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matrix for Gaussian subordinated processes with a known location parameter.
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1. Introduction

In this paper, we examine the asymptotic properties of the spatial sign autocovariance matrix estimator of a
ubordinated Gaussian process. The spatial sign covariance matrix is a cornerstone in modern multivariate robust statistics,
ee Visuri et al. (2000) for the original formulation. Previously, the asymptotic properties of the spatial sign covariance
atrix have been consider, under some specific models, for classical iid data, see for example Dürre et al. (2014). The
lassical spatial sign covariance matrix can be straightforwardly extended to take temporal dependencies into account.
his so-called spatial sign autocovariance matrix is considerably more rare in robust statistics and previous work on
he topic is very applied, see, e.g., Lietzén et al. (2017). To our knowledge, the asymptotic properties of the spatial sign
utocovariance matrix have not previously been considered under non-trivial temporal dependency structures. We aim
o fill this gap in knowledge. We utilize recent limiting theorems and approach the problem through the well-established
heory concerning Gaussian subordinated processes. Note that Gaussian subordinated processes provide a large class of
rocesses covering, e.g., stationary processes with arbitrary marginal distributions, see Viitasaari and Ilmonen (2020).
Let Z = (Zt )t∈N, where Zt = [Z (1)

t , . . . , Z (n)
t ] is an n-variate centered random vector with elements given by Z (i)

t = fi(Xt ),
such that the functions fi : Rd

→ R are measurable and X = (Xt )t∈N is a d-variate stationary Gaussian process. We use
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the notation rX (t) = E[(X0 − µ)(Xt − µ)⊤] for the autocovariance matrix function of a stationary process X with a mean
vector µ. Moreover

γ (τ ) = E
[

Zt
∥Zt∥

Z⊤
t+τ

∥Zt+τ∥

]
enotes the spatial sign autocovariance matrix of Z with lag τ . Note that ’’spatial’’ here refers to the multidimensionality

of the random process, whereas the parameter set is one-dimensional with the usual time-interpretation. The element
(i, j) of γ (τ ) is denoted by γi,j(τ ). We use the following estimators,

γ̂T (τ ) =
1
T

T−τ∑
t=1

Zt
∥Zt∥

Z⊤
t+τ

∥Zt+τ∥
, γ̂T ,i,j(τ ) =

1
T

T−τ∑
t=1

Z (i)
t

∥Zt∥
Z (j)
t+τ

∥Zt+τ∥
.

et

X̃t =
[
Xt Xt+τ

]⊤
, gi,j(X̃t ) =

fi(Xt )√∑n
k=1 fk(Xt )2

fj(Xt+τ )√∑n
k=1 fk(Xt+τ )2

,

which gives,

γ̂T ,i,j(τ ) − γi,j(τ ) =
1

T − τ

T−τ∑
t=1

(gi,j(X̃t ) − γi,j(τ )) −
τ

(T − τ )T

T−τ∑
t=1

gi,j(X̃t ). (1)

ote that, if the first term of γ̂T ,i,j(τ ) − γi,j(τ ) converges (in some sense) as T → ∞, then the latter term converges to
ero (in some sense).
We use Nd

0 to denote d-vectors that consist of non-negative integers. We call j ∈ Nd
0 a multi-index of degree |j| =

∑d
i=1 ji

nd we use ∥ · ∥ to denote the L2 vector norm and the corresponding induced matrix norm. Next, we define multivariate
ermite polynomials according to Rahman (2017).

efinition 1.1. Let X be a d-variate centered Gaussian random vector with a positive-definite covariance matrix ΣX
nd let φX (x; ΣX ) be the corresponding probability density function. Let j = (j1, . . . , jd) ∈ Nd

0 be a multi-index of degree
j| =

∑d
i=1 ji. Then, the multivariate Hermite polynomial associated with j is given by,

Hj(x; ΣX ) =
(−1)|j|

φX (x; ΣX )

(
∂

∂x

)j

φX (x; ΣX ),

where
(

∂
∂x

)j
=

∂ |j|

∂x
j1
1 ···∂x

jd
d

.

The corresponding standardized Hermite polynomials are obtained by a normalization under the given Gaussian
easure. Under Definition 1.1, the standardized Hermite polynomial associated with the multi-index j is given by

Ψj(x; ΣX ) =
Hj(x; ΣX )√

E(Hj(X; ΣX )2)
.

Similarly as in the univariate case, the first moments of the multivariate Hermite polynomials are zeroes under the
aussian measure, when excluding the constant H0(x; ΣX ) = 1. Furthermore, the multivariate Hermite polynomials are

weakly orthogonal wrt. the Gaussian measure in the following way.

Lemma 1.2. Let X1 and X2 be two d-variate identically distributed centered jointly Gaussian random vectors with a common
ositive definite covariance matrix ΣX . Let ΣX1X2 := E(X1X⊤

2 ) and set Σ̄ = Σ−1
X ΣX1X2Σ

−1
X . Then,

E(Hj(X1; ΣX )Hk(X2; ΣX )) =

∑
Θ∈Nd×d

0
r(Θ)=j,c(Θ)=k

j!k!(Σ̄)Θ

Θ!
, for |j| = |k|, (2)

and zero otherwise. Above the summation is over all d×d index matrices Θ with elements in N0 such that the row sum vector
r(Θ) equals to j and the column sum vector c(Θ) equals to k with |j| = |k|. We use the notation j! = Πd

i=1ji!. Furthermore,
Θ! = Πd

p,q=1θpq!, where θpq denotes the (p, q) element of Θ and

(Σ̄)Θ = Πd
p,q=1σ̄

θpq
pq ,

where σ̄pq denotes the (p, q) element of Σ̄ .

The proof for Lemma 1.2 is given in the online supplementary material. Lemma 1.2 can be seen as an extension of
the similar result presented in Rahman (2017, Proposition 8). Note that after normalizing, the second moments of the
standardized Hermite polynomials can be obtained directly using Eq. (2).
2
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Remark 1.3. If X1 = X2, then Σ̄ = Σ−1
X in Lemma 1.2. If the components of a Gaussian vector X are independent, then

he Hermite polynomials are strongly orthogonal, that is, E(Hj(X; ΣX )Hk(X; ΣX )) = 0, for j ̸= k.
We next arrive to the important concept of Hermite ranks.

efinition 1.4. Let X be a d-variate Gaussian vector and let f : Rd
→ R be a measurable function with f (X) ∈ L2. Denote

he set of polynomials p : Rd
→ R of degree m with Pm. The Hermite rank q of f with respect to X is defined as

q = inf{m : ∃ p ∈ Pm with E[(f (X) − Ef (X))p(X)] ̸= 0}. (3)

Hermite ranks are central when we consider Hermite polynomial expansions in the L2 space, as can be seen from the
ollowing lemma.

emma 1.5. Let X be a d-variate centered Gaussian vector with a positive definite covariance matrix. The Hermite rank of a
unction f (X) ∈ L2 is the smallest degree q ≥ 1 of Hermite polynomials present in the expansion

f (X) =

∑
j∈Nd

0

CjΨj(X; ΣX ). (4)

The proof of Lemma 1.5 is again presented in the online supplementary material. For further details regarding
ultivariate Hermite polynomials, see Rahman (2017).

. Weak and Lp consistency

We utilize the next two lemmas in order to show that the spatial sign autocovariance matrix estimator is consistent
n L2.

emma 2.1. Let (Yt )t∈N be a sequence of random variables with a mutual expectation. In addition, assume that var(Yj) ≤ C
nd
⏐⏐cov(Yj, Yk)

⏐⏐ ≤ g(|k − j|), where g(i) → 0 as i → ∞. Then we have the following convergence in L2,

1
T

T∑
t=1

Yt → E(Y1).

For a proof of Lemma 2.1, see Voutilainen (2020, Theorem 3.10.). We use f (x) ∼ g(x) to denote that the two functions
are asymptotically of the same order, i.e., limx→∞

|f (x)|
|g(x)| → C for some finite constant C > 0.

Proposition 2.2. Let X be a d-variate stationary Gaussian process with a mean vector µ and rX (t) = E[(X0−µ)(Xt−µ)⊤] → 0
as t → ∞. Let h : Rd

→ R, h(X0) ∈ L2, have Hermite rank q with respect to X. Then,

cov(h(X0), h(Xt )) = O
(
max
i,j

⏐⏐⏐r i,jX (t)
⏐⏐⏐q) .

Proof of Proposition 2.2. Since the univariate case is well-known (see e.g. Beran et al., 2013, p. 223), we concentrate
on the case d ≥ 2. By Lemma A.1 of the supplementary material, we may assume that Xt ∼ N (0, I) and E(h(X)) = 0.
Hence, we obtain a strongly orthonormal Hermite polynomial expansion without the constant zero degree term. We also
use the fact that the Hermite polynomials of degree |j| = l form a basis for the space of orthogonal polynomials of degree
l. The dimension of this vector space is Kd,l =

(d+l−1
l

)
, see Dunkl and Xu (2014). Thus, we set Cl = [Cl,1, . . . , Cl,Kd,l ]

⊤ and
Ψl = [Ψl,1, . . . , Ψl,Kd,l ]

⊤. Now, we write

h(Xt ) =

∑
j∈Nd

0

CjΨj(Xt; I) =

∞∑
l=q

Kd,l∑
i=1

Cl,iΨl,i(Xt; I),

Furthermore,

E(h(Xt )2) =

∞∑
l=q

Kd,l∑
i,j=1

Cl,iCl,jE(Ψl,i(Xt; I)Ψl,j(Xt; I)) =

∞∑
l=q

∥Cl∥
2 < ∞

by the strong orthonormality of the Hermite polynomials mentioned in Remark 1.3. Similarly,

E(h(X0)h(Xt )) =

∞∑
l=q

Kd,l∑
i,j=1

Cl,iCl,jE(Ψl,i(X0; I)Ψl,j(Xt; I))

=

∞∑
C⊤

l E(Ψl(X0; I)Ψ ⊤

l (Xt; I))Cl =:

∞∑
C⊤

l Al(t)Cl.
l=q l=q

3
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The elements of Al(t) are of the form

E(Ψj(X0; I)Ψk(Xt; I)) =
E(Hj(X0; I)Hk(Xt; I))√

E(Hj(X0; I)2)
√
E(Hk(X0; I)2)

, (5)

where |j| = |k| = l. Recall that

E(Hj(X0; I)Hk(Xt; I)) = j!k!

∑
Θ∈Nd×d

0
r(Θ)=j,c(Θ)=k

|j|=|k|=l

(Σ̄)Θ

Θ!
, (6)

here now Σ̄ = rX (0)−1rX (t)rX (0)−1
= rX (t). Suppose maxi,j |r

i,j
X (t)| = 0. Then also (Σ̄)Θ = 0 in Eq. (6) whenever l ≥ 1.

onsequently, Al(t) = 0 and E(h(X0), h(Xt )) = 0. Now we may assume that maxi,j |r
i,j
X (t)| > 0. Then

E(h(X0)h(Xt ))

maxi,j |r
i,j
X (t)|

q =
C⊤
q Aq(t)Cq

maxi,j |r
i,j
X (t)|

q +

∞∑
l=q+1

C⊤

l Al(t)Cl

maxi,j |r
i,j
X (t)|

q

=:
C⊤
q Aq(t)Cq

maxi,j |r
i,j
X (t)|

q +

∞∑
l=q+1

al(t)

(7)

Next, we apply the dominated convergence theorem to show the sum above converges to 0 as t → ∞. More precisely,
we show that |al(t)| ≤ ∥Cl∥

2 when l and t are sufficiently large, and al(t) → 0 for every l ≥ q + 1. We have that

|al(t)| ≤
∥Cl∥

2
∥Al(t)∥

maxi,j |r
i,j
X (t)|

q .

Thus, for the bound |al(t)| ≤ ∥Cl∥
2, it suffices to show that

∥Al(t)∥F < max
i,j

|r i,jX (t)|
q
,

for large l and t , where ∥ · ∥F is the Frobenius norm. First, we note that

∥Al(t)∥F ≤ Kd,l max
i,j

|(Al(t))i,j| =

(
d + l − 1

l

)
max
i,j

|(Al(t))i,j|,

where for the binomial coefficient it holds by Stirling’s approximation that(
d + l − 1

l

)
=

(d + l − 1)!
l!(d − 1)!

∼

√
d + l − 1

( d+l−1
e

)d+l−1

√
l
( l
e

)l ∼
(d + l − 1)d+l− 1

2

ll+
1
2

= O

(
ld+l− 1

2

ll+
1
2

)
= O(ld−1),

as l → ∞. Thus

∥Al(t)∥F = Ol

(
ld−1 max

i,j
|(Al(t))i,j|

)
. (8)

Next, we roughly evaluate the magnitude of the elements in matrix Al(t) by using Eqs. (5) and (6). Recall that Σ̄ = rX (t)
in (6). Hence,

(Σ̄)Θ

maxi,j |r
i,j
X (t)|

q ≤ max
i,j

|r i,jX (t)|
l−q

(9)

In order to obtain an upper bound for the number of the elements in the sum (6), note that every such matrix Θ can
e constructed by allocating l units between d2 elements. Hence, the number of the summands is bounded by (d2)l.
Next, we turn to the denominator Θ!. The sum of the elements of Θ is l. It is clear that Θ! obtains its minimum when

we allocate
⌊

l
d2

⌋
units to every d2 elements, and an additional unit to l −

⌊
l
d2

⌋
d2 elements, of Θ . In this case

Θ! =

(⌊
l
2

⌋
!

)d2 (⌊ l
2

⌋
+ 1

)l−
⌊

l
d2

⌋
d2

,

d d

4
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where the latter of the two terms is at least one. As l → ∞, Stirling’s approximation gives

(⌊
l
d2

⌋
!

)d2

∼

⎛⎜⎜⎝
√
2π
⌊

l
d2

⌋⎛⎝
⌊

l
d2

⌋
e

⎞⎠
⌊

l
d2

⌋⎞⎟⎟⎠
d2

∼

(⌊
l
d2

⌋)d2(⌊ l
d2

⌋
+

1
2

)

ed
2
⌊

l
d2

⌋

≥
( l
d2

− 1)d
2( l

d2
−

1
2 )

el
=

( l
d2

− 1)l−
1
2 d

2

el
,

(10)

here ( l
d2

− 1)l−
1
2 d

2
is of order

(
l
d2

)l− 1
2 d

2

.

Finally, we evaluate the normalization factors
√
E(Hj(X0; I)2) of (5). Note that now in (6) Σ̄ = I , which gives,

E(Hj(X0; I)2) = (j!)2
∑

Θ∈Nd×d
0

r(Θ)=c(Θ)=j
|j|=l

(I)Θ

Θ!
,

where the only nonzero contribution to the sum comes from the diagonal matrix Θ whose diagonal vector equals to j.
n this case, (I)Θ is obviously equal to one and Θ! = j!. On the other hand, j! gets maximized when we allocate all the
weight l to a single element giving j! = l! Hence, Θ! ≤ l!, where again by Stirling’s approximation

l! ∼
√
l
(

l
e

)l

=

(
ll+

1
2

el

)
, (11)

s l → ∞. By (8), (9), (10), (11) and since the number of summands in (6) is bounded by d2l we get

∥Al(t)∥F

maxi,j |r
i,j
X (t)|

q = Ol

(
l
1
2 (d

2
+2d−1)

(
max
i,j

|r i,jX (t)|
1− q

l d4
)l
)

. (12)

ince rX (t) → 0, there exists T such that maxi,j |r
i,j
X (t)| < 1

d4(q+1) for all t ≥ T . In this case, for l ≥ q + 1,

max
i,j

|r i,jX (t)|
1− q

l d4 < d4
(

1
d4(q+1)

)1− q
l

≤ d4
(

1
d4(q+1)

)1− q
q+1

= 1.

Since (12) is of order ol(1), the dominated convergence theorem applies for the sum in (7) as t → ∞.
Moreover, al(t) → 0 for all l ≥ q + 1, since

∥Al(t)∥F

maxi,j |r
i,j
X (t)|

q ≤ Kd,l
maxi,j |(Al(t))i,j|

maxi,j |r
i,j
X (t)|

q → 0

y (9) and the assumption. It remains to show that first term of (7) is bounded as t → ∞. Now,

∥Aq(t)∥F

maxi,j |r
i,j
X (t)|

q ≤ Kd,q
maxi,j |(Aq(t))i,j|

maxi,j |r
i,j
X (t)|

q ,

hich is bounded since (9) is now bounded by one. Therefore, we conclude,

E(h(X0), h(Xt )) = O
(
max
i,j

|r i,jX (t)|
q
)

. □

heorem 2.3. Let X be a d-variate stationary Gaussian process with a mean vector µ and rX (t) → 0. Let h : Rd
→ R be

such that h(X0) ∈ L2. Then,

1
T

T∑
t=1

h(Xt ) → E(h(X1)) in L2.

If h is bounded, then the convergence takes place in Lp for all p ≥ 1.

roof. The first part of the claim follows directly from Lemma 2.1 and Proposition 2.2. Note that

YT =:
1
T

T∑
(h(Xt ) − E(h(X1)))
t=1

5
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is a bounded sequence converging to zero in L2. Hence, Y p
T is uniformly integrable converging to zero in probability for

all p ≥ 1. Consequently, Y p
T → 0 in L1 giving the second part of the claim. □

Lemma 2.4. Let YT be a sequence of n-variate random vectors such that the elements of YT convergence to the elements of Y
in Lp for p ≥ 2. Then

∥YT − Y∥p → 0,

where ∥ · ∥p =
p√E(∥ · ∥p) denotes the Lp norm of random vectors.

Proof. The case p = 2 follows directly. Hence, let p > 2. We use the Hölder’s inequality with r =
p
2 and s =

p
p−2 , which

produces,

∥YT − Y∥
2

=

n∑
i=1

(Y (i)
T − Y (i))2 ≤

(
n∑
i=i

|Y (i)
T − Y (i)

|
p
) 2

p
(

n∑
i=1

1

) p−2
p

= Cp,n

(
n∑
i=i

|Y (i)
T − Y (i)

|
p
) 2

p

.

herefore

∥YT − Y∥
p
p ≤ Cp,nE

n∑
i=1

|Y (i)
T − Y (i)

|
p

→ 0. □

heorem 2.5. Let X be a d-variate stationary Gaussian process with a mean vector µ and rX (t) = E((X0 −µ)(Xt −µ)⊤) → 0.
Then

∥γ̂T (τ ) − γ(τ )∥ → 0 in probability (13)

and

∥ vec(γ̂T (τ ) − γ(τ ))∥p → 0 for all p ≥ 1,

where ∥ · ∥p denotes the Lp norm of random vectors.

Proof. The process X̃ and the function gi,j satisfy the assumptions of Theorem 2.3. Hence

1
T − τ

T−τ∑
t=1

gi,j(X̃t ) → E(gi,j(X̃1)) = γi,j(τ )

in Lp for all p ≥ 1. Consequently, by (1), the elements of γT (τ ) converge to the elements of γ(τ ) in probability and in Lp
or all p ≥ 1. This directly gives (13). The second part of the claim follows from Lemma 2.4 (and Hölder’s inequality for
≤ p < 2). □

. Strong consistency and asymptotic distribution

emma 3.1. Let (Yt )t∈N be a weakly stationary process with the autocovariance function rY (t) satisfying
∞∑
t=0

|rY (t)| < ∞.

Then we have the following convergence almost surely,

1
T

T∑
t=1

Yt → E(Y1).

Proof. This follows directly from White (2014, Theorem 3.57). □

Theorem 3.2. Let X be a d-variate stationary Gaussian process. Let the Hermite rank of h : Rd
→ R, with h(X0) ∈ L2, be q. If

∞∑
|r i,jX (t)|

q
< ∞, for all i, j ∈ {1, . . . , d},
t=0

6
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then

1
T

T∑
t=1

h(Xt ) → E(h(X1)) almost surely.

Proof. The result follows from Proposition 2.2 together with Lemma 3.1. □

We next recall the celebrated theorem from Breuer and Major (1983).

Theorem 3.3. Let X be a d-variate stationary Gaussian process and let {fi : i = 1, . . . , n} be a set of functions fi : Rd
→ R

whose Hermite ranks with respect to Xt are at least q. If
∞∑
t=0

|r i,jX (t)|
q
< ∞, for all i, j ∈ {1, . . . , d},

then the sequence of random vectors

1
√
T

[
T∑

t=1

(f1(Xt ) − Ef1(Xt )) · · ·
T∑

t=1

(fn(Xt ) − Efn(Xt ))

]⊤

converges in distribution to N (0, Σ). The elements σij, i, j ∈ {1, . . . n}, of the limiting covariance matrix are given by

σij = cov(fi(X1), fj(X1)) +

∞∑
τ=1

cov(fi(X1), fj(X1+τ )) + cov(fj(X1), fi(X1+τ )).

The above Breuer–Major theorem is conventionally stated for a centered X . However, Step 1 of Lemma A.1 from the
upplementary material reveals that this assumption is not necessary.

heorem 3.4. Let X be a d-variate stationary Gaussian process. Let the process X̃ and the functions gi,j be as in Section 1.
ssume that the Hermite ranks of the functions gi,j with respect to X̃ are at least q and

∞∑
t=0

|r i,jX (t)|
q
< ∞, for all i, j ∈ {1, . . . , d}. (14)

hen

γ̂T (τ ) → γ(τ )

lmost surely and
√
T vec(γ̂T (τ ) − γ(τ )) → N (0, Σ)

in distribution. The elements of the limiting n2
× n2 covariance matrix are,

cov(gi,j(X̃1), gk,l(X̃1))

+

∞∑
m=1

(
cov(gi,j(X̃1), gk,l(X̃m+1)) + cov(gi,j(X̃m+1), gk,l(X̃1))

)

=cov

⎛⎝ Z (i)
0 Z (j)

τ√∑n
r=1(Z

(r)
0 )2

∑n
r=1(Z

(r)
τ )2

,
Z (k)
0 Z (l)

τ√∑n
r=1(Z

(r)
0 )2

∑n
r=1(Z

(r)
τ )2

⎞⎠
+

∞∑
m=1

cov

⎛⎝ Z (i)
0 Z (j)

τ√∑n
r=1(Z

(r)
0 )2

∑n
r=1(Z

(r)
τ )2

,
Z (k)
m Z (l)

m+τ√∑n
r=1(Z

(r)
m )2

∑n
r=1(Z

(r)
m+τ )2

⎞⎠
+

∞∑
m=1

cov

⎛⎝ Z (i)
m Z (j)

m+τ√∑n
r=1(Z

(r)
m )2

∑n
r=1(Z

(r)
m+τ )2

,
Z (k)
0 Z (l)

τ√∑n
r=1(Z

(r)
0 )2

∑n
r=1(Z

(r)
τ )2

⎞⎠ ,

here i, j, k, l ∈ {1, . . . , n}.

roof. First we note that the summability condition (14) for X̃ follows directly from the assumption on X . Hence, by
heorem 3.2, the usual estimators of the mean of g (X̃ ) converge almost surely to γ (τ ), which gives the first part.
i,j t i,j

7
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i

The elements of

√
T vec(γ̂T (τ ) − γ (τ )) are of the form

√
T (γ̂T ,i,j(τ ) − γi,j(τ )). The joint convergence of these elements

s, in the light of the decomposition (1), dictated by the joint convergence of
√
T

T − τ

T−τ∑
t=1

(gi,j(X̃t ) − Egi,j(X̃t )).

The constant shift τ in the rate function
√

· does not affect the limit and hence, Theorem 3.3 holds. □

If the components r i,jX (t) are absolutely summable, then Theorems 3.2, 3.3 and 3.4 are valid regardless of the Hermite
ranks of the involved functions. Theorem 3.4 covers also cases, where the subordinated process Z itself is long-range
dependent. For example, it is well-known that in the case of a univariate X , the autocovariance rZ (i) (t) of Z (i)

t = fi(Xt )
satisfies

rZ (i) (t) ∼ rX (t)qi ,

where qi is the Hermite rank of fi. Now, the autocovariance of Z (i) is not necessarily absolutely summable, if qi < q. In this
case, the process Z exhibits long-range dependence although the processes gi,j(X̃) are short-range dependent as shown
by Proposition 2.2. This type of situation can occur by the instability of Hermite ranks (see e.g. the related papers Bai and
Taqqu, 2019 and Bai et al., 2018).

4. Future prospects

In the future, it would be interesting to consider the spatial sign autocovariance matrix estimator in more general
settings that may yield non-Gaussian limiting distributions. Furthermore, the results of this paper could be extended to
cover models that contain an unknown location parameter. Especially, the use of a robust measure of location, such as
the spatial median, would be well-motivated.
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