidney function are associated with a decrease in
the estimated glomerular filtration rate (eGFR) and a higher prevalence of albuminuria
and proteinuria [4], among other alterations. However, there are no reliable markers of
risk for early detection of CKD in patients with severe obesity. Moreover, biopsies are
not performed in patients with CKD and diagnosis is dependent on the assessment of
various clinical parameters [5]. All this importantly contributes to the fact that there is a
high prevalence of undiagnosed patients with CKD, especially in those undiagnosed with
other comorbidities [6]. Thus, it is imperative to find early markers in order to improve
CKD diagnosis, so that these individuals may benefit from early interventions in order to
prevent the development and/or progression of CKD.

Underlying biochemical activities undergoing in patients with severe obesity with
existing CKD can be approached with metabolomics techniques offering knowledge in the
underlying cellular mechanisms in the dynamic process of renal damage to the established
disease [7]. Several authors have used this analytical approach to establish the alterations
caused in the serum metabolomic signature in pathologies, such as obesity and CKD [8,9].
Moreover, there are no published studies that characterize the serum profile of patients
with severe obesity and CKD to identify the concurrent differential factors in this context
of metabolic impairment.

Different studies have highlighted the role of body weight loss in the improvement of
renal function. In this regard, bariatric surgery (BS), has been accepted as the most effective
option to lose weight. Published studies demonstrate that BS improves biochemical, struc-
tural, and ultrastructural measures of experimental diabetic kidney disease and interrupts
the transcriptional program characteristic of progressive CKD [10]. The metabolomics
approach has also been used to study the metabolic effects of BS [11]. However, to our
knowledge, the relation between blood lipidomics, metabolomics, and the development of
CKD has never been examined in individuals with morbid obesity.

The aim of this study is to analyze the existing alterations in CKD patients with severe
obesity applying metabolomics and lipidomic techniques compared with patients without
CKD. Further, this study has the advantage of also investigating the association of lipids
and metabolites identified in serum and urine with the amelioration in kidney function
obtained after one year of bariatric surgery in the same patients. Hence, this study opens a
new avenue in the elucidation of new markers of risk for the diagnosis of CKD in patients
with severe to morbid obesity, so that new strategies can be developed to prevent the
development and/or progression of CKD in these patients.

2. Results
2.1. Impact on the Metabolomic and Lipidomic Fingerprint in Severe Obese Individuals with
Chronic Kidney Disease
2.1.1. Cohort Characterization: Body Weight and Biochemical Analyses

Eleven obese patients with CKD (OD) and fourteen obese patients without CKD (O)
were screened and included in the study (Figure 1, study design). Body weights and
biochemical measurements are shown in Table 1. The percentage of males was higher in
OD than in O subjects. No significant differences were found in age, body weight and
BMI between groups. Regarding the OD cohort, 63.63% were diabetic and followed a
T2D treatment; 90.90% of OD were hypertensive and the whole OD cohort was treated
for hypertension; 63.63% of OD were taking lipid-lowering drugs. Concerning O patients,
28.57% were diagnosed and treated for diabetes; 35.71% were hypertensive and were
treated for hypertension; 14.28% were taking lipid-lowering drugs. Patients with kidney
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disease presented significantly higher glucose levels. Measurements of total circulating
cholesterol and LDL did not show significant differences between groups. However, HDL
levels were significantly lower in OD. Interestingly, OD patients presented TG levels
significantly elevated than O patients. Kidney disease was diagnosed in OD patients
by clinical criteria, with an increase of serum creatinine and uric acid in serum. eGFR
measurement was remarkably lower in OD patients, however, levels of proteinuria and
UACR (urinary albumin:creatinine ratio) were significantly higher in OD compared to
O patients.

Table 1. Body weight and biochemical measurements in OD, OD BS and O patients. Data are presented as mean ± standard
deviation, median or percentages.

Group

Parameters Patients without CKD
CKD Patients

CKD Patients before BS CKD Patients after BS

Acronym O OD OD BS

n 14 11
Age (years), mean ± SD (range) 51.76 ± 10.92 (35–66) 53.09 ± 15.16 (29–71) 54.09 ± 15.16

Gender (Male/Female) (%) 38.47/61.53 66.64/33.36 66.64/33.36
Body weight (kg), mean ± SD (range) 120.51 ± 16.96 (84–152) 116.72 ± 25.33

(93.5–170)
81.07 ± 22.42

(65–125) #
BMI (kg/m2), mean ± SD (range) 42.9 ± 3.72 (36.48–50.0) 41.9 ± 5.98 (36.6–53.3) 28.6 ± 5.69

(22.68–39.78) #
Diabetes mellitus (%) 28.6 63.6 9.1

Hypertension (%) 35.7 90.9 63.6
Lipid-lowering drugs (%) 14.3 63.6 18.1

Glucose (mg/dL), median (range) 100 (79–171) 174 (98–299) * 86 (67–141) #
HbA1c (%), mean ± SD 6.02 ± 0.72 7.46 ± 1.81 * 5.55 ± 0.83 #

Cholesterol (mg/dL), mean ± SD 183 ± 34.74 194 ± 49.62 160 ± 41.70 #
HDL (mg/dL), median (range) 45.9 (35.0–94.0) 35 (21.6–57.3) * 45 (27–78) #

LDL (mg/dL), mean ± SD 103.63 ± 26.19 98.50 ± 37.70 89.27 ± 37.85
TG (mg/dL), mean ± SD 183.46 ± 126.29 314.54 ± 106.16 * 116.36 ± 45.82 #

Uric acid (mg/dL),
mean ± SD 5.52 ± 0.83 7.10 ± 1.69 * 5.64 ± 1.10 #

Serum Creatinine (mg/dL), mean ± SD 0.80 ± 0.18 1.16 ± 0.43 * 1.03 ± 0.39
eGFR (mL/min), mean ± SD 94.18 ± 20.35 73.02 ± 30.76 * 80.72 ± 31.02

Proteinuria (g/24 h), median (range) 0.14 (0.10–0.53) 1.48 (0.77–11.40) * 0.68 (0.34–3.78) #
UACR (mg/g), median (range) 7.6 (3.6–110.4) 1004 (158.0–6825) * 321.79 (38.69–3104) #

Data distribution: Normally distributed data are presented as means. Data that were not normally distributed are presented as medians
(Glucose, HDL, Proteinuria and UACR). Abbreviations: LDL, low density lipoprotein; HDL, high density lipoprotein; TG, Triglycerides;
eGFR, estimated glomerular filtration rate. UACR: urinary albumin:creatinine ratio. Clinical parameters were considered significant when
at least reach a p value ≤ of 0.05. Significant symbols: asterisk (*), significant between OD vs. O patients. Hash (#), significant between OD
BS vs. OD patients.

The possible differential contribution of taking lipid-lowering drugs in the lipidomic
fingerprint (473 features obtained after the relative standard deviation, RSD, filtration) in
OD patients was analyzed. The average of the total useful signal (TUS) obtained from
CKD patients that were taking the drugs was compared with those that were not. The
variation obtained in the average total useful signal (TUS) between both groups was 4.08%
for the percentage of change and 0.06 for the Log2FC. The degree of changes presented
by OD patients with lipid-lowering drugs vs. OD patients without lipid-lowering drugs
showed that most of the features contained in the lipidomic fingerprint, 83.93% (397 out of
473), presented a distribution within the interval of −0.6 to 0.6 of the Log2FC, suggesting a
minimal impact of lipid-lowering drugs in the lipidome signature in OD patients.



Metabolites 2021, 11, 836 4 of 27

Figure 1. Sample collection scheme for CKD patients with severe obesity before and after surgery, and patients with severe
obesity without CKD. Serum samples and urine samples from OD patients were collected before the bariatric surgery
(baseline). Serum samples and urine from OD BS patients were collected after the clinical intervention. First-morning urine
was collected from eight patients with CKD before and after the surgery. Serum samples were collected from O patients.

2.1.2. De Novo Synthesis of Phospholipids and Fatty Acid Remodeling Were Significantly
Increased in Patients with CKD

Serum lipidome was analyzed by LC-MS in ion positive mode. After signal processing,
data treatment and statistical analyses, 71 significant lipid compounds were annotated
between OD and O subjects, and most of the lipid species were increased in OD patients
(Figure 2, lipidomic heatmap for OD vs. O). In a close examination of the significant lipid
compounds obtained in OD vs. O comparison (Table S4): 27 triglycerides (TGs) were found
increased, of which, 23 were unsaturated. Eleven TG had short-chain (C ≤ 50), 12 medium-
chain (C51 to C54) and five long-chain (C ≥ 55). Seven diglycerides (DGs) were found
to be increased (from 32C to 36C) and six of these DGs were unsaturated; 11 significant
phosphatidylcholines (PCs) were obtained (from 30C to 44C). In detail, nine significant
increase PCs were unsaturated and just one, PC (42:8), presented a decreased fold change.
Nine significantly increased lysophosphatidylcholines (LysoPCs) were obtained (from 14C
to 20C) and unlike the rest of the lipid classes analyzed, there was a balance between
saturated (5) and unsaturated (4) LysoPCs. LysoPC (18:0), LysoPC (20:3), and PC (35:3)
reinforce the significance obtained in the statistical analysis with the results obtained in the
ROC Curve test performed (Figure 3, box and whisker plots of features with an AUC value
of one obtained in the ROC curve test in OD vs. O and Table S1) with AUC values of one.
Shingomyelins (SMs) and phosphatidylinositols (PIs) were decreased in OD patients: four
SMs were significant and were unsaturated, and only two PIs were found as significant
and were unsaturated. Three ceramides (Cer) were found significant between OD and O
patients. Ceramides (36:1) and (40:1) were upregulated, and Cer (44:1) was downregulated.
Further, 12 significant lipids showed odd-numbered fatty acyl chains, specifically, one
phosphatidylserine (PS), one LysoPC, four PCs, and six TGs presented odd fatty chains. It
was interesting to note that three significant plasmalogens were obtained and they were
also increased. Assessing the significant lipids obtained in OD vs. O comparison, 38% of
lipids were TGs, 17% were PCs, 12% were LysoPCs and 10% were DGs. Links between
features in OD vs. O comparison were included in the Supplementary Materials in the
lipidomic pathway (Figure S1, Lipidomic pathway for OD vs. O); p-values and VIP values
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were included for each significant feature in Table S4. OPLS-DA model was included in
Supplementary Materials Figure S6).

Figure 2. Heatmap for OD vs. O comparison in serum analyzed by LC-MS. Heatmap was generated with the peak intensities
of the significant compounds found between OD ad O patients in the serum analyzed by LC-MS. OD patients (right)
were represented with red color. O patients (left) were represented with green color. Abbreviations: TG, Triglycerides.
DG, Diglycerides. PC, Phosphatidylcholine. LPC, Lysophosphatidylcholine. Cer, Ceramide. SM, Sphingomyelin. PI,
Phosphatidylinositol. PE, Phosphatidylethanolamine. PS, Phosphatidylserine.

2.1.3. Short Chain TG Showed a Negative Correlation with eGFR in OD Patients

All the significant lipid species obtained after the application of statistical tests were
tested against biochemical parameters highly related to kidney dysfunction (Table 2). TGs,
DGs, ceramides (Cer) and LysoPCs presented a high positive correlation with Glucose in
O patients, however, those correlations were absent in OD patients. TGs were positively
correlated with Cholesterol (short and medium-chain, eight TG were unsaturated), Uric
acid (short-chain, two TG were unsaturated), Creatinine (short and medium-chain, six TG
were unsaturated and three saturated), and Proteinuria (medium-chain, three TG were
unsaturated) in OD patients. TGs were found negatively correlated to eGFR in OD pa-
tients. TGs found in this negative correlation were short-chain TG, of which, three were
unsaturated. Seven LysoPC showed a strong positive correlation with LDL in OD patients
(four LysoPC were saturated and three unsaturated). Ceramide (44:1) was negatively corre-
lated to glucose and cholesterol in O patients (result showed in Table S3). Comprehensive
correlation analysis can be found in Table S3.
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Figure 3. Box and whisker plots with the distribution of samples per group in features that presented
an AUC value of one in the curve ROC analysis performed between OD vs. O patients. LysoPC (18:0),
LysoPC (20:3) and PC (35:3) were obtained in the serum analyzed by LC-MS. Abbreviations: LysoPC,
Lysophosphatidylcholine. PC, Phosphatidylcholine. O patients (left), red. OD patients (right), green.

Table 2. Correlation analyses summarize the table for serum LC-MS in OD vs. O comparison. The direction of the
relationship was assessed considering the general trend, through a positive or negative correlation, of the significant
correlations obtained for each metabolite for each clinical parameter. Complete correlation data for each significant feature
obtained for each group of patients against the different clinical parameters can be found in Table S3.

O OD

Highlighted Relationship Highlighted Relationship

Glucose Cer, PE, LysoPC, DG, TG Positive — —

Cholesterol Cer, PS, PC Positive TG Positive

LDL — — LysoPC Positive

Uric Acid LysoPC, PC Positive TG Positive

Creatinine SM, PC, LysoPC, TG Negative SM, Positive
PC, LysoPC, TG TG Positive

eGFR — — TG Negative

Proteinuria — — DG, TG Positive

UACR SM, PC Positive — —

(—) Lack of significant correlation. Abbreviations: TG, Triglycerides. DG, Diglycerides. PC, Phosphatidylcholine. LPC, Lysophosphatidylcholine.
Cer, Ceramide. PE, Phosphatidylethanolamine. PS, Phosphatidylserine. SM, Sphingomyelin. UACR: urinary albumin:creatinine ratio.
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2.1.4. Essential Amino Acids Are Increased in Obese Patients with CKD

Serum polar metabolomic profile was analyzed by GC-HRAM-MS; 23 significant polar
metabolites were annotated between OD and O patients (Figure 4 and Table S4). Essential
amino acids were mostly increased in OD patients and isoleucine and lysine were found
significant. Assessing conditional amino acids, the trend was mixed with a significant
increase in 4-hydroxyproline, proline and tyrosine, and a significant decrease in cysteine
and arginine in CKD patients. In the TCA cycle, malate and succinate were significantly
increased and decreased, respectively. Links between features in OD vs. O comparison
were included in Supplementary Materials in the amino acid pathway (Figure S2, Amino
acid pathway for OD vs. O). p-values and VIP values were included for each significant
feature in Table S4. OPLS-DA model was included in Supplementary Materials Figure S7).

Figure 4. Heatmap for OD vs. O comparison in serum analyzed by GC-HRAM-MS. Heatmap was generated with the peak
intensities of the significant compounds found between OD ad O patients in the serum analyzed by GC-HRAM-MS. OD
patients (right) were represented with red color. O patients (left) were represented with green color.

2.2. Bariatric Surgery Improves the Serum Lipidomic Profile and Metabolomic Fingerprint in
Obese Patients with CKD

The same CKD patients with severe obesity analyzed previously (OD patients) under-
went BS (OD BS patients) and samples of serum and urine were collected 12 months after
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surgery. As previously described by Morales et al. [12], CKD patients with severe obesity
after bariatric surgery showed a drastic weight reduction with a significant decrease in
proteinuria, albuminuria, uric acid measurements and an improvement in glomerular hy-
perfiltration and HDL levels (Figure 1). Weight loss after BS induces a triglyceride decrease
in parallel with a decrease in adipokines and pro-inflammatory and pro-fibrotic parame-
ters [12]. The possible differential contribution of the method used in the bariatric surgery
in the lipidome from patients who underwent roux-en-Y gastric bypass and patients who
underwent sleeve gastrectomy was analyzed. The average of the total useful signal (TUS)
obtained from patients under the two different methods of surgery was 16.39% for the
percentage of change and 0.26 for the Log2FC (Data not shown). The degree of changes
presented by patients who underwent gastric bypass vs. sleeve gastrectomy showed that
most of the features, 90.69%, presented a distribution within the interval 0.8 to 0.8 of the
Log2FC suggesting that the different bariatric procedures did not introduce a remarkable
variation in patients’ lipidome.

Lipid signatures were also analyzed in serum by LC-MS in these patients after
12 months of BS. The BS promoted differentiation in the lipidome and 46 significant lipids
were annotated between these patients before and after surgery (Figure 5). Significant lipid
compounds were generally decreased in OD BS. Analyzing the significant features obtained
in OD BS vs. OD comparison (Table S4): 23 TGs were found to decrease and 20 of these
TGs were unsaturated. Eight TGs had short-chain, 11 medium-chain, and four long-chain.
Three DGs were decreased, of which, two were unsaturated. Regarding PCs, just three
were found significant, two of them, PC (39:0) and PC (44:5) were increased and only one,
PC (36:3) was decreased. Two decreased and unsaturated phosphatidylethanolamines
(PEs) were found in the lipidomic analysis. Furthermore, three unsaturated PSs were
decreased between OD BS vs. OD patients. Two PIs, two SMs, and two plasmalogens were
increased and were also unsaturated. Despite all these changes in different lipid species,
we did not find significant differences in glycerophosphocholines, mainly LysoPCs and
most of the PCs, between OD BS and OD patients (Table S4). LysoPC (18:0), LysoPC (20:3)
and PC (35:3), the features that presented the best discriminatory capacity between OD
and O patients, did not show significant differences and presented a similar distribution
between OD BS and OD patients (Figure 6). Assessing the significant lipids obtained in
OD BS vs. OD comparison, 50% of lipids were TGs, 9% were PCs, around 6–7% were
PEs, PS’ and DGs. Links between features in OD BS vs. OD comparison were included in
Supplementary Materials in the lipidomic pathway (Figure S3, Lipidomic pathway for OD
BS vs. OD). p-values and VIP values were included for each significant feature in Table S4.
OPLS-DA model was included in Supplementary Materials Figure S8).

2.2.1. Diglycerides and Medium-Chain Triglycerides Presented a Positive Correlation with
Uric Acid in Obese Patients with CKD after Surgery

All the significant lipid species obtained after the application of statistical tests were
tested against biochemical parameters highly related to kidney dysfunction (Table 3).
Initially, while TG and DG were the species correlated with renal function markers in OD,
after clinical intervention those correlations with creatinine, eGFR and proteinuria were
lost. Bariatric surgery specifically modified the correlation presented with uric acid adding
DG to the correlation and medium-chain TG, instead of the short-chain TG obtained in
OD patients. Of note, the lack of correlations with UACR and glucose was present in
patients before and after clinical intervention. Comprehensive correlation analysis results
are included in Table S3.
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Figure 5. Heatmap for OD BS vs. OD comparison in serum analyzed by LC-MS. Heatmap was generated with the peak
intensities of the significant compounds found between OD BS and OD patients in the serum analyzed by LC-MS. OD
patients (right) were represented with red color. OD BS patients (left) were represented with green color. Abbreviations: TG,
Triglycerides. DG, Diglycerides. PC, Phosphatidylcholine. Cer, Ceramide. SM, Sphingomyelin. PI, Phosphatidylinositol. PE,
Phosphatidylethanolamine. PS, Phosphatidylserine.

Table 3. Correlation analyses summarize table for serum LC-MS in OD BS vs. OD comparison. Direction of the relationship
was assessed considering the general trend, through a positive or negative correlation, of the significant correlations
obtained for each metabolite for each clinical parameter. Complete correlation data for each significant feature obtained for
each group of patients against the different clinical parameters can be found in Table S3.

OD BS OD

Highlighted Relationship Highlighted Relationship

Glucose — — — —

Cholesterol SM, LysoPC, PI Positive TG Positive

LDL SM Positive LysoPC Positive

Uric Acid DG, TG (medium) Positive TG (short) Positive

Creatinine — — TG Positive

eGFR — — TG Negative

Proteinuria — — DG, TG Positive

UACR — — — —

(—) Lack of significant correlation. Abbreviations: TG, Triglycerides. DG, Diglycerides. LPC, Lysophosphatidylcholine. SM, Sphingomyelin.
PI, Phosphatidylinositol.
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Figure 6. Box and whisker plots in OD BS and OD patients comparison with the distribution of
samples that showed the best discriminatory capacity between OD and O patients in the ROC Curve
Test: LysoPC (18:0), LysoPC (20:3) and PC (35:3). Abbreviations: LysoPC, Lysophosphatidylcholine.
PC, Phosphatidylcholine. OD BS patients (left), blue. OD patients (right), green.

Clinical intervention in OD BS patients produced changes in their lipidome that
allowed them to reduce the differences compared to O patients at the lipidomic level. This
behavior is supported by the similarity existing between OD BS and O samples in the PCA
analysis (Figure S5). Furthermore, intensity peaks represented in box and whisker plots for
TGs, DGs, PCs, PEs, PIs, PSs, Cers and SMs of 42C presented similar levels between OD BS
and O patients (Figure 7).

2.2.2. Isoleucine and Proline Decreased in the Serum of CKD Patients with Obesity after
Bariatric Surgery

Polar metabolomics profile in serum was analyzed by GC-HRAM-MS; 28 signifi-
cant polar metabolites were annotated between CKD subjects with obesity before and
after bariatric surgery (Figure 8 and Table S4). Interestingly, four essential amino acids
(isoleucine, lysine, threonine, and valine) and three conditional amino acids (proline, serine
and tyrosine) were significantly downregulated. On the contrary, just two conditional
amino acids, glutamine and glycine, were significantly upregulated after bariatric surgery.
Furthermore, alanine, a non-essential amino acid, was significantly increased in OD BS.
Links between features in OD BS vs. OD comparison were included in Supplementary
Materials in the amino acid pathway (Figure S4. Amino acid pathway for OD BS vs. OD).
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p-values and VIP values were included for each significant feature in Table S4. OPLS-DA
model was included in Supplementary Materials Figure S9).

Figure 7. Representations of the sums of the intensity peaks of each lipid subclass per group of
patients with box and whisker plots. Included all the significant features obtained in OD vs. O
and OD BS vs. OD comparisons in the LC-MS analysis performed in serum. Axis Y: sums of the
normalized peak intensities (areas) showed. OD BS patients presented a similar lipidomic profile
than O patients. Red, O patients; Green, OD patients; Blue, OD BS patients.
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Figure 8. Heatmap for OD BS vs. OD comparison in serum analyzed by GC-HRAM-MS. Heatmap was generated with the
peak intensities of the significant compounds found between OD BS and OD patients in the serum analyzed by LC-MS. OD
patients (right) were represented with red color. OD BS patients (left) were represented with green color.

2.3. Bariatric Surgery Decreased Levels of Valine and Glutamine in Urine from Patients with CKD

The polar metabolite fingerprint in urine between obese patients with CKD before and
after surgery was analyzed by GC-HRAM-MS. Fifteen significant polar metabolites were
annotated in these patients after surgery (Table S4). Valine and glutamine were significantly
decreased. Hippuric acid showed significantly higher levels after surgery. p-values and
VIP values were included for each significant feature in Table S4. OPLS-DA model was
included in Supplementary Materials Figure S10).

3. Discussion

The present study reflects the impact of renal damage in patients with severe obesity
using a comprehensive metabolomic point of view. To our knowledge, there are no
published studies that cover this combination of factors of severe obesity and CKD with
these metabolomics approaches in serum and urine. The analysis of the serum metabolome
by LC-MS and GC-HRAM-MS revealed that CKD patients with severe obesity presented
a significant increase in the circulating levels of different TGs, DGs, PEs, PCs, LysoPCs,
suggesting a distinguishing signature for the lipidome in these patients with renal damage.
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Our results expose that morbidly obese patients with CKD undergoing bariatric surgery
showed a decreased neutral lipids fingerprint associated with a significant decrease in
proteinuria and renal function as well as control of metabolic parameters. We also identified
a polar metabolic fingerprint in these patients associated with a decrease in the essential
amino acids in serum and urine after bariatric surgery.

The intricate link between obesity and CKD is not completely decoded [13], but obesity
is a significant risk factor for the development and progression of CKD [14], even individu-
als with an elevated BMI have a greater risk of developing proteinuria [15]. Importantly,
CKD should be considered as a complication of overweight and obesity, regardless of
whether the association was independent or through the influence of other factors, such as
diabetes, hypertension, cardiovascular disease, metabolic syndrome and high fructose in-
take. However, the exact mechanisms underlying the association between obesity and CKD
remain unclear [13]. A combination of hemodynamic and metabolic changes and renal lipo-
toxicity (excessive lipid deposition) may cause or aggravate CKD in obese individuals [15].
Firstly, the physiologic response of the kidney to obesity is mediated via an increase in
renal plasma flow, glomerular filtration rate (GFR), filtration fraction, and proximal tubular
reabsorption of sodium. Secondly, the altered production of adipokines and cytokines
in an obesogenic state induces adaptive or maladaptive responses in renal cells against
the mechanical forces of glomerular hyperfiltration. Many adipokines, including leptin,
adiponectin, vascular endothelial growth factor, angiopoietins, and resistin, play a role in
extracellular matrix accumulation, leading to renal fibrosis [16]. And finally, abnormal lipid
accumulation induces detrimental changes to renal lipid metabolism that induce insulin
resistance, enhanced levels of inflammation, oxidative stress and endoplasmic reticulum
(ER) stress [17].

It is well known that fat accumulation in the kidneys causes structural and functional
changes in glomerular and tubular epithelial cells, leading to the development of obesity-
related glomerulopathy (ORG), a secondary form of focal segmental glomerulosclerosis
(FSGS). These changes in the setting of T2D irreparably damage the kidney and lead to
the progression of end-stage renal disease (ESRD) [3]. However, not all patients with
obesity develop CKD, and even the limited presence of full nephrotic syndrome in ORG
can be clinically significant since a progressive increase in proteinuria may go unnoticed
for years, leading to a late diagnosis of renal failure [3]. Therefore, it is extremely important
to identify those who are at higher risk. Our hypothesis is that a comprehensive lipidome
analysis is crucial to the identification of potential markers of risk of CKD during obesity
and elucidation of the mechanistic basis.

In our study, proteinuria and eGFR were the primary clinical parameters (markers of
risk of CKD) used for the diagnosis of CKD in patients with severe obesity. Furthermore,
the OD group comprised a higher number of hypertensive and diabetic subjects than the O
group, which is reflected in lower values of HDL, and higher levels of TG and UACR on
average in the OD group. Therefore, OD patients presented a worse metabolic condition
than O patients. There were no significant differences in total cholesterol in OD vs. O
comparison, associated with the fact that 63.6% of OD patients were taking lipid-lowering
drugs. Moreover, it is important to consider in our study that lipid-lowering drugs homog-
enized the lipidomic profile of OD patients with a similar profile to OD patients that were
not under the treatment. However, TGs were found to significantly increase in patients
with severe obesity. Hypertriglyceridemia is a well-known condition of obese and CKD
patients. Increased deposition of TGs in the kidneys has been associated with glomerular
hyperfiltration, albuminuria and the increase of proinflammatory and proangiogenic cy-
tokines [15]. Within the renal glomerular cells, specifically in podocytes, mesangial cells
and proximal tubules, ectopic TGs accumulation leads to local inflammation, increased
nitric oxide (NO) generation, mitochondrial dysfunctions and eventual fibrosis [18]. There-
fore, high levels of serum TG (200–499 mg/dL) have been proposed as feasible predictors
of hospitalization for new-onset kidney disease [19]. Furthermore, elevated levels of serum
TG to HDL ratio have been associated with worsening of eGFR and CKD development



Metabolites 2021, 11, 836 14 of 27

in clinical studies [20]. HDL cholesterol levels were reduced in OD vs. O patients. It has
been published that oxidant stress-mediated inflammation because of altered functionality
of HDL contributes to the pathogenesis of kidney disease [21]. The presence of HDL dys-
functions could result in the subsequent reduction of anti-inflammatory and antioxidant
properties in OD patients. However, we still need more data related to the HDL status
issue to dampen the progression of CKD in obese patients.

Here, the aggravated hypertriglyceridemia condition of OD compared with O subjects
is characterized by an increase of short and medium-chain TGs mainly, complemented
by elevated levels of DGs. We came across strong positive correlations of TGs with the
clinical parameter proteinuria in OD patients, not found in O subjects without renal
disease. Moreover, the analysis demonstrated that eGFR was negatively correlated with
TGs in OD patients. This points to a possible utility of TGs as a CKD progression marker
of risk once CKD is established. In addition, the impact of deposition of saturated vs.
unsaturated lipids in the progression of CKD has been discussed [22]. In this regard, the
accumulation of ectopic lipid and lipid intermediates, like palmitate, ceramide, saturated
NEFA, derived from other sources contribute significantly toward the onset and progression
of CKD [23]. Although, in our study, we found positive correlations of short and medium-
chain TGs with serum creatinine in both groups of patients, the saturated and unsaturated
TG were correlated with this indirect parameter of renal function in OD patients but only
unsaturated in O patients.

Studies of lipids in CKD, including End-stage renal disease (ESRD), have been lim-
ited to measures of conventional lipid profiles [24]. It is remarkable that in our study,
simultaneous upregulated levels of PCs and LysoPCs became a differential marker of the
concurrency of CKD in patients with severe obesity, suggesting that these lipids could
be possible markers of risk of renal dysfunction in these patients. PCs and LysoPCs are
typically upregulated during obesity [8] and serum LysoPCs and urine PCs have been
proposed as CKD progression biomarkers [25,26]. Although the enzyme lecithin choles-
terol ester transfer protein (LCAT) has been proposed as a unique tool to evaluate the
impact of alterations in the HDL system on the progression of renal disease, LysoPCs
concentration also depends on LCAT, which activity is decreased in CKD patients [27].
Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD
patients [28], suggesting that circulating LCAT levels could predict CKD progression in
severe obese individuals at early stages of renal dysfunction. Importantly, in our analyses
specifically, LysoPC (18:0), LysoPC (20:3) and PC (35:3) presented the greatest predictive
capacity (AUC value of one) to discriminate between OD and O patients (Figure 3).

Sphingolipids may play a role in the development and progression of CKD, and patients
with CKD have higher levels of pro-oxidant and pro-inflammatory factors that could be
responsible for the activation of sphingomyelinases to produce ceramides [29]. It has been
reported that increased levels of plasma ceramides were associated with CKD, and ceramides
may play an important role in the regulation of the inflammatory response [29]. We obtained
two significantly increased ceramides, Cer (36:1) and Cer (40:1) in OD vs. O comparison, but
Cer (44:1) was downregulated. The biological properties of ceramides are intensively affected
by the different lengths of the acyl-chains of these free fatty acids [30]. It has been reported
that ceramides with different acyl-chains may play antagonist roles [30,31] as we observed in
our study.

Interestingly, among the 69 fatty acyl-derived lipids that were significant in the compari-
son of OD vs. O, 12 turned out to show odd-numbered fatty acyl chains (one PS, one LysoPC,
four PCs, and six TGs). Odd-chain fatty acids (OCFAs) have a bacteria origin and can be
endogenously synthesized from valine and isoleucine catabolism that generated propionyl-
CoA, a precursor in the OCFAs biosynthesis [32]. We obtained significantly increased levels
of the conditional and essential amino acids proline and isoleucine, and tyrosine, an aromatic
amino acid in CKD patients with severe obesity. Elevations of branched-chain amino acids
(BCAA) and aromatic amino acids, upregulated in obesity [33] and diabetes [34], have been
associated with the development of metabolic diseases [35–37]. BCAA may be related to
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insulin resistance, lipids (phospholipids, fatty acids and sphingomyelins) may accumulate in
the kidneys and citric acid cycle metabolites possibly indicate mitochondrial dysfunction [38].
To our knowledge, there is not much known of the association between OCFAs levels and
obesity [39] or CKD, but blood levels of some specific OCFAs correlated inversely with insulin
resistance and risk of diabetes [40]. Furthermore, as we mentioned, we found upregulated
levels of these BCAA in OD patients, thereby the increased odd-chains lipids could reflect an
impaired bacterial metabolism and increased metabolism of BCAA amino acids to produce
propionyl-CoA.

BS is an effective treatment for morbid obesity, type 2 diabetes and CKD that reduces
the long-term progression of CKD [9]. Bariatric, metabolic and anti- hypertensive effects are
the three key pillars that underlie renoprotection in obese patients undergoing BS [10]. As
previously shown in our patients, drastic weight loss induced by BS promoted a significant
improvement in glucose, HDL, uric acid, C-peptide, proteinuria, and UACR parameters
in OD BS vs. OD patients [12]. Furthermore, in this study BS modified the correlations
presented in OD BS and OD patients. The clinical intervention promoted a change in
the lipidome of CKD patients removing the existing correlation between TGs and other
clinical parameters, such as cholesterol, creatinine, eGFR and proteinuria in OD BS patients.
The significant decrease in the TGs levels induced by BS in OD BS patients removed the
positive correlations with TGs and eGFR and proteinuria, the primary clinical parameters
used for renal damage diagnosis in CKD patients with severe obesity as an indication of
improvement in these patients after surgery.

With our metabolomics approach, we have revealed a decrease in serum TGs, DGs,
PSs, 2 BCAA and a reduction of essential and conditional amino acids after BS. TGs, DGs
and BCAA results coincide with what has been already described about the impact of
BS [41,42]. Moreover, lowering circulating BCAA by means of BCAA intake reduction has
been associated with a metabolic control improvement [43].

Despite the risk of complications of bariatric surgery, the use of BS for the treatment of
CKD and diabetes in patients with obesity could be appropriate due to the improvement
obtained in the metabolic state and the renal condition. After the surgery, we found
scarce differences in TGs, DGs, PCs, PEs, PSs, Cer, and PIs (only six became significant)
between OD BS and O patients (Figure 7). There are no published studies that show
similarity between CKD obese patients that underwent BS compared to non-CKD obese
patients. However, we revealed that some of the PCs and LysoPCs did not change in OD
BS compared to OD patients (Figure 6) and therefore, LysoPC (18:0), LysoPC (20:3) and
PC (35:3) could be proposed as markers of risk in CKD progression. LysoPCs have been
proposed as biomarkers of nephrotoxicity in an experiment of nephrotoxicity induced by
drugs in male rats [44]. These authors described that the production of oxidative species
is related to the mechanism of drug-induced nephrotoxicity and the release of reactive
nitrogen species (RNS) and reactive oxygen species (ROS) imbalance the oxidation and
the antioxidants systems resulting in kidney damage [44]. Our results suggested that the
chronic renal damage underlying metabolic alterations in obese patients were not fully
reverted by the surgery. These lipid species could be associated with the non-reverted
normal renal condition present at the time of measurements after surgery or they require
more time for normalization. We cannot also discard an association of high levels of
PCs and LysoPCs in OD BS with other unfavorable renal complications or postoperative
complications that also show a direct relationship with surgical intervention [45].

In patients undergoing surgery, we could analyze first morning urine by GC-Orbitrap.
First morning void is less influenced over a spot urine sample by hydration status and
physical activity [46]. Moreover, the urine specimen obtained at this specific time includes
an overnight fast, with the consequent reduction of the effect of the medication or the last
meal [47]. In general, metabolites in urine presented only minor differences between OD
BS and OD patients. We found lower levels of glutamine (Gln) and valine (Val), together
with increased hippuric acid in morbidly obese subjects with CKD after BS. Urine Gln has
been reported to change associated with CDK worsening condition because it was higher in
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4/5 CKD vs. 2/3 CKD patients [48]. Therefore, the decrease in urine Gln and the increase
of serum Gln could be associated with improved reuptake after BS. Urine Val showed
the same trend as serum Val, decreased after BS. Hippuric acid, a uremic toxin, has been
reported elevated in the serum of uremic patients and is associated with the progression of
CKD [49], therefore, high hippuric levels found in urine suggested an improved removal
of these uremic toxins after surgery.

Our results should be confirmed in a larger prospective cohort study to validate the
important findings obtained in the lipidomic and the metabolomic characterization of CKD
patients with severe obesity. We have identified specific lipid species, such as LysoPC (18:0),
LysoPC (20:3), and PC (35:3) as possible biomarkers in CKD progression in severely obese
patients, features that should be confirmed in a larger prospective study in a target analysis

Our study has several limitations, such as the small number of patients used in the
study, the lack of kidney histology in most of the patients for the diagnosis of CKD, and
the lack of a control group of CKD patients who did not undergo bariatric surgery to be
considered as a randomized study. However, the research of the association of lipids and
metabolites identified in serum and urine with the CKD amelioration obtained after a year
of bariatric surgery in the same patient must be highlighted as the strength of this study.

In conclusion, in this study, the changes found in lipids and metabolites could have
significant value in addition to conventional renal risk markers and may contribute to the
early identification of renal malfunction in obese patients. The use of bariatric surgery in
obese patients with advanced CKD might provide benefits by delaying the progression
towards worse kidney decline. Even, patients who require kidney replacement therapy,
BS might provide an opportunity to achieve the weight loss required to be eligible for a
kidney transplant. Our results, if confirmed in larger prospective cohort studies, could
eventually open the door for a lipidomic-metabolomic-based risk assessment in primary
prevention of renal disease in severe obesity.

4. Materials and Methods
4.1. Study Cohort

This is an observational, prospective, single-center and not randomized study to
analyze the effect produced by CKD in the metabolomic and lipidomic signature in patients
with severe obesity and to evaluate the effect of weight loss in these obese patients with
CKD who underwent BS (trial registration NCT02644928). CKD patients with severe
obesity (OD) were selected under the consideration of the following inclusion criteria,
already described by Morales et al. [12]: (i) body mass index (BMI) > 35 kg/m2 plus
eGFR 30–60 mL/min and proteinuria >1 g/24 h or eGFR > 60 mL/min and proteinuria
>2.5 g/24 h despite receiving maximally tolerated doses of renin-angiotensin-aldosterone
system (RAAS) blocker and (ii) BMI > 40 kg/m2 with a eGFR > 30 mL/min and proteinuria
>0.5 g/24 h despite receiving maximally tolerated doses of RAAS blocker. For the renal
function criterion, estimated GFR (eGFR) was used (see description in Clinical Parameters
test). The follow-up time was 24 months. The exclusion criteria were defined as follows:
(1) Patients who had participated or were participating in another clinical trial or had taken
an experimental drug in the last 28 days. (2) Patients with renal transplantation and/or
chronic replacement therapy (hemodialysis and/or peritoneal dialysis). (3) Subjects with
poorly controlled blood pressure (SBP > 170 mmHg or DBP > 110 mmHg). (4) Patients
with a history of cardiovascular events in the past six months. (5) Patients treated with
immunosuppressants. (6) Subjects with a history of renovascular disease, autoimmune
diseases, cancer, drug use, or obstructive uropathy. (7) Patients who did not sign the
informed consent. (8) Patients who were pregnant or lactating. (9) Patients who did
not sign the informed consent; 11 patients were included in the study that fulfilled the
mentioned inclusion criteria.

The impact of kidney damage in the metabolomic profile of CKD patients with severe
obesity was contrasted with the incorporation of a group of 14 patients with severe obesity
without CKD (O) with eligibility criteria of BMI > 35 kg/m2, eGFR > 60 mL/min and/or
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proteinuria < 0.30 g/24 h, did not receive any medication known to interfere with the
studied variables and were matched in age with the patient group OD. Patients with severe
obesity without CKD (O) did not present renal insufficiency or proteinuria.

A potential source of bias derived from the heterogeneity of CKD patients with severe
obesity (OD patients) was addressed by analyzing the lipidomic total useful signal (TUS)
of each CKD patient with severe obesity before the clinical intervention. The standard
deviation from the lipidomic TUS was 10.90 and data were normally distributed. Further,
the possible differential contribution of taking lipid-lowering drugs in the lipidomic fin-
gerprint (473 features obtained after RSD filtration) in OD patients was analyzed and the
variation obtained in the average lipidomic TUS between both CKD patients that were
taking the drug and those that were not, was 4.08% for the percentage of change and
the 0.06 for the Log2FC. Finally, the possible differential contribution of the method used
in the bariatric surgery in the lipidome from patients who underwent Roux-en-Y gastric
bypass and patients who underwent sleeve gastrectomy was analyzed. The variation in the
lipidomic total useful signal between CKD patients who underwent gastric bypass or sleeve
gastrectomy was 16.39% for the percentage of change and 0.26 for the Log2FC. Therefore,
CKD patients with severe obesity did not present sensible differences in their lipidomic
profile despite showing different comorbidities, moreover, lipid-lowering drugs and the
approximation used in the bariatric surgery did not introduce a remarkable variation in
these patients.

4.1.1. Bariatric Surgery

After the inclusion in the study, CKD patients with severe obesity were treated with a
reduced-calorie diet and those patients who did not present the expectable improvement
in renal parameters were proposed for the clinical intervention. Bariatric surgery was
performed in OD patients (OD BS). The specialized obesity surgery team performed two
types of bariatric surgery in CKD obese subjects (OD) fitting the best surgery for the
patients. Roux-en-Y gastric bypass was performed in eight CKD obese patients and sleeve
gastrectomy was performed in three of these patients.

4.1.2. Clinical Parameters Tests

Fasting blood samples in each patient visit were collected in the early morning to
perform the following lab analysis: serum creatinine, glucose, total cholesterol, HDL,
LDL (Fridewald formula), triglycerides, and uric acid. Twenty-four urine samples were
collected to measure proteinuria, urea, and creatinine. First-morning urine was collected
to measure the urinary albumin:creatinine ratio (UACR). Bodyweight and BMI were
monitored throughout the study.

Evaluation of renal function was determined through the estimated GFR (eGFR) at all
the prespecified visits (−6 and −3 months, baseline and months 3, 6, 12, and 24). eGFR was
determined applying two creatinine-based equations, the Modification of Diet in Renal Disease
(MDRD) and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) method
based on a creatinine equation. Both formulas were adjusted for body surface area (BSA),
a limitation for the assessment of renal function in obesity [50], and conditions associated
with drastic weight change. Thus, we reversed the adjustment of the result by applying the
following formula (GFR adjusted = GFR unadjusted/BSA × 1.73). BSA was calculated by the
DuBois and DuBois formula (BSA = 0.007184 ×Weight 0.425 × Height 0.725) [51].

A more detailed description of the body measurements and the biochemical test
performed in patients were published by Morales et al. [12]. Differences between OD and
O patients in the different clinical parameters presented in this work were exposed by
performing a Mann-Whitney U test. Clinical parameters with a p-value ≤ of 0.05 were
considered significant. Data distribution of clinical parameters from OD and O patients
were analyzed selecting the D’Agostino & Pearson test in GraphPad Prism 8.01.
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4.1.3. Study Design

The present study has been developed with serum and urine samples of CKD patients
with severe obesity before bariatric surgery (OD patients) and the same patients with
CKD after bariatric surgery (OD BS patients), and patients with severe obesity without
CDK (O patients). Eleven patients with CKD and 14 patients without CKD were included
in the study. Serum samples and urine samples from OD patients were collected before
the bariatric surgery (baseline). Serum samples and urine from OD BS patients were
collected after the clinical intervention. Serum samples were collected from O patients.
First morning urine was collected from eight patients with CKD before and after the surgery.
For O patients only 24-h urine was available. Therefore, only urine from CKD patients
before and after surgery was included in the analysis as it has been reported that the use of
different urine specimens can result in variability in the urine metabolome [47].

In the present work, samples obtained from CKD patients with severe obesity before
bariatric surgery will be referred to as OD (obese disease). Samples obtained from CKD
patients with severe obesity after bariatric surgery will be referred to as OD BS (obese
disease bariatric surgery). Samples obtained from non-CKD patients with severe obesity
will be referred to as O (obese).

4.1.4. Samples Collection

Blood samples were collected in the early morning in serum tubes provided with a gel
serum separator. Then, samples were centrifuged (3500 rpm, 15 min at 4 ◦C), aliquoted and
stored at −80 ◦C until extraction. Urine, first void in the morning, was collected, aliquoted
and stored at −80 ◦C until extraction. Sample collection procedures were in accordance
with the Helsinki declaration and approved by the local ethics committee.

4.2. Lipidomic Untargeted Analysis in Serum Samples by Liquid Chromatography Coupled to
Mass Spectrometry (LC-MS)
4.2.1. Lipidomic Extraction, Sample Preparation

A specific method developed to analyze the lipidome was used with the serum sam-
ples [52]. The lipidomic fraction was extracted following a modified Folch technique [53];
10 µL of each sample were added to 10 µL of 0.9% NaCl and 120 µL of CHCl3: MeOH (2:1,
v/v) containing a 2.5 ppm solution of different lipids standards (to improve precision of
quantitative analysis, data normalization and control instrument). The solution contained
the following standards purchased from Sigma Aldrich: LPC(17:0) (1-heptadecanoyl-2-
hydroxy-sn-glycero-3-phosphocholine), PC(17:0/17:0) (1,2-diheptadecanoyl-sn-glycero-3-
phosphocholine), PE(17:0/17:0) (1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine),
Cer(d18:1/17:0) (N-heptadecanoyl-D-erythrosphingosine), PC(16:0/d31/18:1) (1-palmitoyl-
d31-2-oleoyl-sn-glycero-3-phosphocholine), SM(d18:1/17:0) (N-heptadecanoyl-D-erythro-
sphingosylphosphorylcholine), CE(17:0) (Cholest-5-en-3b-yl, heptadecanoate). Addition-
ally, TG (17:0/17:0/17:0) 1,2,3-triheptadecanoyl-sn-glycerol, Triheptadecanoin) were ac-
quired from Larodan (Solna, Sweden). Samples were randomized, vortex-mixed and put
on ice for 30 min. After that, samples were centrifuged (9400× g, 3 min, 4 ◦C). Then, 60 µL
of the lower layer of each sample was transferred to a glass vial with an insert and 60 µL of
CHCl3: MeOH (2:1, v/v) was added. Samples were stored at −80 ◦C until analysis.

Equipment robustness and lipid quantification were evaluated with calibration curves of
7 points (Concentrations of 0.1, 0.5, 1, 2, 3, 4, 5 ppm) prepared with LPC(18:0) (1-octadecanoyl-
sn-glycero-3-phosphocholine), Cer (d18:1/18:1 9Z)) (N-Oleoyl-D-sphingosine), PC (18:0/18:0)
(1,2-Distearoyl-sn-glycero-3-phosphocholine), PE (16:0/16:0) (1,2-Dipalmitoyl-sn-glycero-3-
phosphocholine), LysoPE (18:1(11Z)) (1-O-Palmityl-sn-glycero-3-phosphocholine), CE (16:0)
(Cholest-5-en-3β-yl hexadecanoate), CE (18:0) (Cholest-5-en-3β-yl octadecanoate), CE (18:1)
(Cholest-5-en-3b-yl octadecenoate), CE (18:2) (Cholest-5-en-3β-yl octadecadienoate), TG
(16:0/16:0/16:0) (1,2,3-trihexadecanoyl-sn-glycerol), TG (18:0/18:0/18:0) (1,2,3-trioctadecanoyl-
sn-glycerol) purchased from Sigma Aldrich and PC (16:0/16:0) acquired from Larodan (Solna,
Sweden).
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The stability and reproducibility of the system were checked with quality control
(QC) samples prepared with patient samples. Quality control samples were extracted
in the same way as ordinary samples. QC samples were prepared by combining the
leftover of each sample after centrifugation. The total was centrifuged, 60 µL of the lower
layer was transferred to the vials with insert, and 60 µL of CHCl3: MeOH (2:1, v/v) was
added. Samples were stored at −80 ◦C until analysis. To ensure that data reflects the
biological complexity of the samples, consequent signals derived from the extraction and
the instrumental analysis were assessed with extraction blanks prepared as patient samples
without any biological trace.

4.2.2. UHPLC-ESI-Q-TOF-MS Analysis

An ultra-high-performance liquid chromatography-electrospray ionization quadrupole
time-of-flight (UHPLC-ESI-Q-TOF-MS) was used to analyze the samples on positive ion-
ization mode based on previously set conditions [52]. Samples were analyzed by duplicate.
UHPLC system was an Agilent Infinity 1290 provided by Agilent Technologies (Santa Clara,
CA, USA) equipped with a multisampler (kept at−10 ◦C). Needle wash solutions were per-
formed with 10% DCM in MeOH and ACN:MeOH:IPA:H2O (1:1:1:1, v/v/v/v), and 0.1% of
HCOOH after each injection for 7.5 s. The system was equipped with a column thermostat
(maintained at 50 ◦C) and a quaternary solvent manager. An ACQUITY UPLC BEH C18
column was used for separations (2.1 mm × 100 mm, particle size 1.7 µm) purchased at
Waters (Milford, CT, USA). Injection volume was 1 µL and the flow rate was established at
0.4 mL/min. Mobile phases were composed of (A) H2O + NH4AC 10 mM + 0.1% HCOOH
and (B) ACN: IPA (1:1, v/v) + NH4AC 10 mM + 0.1% HCOOH. The gradient was from 0
to 2 min 35–80% B, 2 min to 7 min 80–100% B and 7 to 14 min 100% B. A re-equilibration
of 7 min was performed after each run to bring the system to initial conditions (35% B).
Mass Spectrometer was an Agilent 6545 quadrupole time-of-flight (Q-TOF) mounted with
a dual jet stream electrospray (dual ESI) ion source interface. Nitrogen was obtained from a
nitrogen generator (PEAK Scientific, Renfrewshire, Scotland, UK) as a sheath gas at a flow
rate of 11 l/min at 379 ◦C. As a Collision gas was used Pure Nitrogen (6.0) from Praxair
(Fredericia, Denmark). The capillary voltage was maintained at 3600 V and nozzle voltage
was kept at 1500 V. Reference mass solution was prepared in consonance with Agilent
guidelines, including ions at m/z 121.0509 and 922.0098. The second nebulizer was used to
introduce the solution in the dual ESI ion source through the isocratic pump at a constant
flow rate of 4 mL/min (split to 1:100 before nebulization). The acquisition mass range
was 100 to 3000 m/z. The instrument used the extended dynamic range with an estimated
resolution of 30.000 FWHM measured at 1521.9715 m/z (included in tune mixture) when
instrument calibration was performed. Extracted blanks and QCs samples were disposed
of throughout the instrumental analysis. Calibration curves were measured at the end of
the analysis. Data acquisition was performed with Agilent MassHunter B.08.00.

4.2.3. MS Signals Processing

MS Signals were processed with MZ Mine 2 (version 2.54) [54] as previously described
for LC-MS analysis [52]. Mass detection was performed with a noise level set at 6 ×
102. After that, chromatogram builder was done setting min-height at 6 × 102 and m/z
tolerance at 0.007 m/z or 7.0 ppm. Before doing the deconvolution, internal standards were
checked in some random samples to evaluate their stability and signal. Chromatogram
deconvolution was done with the local minimum search algorithm with the following set-
tings: chromatogram threshold at 70%, search minimum in RT range (min) 0.03, minimum
relative height 1.0%, minimum absolute height 6 × 102, min ratio of peak top/edge 1.21
and peak duration range (min) was established from 0.00 to 2.00. Isotopes were performed
under these conditions: m/z tolerance 0.007 m/z or 7.0 ppm, retention time tolerance
0.07 absolute (min) and a maximum charge of 2. The Hierarchical Alignment (GC) was
selected to do the alignment with these values: m/z tolerance 0.009 m/z or 9.0 ppm and
the weight for RT was set at 1. Peak list row filter was the option selected for the filtering
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with these parameters: m/z from 300 to 1200 and retention time from 2.00 to 12.00. Gap
filling was performed with an Intensity tolerance of 50.0%, an m/z tolerance of 0.01 m/z or
12.0 ppm and a retention time tolerance of 0.15 absolute (min). Features with low signal
(below 1 × 103), repeated and that were not present at least in more than 80% of samples
were not included in the analysis. No missing values were detected in the final list of
features selected. Lipid identification was done using an in-house library through the
custom database search option (147 compounds were identified of 604 features) with an
m/z tolerance set at 0.05 m/z or 20 ppm and a retention time tolerance established at 0.10
absolute (min). Not mentioned parameters in each point of the process were set with
default values.

4.2.4. Data Pre-Treatment

Pre-treatment of data. Relative standard deviation (RSD) was calculated for QC sam-
ples. Features that presented an RSD of less than 30% were selected (473 lipid metabolites
were filtered out of 604 features). Normalization was performed in a different way depend-
ing on if the feature had been previously annotated through the in-house library or was an
unknown compound. Annotated compounds were normalized against the same subclass
of the IS included in the sample preparation. LPC were normalized against LPC (17:0), PC
were normalized against PC (17:0/17:0), PE were normalized against PE (17:0/17:0), Cer
were normalized against Cer (d18:1/17:0), SM were normalized against SM (d18:1/17:0),
CE were normalized against CE (17:0) and TG were normalized against TG (17:0/17:0/17:0).
Unknown features eluted from 2 to 5.5 min were normalized against LPC (17:0), from 5.5
to 7.5 min were normalized against PC (17:0/17:0) and from 7.5 to 12 min were normalized
against TG (17:0/17:0/17:0). Average was performed in duplicate data from each sample
in all the features obtained to maintain a central tendency of MS data.

4.2.5. Statistical Analysis

Univariate (UVA) and multivariate statistical analysis (MVA) were performed to
expose the difference between groups after filtration with RSD, normalization and averaged
calculation of MS Data, as previously described by Gonzalez-Riano et al. [55].

All multivariate analyses (MVA) were performed with SIMCA-P v16.0 (Sartorius-
Umetrics, Umeå, Sweden). Unsupervised (principal component analysis, PCA) and su-
pervised (orthogonal projection on latent structures/partial least squares discriminant
analysis, OPLS-DA) MVA were carried out. For PCA, the dataset was unit-variance (UV)
scaled. PCA was performed to assess the spontaneous clustering of patient samples and
QC samples using the complete dataset of variables of all samples. After careful evaluation
of the quality of the model and the clustering of the QCs, supervised models were built.
For maximizing the classification power of metabolites, OPLS-DA models were generated
between OD vs. O, OD BS vs. OD, and OD BS vs. O (data not shown). Before building
the models, UV scaling was applied to all datasets. The quality of the OPLS-DA models
was evaluated by the values of Q2 (estimation of the predictive ability of the model), and
R2 (the explained variance). Validation of all the models was performed by means of
cross-validation and p-value, both obtained from the CV-ANOVA tool. The variables’
influence on projection (VIPs) were obtained for each variable from the OPLS-DA models
built in the OD vs. O and OD BS vs. OD comparisons.

Univariate analysis (UVA) was performed applying different statistical tests depend-
ing on the comparison evaluated. For OD vs. O and OD BS vs. O a non-parametric
Mann–Whitney U test was used. For OD BS patients vs. OD patients, a Wilcoxon non-
parametric paired test was applied. The Benjamini–Hochberg correction was applied to the
p-value to control the false discovery rate (FDR). The tests were applied to all the individual
features using in-house scripts for MATLAB R1080a (MathWorks, Natick MA, USA).

Monofactorial and multifactorial tests were then employed to select the compounds
with the highest biological relevance, and the features were considered relevant when
either p-value ≤ 0.05 in UVA or VIP value > 1 in MVA were seen. In addition, the Jackknife
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confidence interval (no zero-value inclusion) was considered to interpret the confidence of
the clustering agreement measurements obtained on the OPLS-DA models.

4.2.6. Annotation of Unknown Features

Unknown features were annotated by LC-MS/MS in positive and negative ionization
using QC samples. The acquisition mass range was set from 50 to 3000 m/z in both
ionizations. The capillary voltage was maintained at 3600 V in positive and 5500 V in
negative. In positive mode, 1 µL of QC sample was injected per method and 5 µL was
injected in negative mode. Features were annotated in negative ionization using the
following adducts per lipid subclass: LPC/PC and SM with [M+FA-H]−, PI with M-H
and M+FA-H, PG with M-H and M+Cl, PS with M-H and M-H2O-H, Cer with M-H,
M+HCOO−, M+FA-H and M+Cl. Diverse spectral libraries were used to annotate the
unknown features, such as MetFrag [56], MassBank (https://massbank.eu/MassBank/,
accessed on 10 November 2021), PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed
on 10 November 2021), HMDB [57] and bibliographical resources [58]. Furthermore, DG
and TG were putative annotated studying the adduct formation of these lipid species [59].

4.3. Polar Metabolites Untargeted Analysis in Serum and Urine Samples by Gas Chromatography
Coupled to High-Resolution Accurate Mass Spectrometry (GC-HRAM-MS)
4.3.1. Extraction of Polar Metabolites, Sample Preparation

Serum and urine samples were extracted following the same method published by
Castillo et al. [60] with minor modifications respecting the matrix used; 30 µL of serum
(150 µL of urine) of each sample were randomized and vortex-mixed with 400 µL of MeOH
at−20 ◦C containing 1 ppm of the following internal standards: heptadecanoic acid, valine-
d8, succinic acid-d4, and glutamic acid-d5 (Sigma-Aldrich, Saint Louis, MO, USA). Samples
were incubated on ice for 30 min and centrifuged (9600 rpm, 3 min). After that, 350 µL
(400 µL for urine) of the supernatant of each serum sample were transferred to a V-shaped
GC-vial. The stability and reproducibility of the system were checked with QC samples
prepared to collect from all the extracts the same quantity of the remaining supernatant.
Afterward, QC samples were vortex-mixed, centrifuged and 350 µL (400 µL for urine) of
the supernatant of each aliquot were transferred to a V-shaped GC-vial. To ensure that
data reflects the biological complexity of the samples, consequent signals derived from the
extraction and the instrumental analysis were assessed with extraction blanks prepared as
patient samples without any biological trace.

Derivatization. Supernatants were evaporated to dryness in a nitrogen flow. Then,
samples were converted to trimethylsilyl (TMS) and methoxime (MEOX) derivate(s). Con-
sequently, 25 µL of MOX reagent in pyridine (20 mg/mL) were added, samples were
vortex-mixed and incubated for 60 min at 45 ◦C. After oximation, silylation was performed
adding 25 µL of MSTFA, samples were vortex-mixed and incubated for 60 min at 45 ◦C. To
quantify the relative elution times of the different features in gas chromatography, 25 µL of
a mixture containing odd n-alkanes from C11 to C25 (10 ppm in hexane) was added to the
vials before injection together with the injection standard 4,4′-Dibromooctafluorobiphenyl
(DBOFB, Sigma-Aldrich, Saint Louis, MO, USA).

4.3.2. GC-HRAM-MS Analysis

A gas chromatography-high-resolution/accurate-mass spectrometry (GC-HRAM-MS)
coupled equipment was used to analyze the patient samples (serum and urine) based on
previously set conditions adapted to the idiosyncrasy of our samples [61]. GC-HRAM-MS
analyses were performed in a Q Exactive GC Orbitrap system (Thermo Scientific Waltham,
MA, USA), mounted with a Rxi Guard column purchased at Restek (10 m × 0.37 mm,
0.25 µm i.d.) and a capillary column provided by Agilent Technologies (30 m, 0.25 mm,
0.25 µm i.d.). Injection (1µ) was done in splitless mode with a TriPlus RSH autosampler
system provided by Thermo. The oven temperature was kept at 70 ◦C for the first 5 min.
Then, the temperature was increased to 260 ◦C (10 ◦C/min) to reach in the final step 300 ◦C

https://massbank.eu/MassBank/
https://pubchem.ncbi.nlm.nih.gov/


Metabolites 2021, 11, 836 22 of 27

(40 ◦C/min) for 5 min. The carrier gas used was Helium with a flow of 2.0 mL/min. Scan
range and resolution were adjusted to 50–500 m/z and 60,000 respectively. MS Detector
was operated in EI positive mode. The ion source and the transfer line were kept at 280 ◦C.
QC samples were injected after every seven samples in serum analysis and after three
in urine analysis. Suitability blank (hexane) and process blank (extraction blank) were
analyzed at the beginning and the end of the analysis.

4.3.3. MS Signals Processing for Serum Samples

Data pre-processing was done with MZ Mine (version 2.54) adapting the ADAP
method to the peculiarity of these samples [62]. Mass detection was performed with a
noise level set at 5 × 104. Then, ADAP chromatogram builder was done setting the min
group size in # of scans at 10, group intensity threshold was set at 1.5 × 107, min highest
intensity was established at 1.5 × 107 and m/z tolerance was adjusted at 0.01 m/z. The
next step was to do smoothing with a filter width of 25. Chromatogram deconvolution
was performed with the following parameters: m/z center calculation Median, Algorithm
Wavelets (ADAP), S/N threshold at 10, min feature height at 1.5 × 106, coefficient/area
threshold at 800, peak duration range from 0.01 to 0.40 and RT wavelet range from 0.00 to
0.06. After that, spectral deconvolution was done under the hierarchical clustering option
with the following criteria: Min cluster distance (min) at 0.01, min cluster size at 2, min
cluster intensity at 1000, find shared peaks option was ticked, min edge-to-height ratio at
0.3, min delta-to-height ratio at 0.2, min sharpness at 10, shape-similarity tolerance at 70
and m/z ranges from 73.0 to 73.99 and 147.0 to 147.99 were excluded. Alignment was done
under ADAP aligner (GC) option parameters were adjusted as follows: Min confidence at
0.3, retention time tolerance at 0.2 (absolute min), m/z tolerance was set at 0.003 m/z, score
threshold at 0.7 and score weight at 0.1. Next to the alignment, gap filling was performed
with the peak finder (multithreaded) option selected: intensity tolerance at 2.0% and m/z
tolerance was set at 0.005 m/z and 0.2 ppm. Features with low signal (below 1 × 103), that
repeated and that were not present at least in more than 80% of samples were not included
in the analysis. No missing values were detected in the final list of features selected. Polar
metabolites identification was done using an in-house library through the custom database
search option (27 compounds were annotated of 197 features) with an m/z tolerance set at
0.05 m/z or 30 ppm and a retention time tolerance established at 0.30 absolute (min). Not
mentioned parameters in each point of the process were set with default values.

4.3.4. MS Signals Processing for Urine Samples

MS signals were processed with MZ Mine (version 2.54) repeating the same steps
followed in serum samples with the ADAP method. Initially, crop filtering was set from
min 9.5 to min 22 to work with signals contained just in that range of retention time (RT).
Mass detection was performed with a noise level set at 1× 104. Then, ADAP chromatogram
builder was done setting the min group size in # of scans at 10, group intensity threshold
was set at 1 × 105, min highest intensity was established at 1 × 105 and m/z tolerance was
adjusted at 0.01 m/z or 0.0 ppm. The next step was to do smoothing with a filter width of 25.
Chromatogram deconvolution was performed with the following parameters: m/z center
calculation Median, Algorithm Wavelets (ADAP), S/N threshold at 10, min feature height
at 1 × 104, coefficient/area threshold at 800, peak duration range from 0.01 to 0.40 and RT
wavelet range from 0.00 to 0.06. Spectral deconvolution, alignment and gap-filling were
performed with the same parameters used in serum samples. Features with low signal
(below 1 × 103), repeated and that were not present at least in more than 80% of samples
were not included in the analysis; 94 features were obtained after signals’ processing. Two
missing values were detected in the final list of features selected and were treated with the
k-nearest neighbors algorithm (KNN) using an in-house script for MATLAB. Identification
was done with the same in-house library used with serum samples, but no hits were found
with urine samples. Not mentioned parameters in each point of the process were set with
default values.
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4.3.5. Data Pre-Treatment

Serum samples: MS data were normalized against valine-d8, data was strengthened
after normalization improving RSD and decreasing data variation. Features were filtered
with RSD calculated for QC samples. Features that presented an RSD of less than 40%
were selected (113 polar metabolites were filtered out of 197 features). Urine samples:
Probabilistic quotient normalization method (PQN) [63] was used to normalize MS Data.
PQN was applied using an in-house MATLAB script considering all the variables of
the profiles. Features were filtered with RSD calculated for QC samples. Features that
presented an RSD of less than 40% were selected (48 polar metabolites were filtered out of
94 features).

4.3.6. Statistical Analysis

Statistical Analyses in serum and urine analyzed by GC-HRAM-MS were performed
applying the same principles described in LC-MS analysis with certain variations (see
Section 4.2.5).

All multivariate analyses were performed with SIMCA-P v16.0. For PCA, the data
set was unit-variance (UV) scaled. After the careful evaluation of the PCA models, OPLS-
DA models were generated between OD vs. O, OD BS vs. OD, and OD BS vs. O (data
not shown) in serum and OD BS vs. OD in urine. For the serum analyses, logarithmic
transformation and Pareto scaling were applied to the OD vs. O dataset, and UV scaling
was applied to the OD BS vs. OD dataset. For the urine analyses (OD BS vs. OD),
logarithmic transformation and centroid scaling were applied. Validation of all models
was performed with the CV-ANOVA tool provided by the software. Validation of all the
models was performed by means of cross-validation and p-value, both obtained from the
CV-ANOVA tool. The variables’ influence on projection (VIPs) were obtained for each
variable from the OPLS-DA models.

Univariate analysis (UVA) was performed applying different statistical tests depend-
ing on the comparison evaluated. For OD vs. O and OD BS vs. O, a non-parametric
Mann–Whitney U test was used. For OD BS patients vs. OD patients, a Wilcoxon non-
parametric paired test was applied. The tests were applied to all the individual features
using in-house scripts for MATLAB R1080a (MathWorks, Natick, MA, USA).

Due to the dispersion found between groups comparisons and the small differences
between groups, the selection criteria for significant compounds were less restrictive than
the one used in LC-MS analysis. The Benjamini–Hochberg correction was not applied,
and features were considered biologically relevant when either p-value ≤ 0.05 in UVA or
VIP value > 1 in MVA were seen. Therefore, monofactorial and multifactorial tests were
considered to select the compounds with the highest biological relevance.

4.3.7. Annotation of Unknown Features

Features were putatively annotated matching their spectra with the spectra available
in the following databases: GOLM Metabolome Database [64], default parameters were
used with a VAR5 column type and the calculated Kovats retention index (RI) for the
compounds was entered in the database to improve the annotation. MS Search (2.3 version
by NIST Mass Spectrometry Data Center) was used with HMBD [57], Fiehn (RTX5 Fiehn
Library for Metabolic Profiling) and NIST (14 version) libraries. RI was also considered.
Mass Bank through peak list option was consulted to improve the annotation.

4.4. Correlation, Curve ROC Test Analyses and Heatmaps

Correlation analysis was performed with normalized peak intensity values from
significant features obtained after univariate and multivariate statistical analyses in all
comparisons in serum LC-MS and GC-HRAM-MS analysis and urine GC-HRAM-MS
analysis. Normalized peak intensity values were analyzed against biochemical parameters
of OD, OD BS and O patients applying a Pearson Correlation test per group of patients
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using an in-house script for R (version 4.0.3). Correlations with a p-value ≤ of 0.05 were
selected as significant.

ROC analysis was performed with normalized peak intensity values from significant
features obtained after UVA and MVA analyses in OD vs. O and OD BS vs. OD compar-
isons in serum and urine LC-MS and GC-HRAM-MS analyses. ROC analysis was built in
Metaboanalyst 5.0 [65] under the “Classical univariate ROC curve analyses” option with
default settings. Features with an AUC value≥ of 0.90 in features obtained in LC-MS analy-
sis and ≥ 0.80 in those obtained in GC-HRAM-MS analysis, were selected as representative
for their high discriminatory power classifying patients before and after BS.

Heatmaps were created with normalized peak intensity values from significant fea-
tures obtained after UVA and MVA analyses in OD vs. O and OD BS vs. OD comparisons
in serum LC-MS and GC-HRAM-MS analyses. Metaboanalyst 5.0 was used to generate the
different heatmaps [65]. The software was set with Euclidean distance; Ward clustering
method and samples were reorganized. Not mentioned parameters in each point of the
process were set with default values.

4.5. Lipidomic and Amino Acid Pathways

The lipidomic pathways (Figures S1 and S3) are a modified version of the “Glyc-
erolipids and Glycerophospholipids” scheme from Wikipathways [66]. The amino acid
pathways (Figures S2 and S4) were created taking “Amino Acid Biosynthesis” pathway
from Biochemistry as a reference [67].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11120836/s1. Table S1: ROC Curve test for OD vs. O comparison, Table S2: ROC
Curve test for OD BS vs. O D comparison, Table S3: Complete correlation analysis results for OD,
OD BS and O patients compared with clinical parameters highly related to kidney dysfunction, Table
S4: Statistically significant metabolites found in UVA and MVA statistical performed in OD vs. O
and OD BS vs. OD comparisons. Figure S1: lipidomic pathway in serum analyzed by LC-MS in OD
vs. O, Figure S2: amino acid pathway in serum analyzed by GC-HRAM-MS in OD vs. O, Figure S3:
lipidomic pathway in serum analyzed by LC-MS in OD BS vs. OD, Figure S4: amino acid pathway in
serum analyzed by GC-HRAM-MS in OD BS vs. OD, Figure S5: Unsupervised PCA model, Figures
S6–S10: Supervised OPLS-DA models.
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