
Multi-Population Parallel Imperialist Competitive Algorithm for Solving

Systems of Nonlinear Equations

Amin Majd
Department of Information

Technology

University of Turku

Turku, Finland

Amin.Majd@utu.fi

Mahdi Abdollahi

Department of Computer

Sciences

University of Tabriz

Tabriz, Iran

m.abdolahi89@ms.tabrizu.ac.ir

Golnaz Sahebi
Department of Information

Technology

University of Turku

Turku, Finland

Golnaz.Sahebi@utu.fi

Davoud Abdollahi

Department of Mathematic

Sciences

University College of

Daneshvaran

Tabriz, Iran

abdollahi_d@daneshvaran.ac.ir

Masoud Daneshtalab
Royal Institute of Technology (KTH)

Stockholm, Sweden,

masdan@kth.se

Juha Plosila
Department of Information Technology

University of Turku

Turku, Finland

juplos@utu.fi

Hannu Tenhunen
Royal Institute of Technology

Stockholm,Sweden

University of Turku, Finland

Hannu@kth.se

Abstract— the widespread importance of optimization and

solving NP-hard problems, like solving systems of nonlinear

equations, is indisputable in a diverse range of sciences. Vast uses

of non-linear equations are undeniable. Some of their applications

are in economics, engineering, chemistry, mechanics, medicine,

and robotics. There are different types of methods of solving the

systems of nonlinear equations. One of the most popular of them

is Evolutionary Computing (EC). This paper presents an

evolutionary algorithm that is called Parallel Imperialist

Competitive Algorithm (PICA) which is based on a multi-

population technique for solving systems of nonlinear equations.

In order to demonstrate the efficiency of the proposed approach,

some well-known problems are utilized. The results indicate that

the PICA has a high success and a quick convergence rate.

Keywords— parallel imperialist competitive algorithm

(PICA); multi-population technique; evolutionary computing

(EC); super linear performance; nonlinear equations; multi-

objective optimization;

I. INTRODUCTION

Systems of nonlinear equations are one of the NP-Hard

problems, which resemble the multi-objective optimization

problems. Systems of nonlinear equations are utilized in a range

of engineering applications, such as weather forecast,

petroleum geological prospecting, computational mechanics,

and control fields. The quality of answers of the classical

methods, like the Newton-type methods, depends on the initial

guess of the solution. However, selecting suitable initial

solutions for the most systems of nonlinear equations is

extremely difficult.

So far, several methods have been proposed for optimization

problems. They can be classified into two major classes:

mathematical methods and evolutionary computing (EC)

methods. There are different types of EC methods, most of them

are implemented in a sequential mode and some in a parallel

mode.

Sequential EC methods are more popular than other

mathematical methods for solving nonlinear equations, but they

do not always provide sufficient accuracy. There are different

kinds of parallel EC methods that are capable of improving the

accuracy of results. In this work, we utilize a multi-population

EC method that improves the results of the used benchmarks.

The rest of the paper is organized as follows: In Section II, the

imperialist competitive algorithm is reviewed. Section III

introduces the parallel implementation of the ICA based on the

multi-population technique. In Section IV, the proposed

algorithm is compared with the related previous works. Finally,

Section V concludes the paper and indicates the future works.

II. RELATED WORK

Let us first look into the sequential algorithms that have been

proposed for solving systems of nonlinear equations. El-Emary

and El-Kareem employed Gauss-Legendre integration as a

technique to solve the system of nonlinear equations and used

genetic algorithm (GA) to discover the results without

converting the nonlinear equations to linear equations [15].

Mastorakis employed genetic algorithm (GA) to solve a non-

linear equation as well as systems of non-linear equations [17].

Li and Zeng [18], used a neural-network algorithm for solving

a set of nonlinear equations. The computation is carried out by

a simple gradient descent rule with variable step-size levels

[18]. Huan-Tong et al. proposed a modified evolution strategy

(ES) based on a probability ranking method to solve

complicated nonlinear systems of equations (NSE) problems

[19]. M. Abdollahi et al. applied the imperialist competitive

algorithm for solving nonlinear systems of equations [16]

Ouyang et al. employed a hybrid particle swarm optimization

(HPSO) algorithm. The particle swarm optimization (PSO)

method focuses on ”exploration”, and the Nelder-Mead simplex

method (SM) focuses on ”exploitation” [20], while Wu et al.

used a new variation of the social emotional optimization

algorithm called MSEOA, mainly inspired by the Metropolis

Rule [21]. M. Abdollahi et al. proposed a cuckoo optimization

algorithm for solving nonlinear systems equations [25], [29].

Luo at al. applied a combination of the chaos search and

Newton type methods [1]. Grosan and Abraham employed a

new perspective of the evolutionary algorithms (EA) [7], Mo et

al. proposed a combination of the conjugate direction method

(CD) [2], and M. Jaberipour used the particle swarm algorithm

[3]. Henderson at al. [22], and Pourjafari et al. [23] introduced

a methodology based on a polarization technique and a novel

optimization method based on Invasive Weed Optimization

(IWO), respectively, for finding all roots of a system of

nonlinear equations.

In past years, researchers have utilized some parallel EC

methods for optimization problems such as Parallel Genetic

Algorithms [4], and Parallel PSO [9], Parallel ABC (PABC)

[6], Parallel Ant Colony Optimization (PACO) [5], and Parallel

Memetic [10] algorithms. Wu and Kang used a parallel elite-

subspace evolutionary algorithm for solving systems of

nonlinear equations [14]. Some parallel EC methods can

achieve super-linear performance [12], where each one is

implemented with different techniques and hardware platforms.

For example, Parallel Genetic Algorithms are implemented in

the following four categories [4]: Master-Slave Genetic

Algorithms, Corse Grain Genetic Algorithms (Multi-

Populations Genetic Algorithms), Fine Grain Genetic

Algorithms, and Hybrid Genetic Algorithms [27].

The obtained results of mathematical methods are sensitive to

the initial guess of the solution. The population size of the

evolutionary algorithms is large and the convergence of the

evolutionary methods to the global minimum is slow. The EC

methods are impractical for large-scale problems, like systems

of nonlinear equations because of their high linear algebra costs

and large memory requirements. For this reason, it is necessary

to find an efficient algorithm for solving systems of nonlinear

equations. Let systems of nonlinear equations be of the form:

{

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) = 0
.
.
.

𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

(1)

In order to transform (1) to an optimization problem, we will

use the auxiliary function:

min𝑓(𝑥) = ∑𝑓𝑖
2(𝑥), 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛)

𝑛

𝑖=1

(2)

Where f (x) is the global minimum that will be minimized.

In this paper, a parallel imperialist competitive algorithm

(PICA) based on the multi-population technique for solving

systems of nonlinear equations problems is presented. The

proposed method overcomes the mentioned weaknesses of

evolutionary methods for solving the systems of nonlinear

equations problems. We have also selected some well-known

problems for the evaluation.

III. BACKGROUND

The Imperialist Competitive Algorithm (ICA) was introduced

by E. Atashpaz and C. Lucas [26], and is inspired by

imperialistic competition. ICA is an evolutionary algorithm and

optimizes results of problems. In this algorithm, all countries

are divided into two types: imperialist states and colonies.

Imperialistic competition is the main part of this algorithm, and

the expectation is that the colonies converge to the global

minimum of the cost function. In the first step, the algorithm

creates some countries and after sorting them the best countries

are selected to be imperialists and the rest of the countries form

the colonies of these imperialists (Fig 1, step 1). After dividing

all colonies among imperialists, these colonies start moving

toward their relevant imperialist countries (Fig 1, step 2). In the

next step, the ICA computes the power of each imperialist and

the imperialistic competition begins. The weakest imperialist

loses its weakest colony and the selected imperialist captures

this colony (Fig 1, step 5). These steps are then repeated until

the termination condition is satisfied. The termination

conditions can be different. For example, the ICA algorithm

could stop after certain number of iterations or when all

colonies have become members of one imperialist (see Fig. 1).

ICA is a suitable method for optimization problems, but there

exist some challenges concerning the evolutionary algorithms.

For example, when we are considering a far-reaching search

area, we need a large initial population to obtain an appropriate

result, but with a resource constrained processor we may not be

able to satisfy this requirement. Also, when we face a complex

problem that needs complex computations, the run time will

increase, and therefore we need to utilize an efficient method to

improve the speed, stability, and accuracy.

The sequential ICA algorithm inherently has a parallel

structure, and therefore, a parallel ICA implementation is a

viable solution to improve the ICA. In the ICA, each imperialist

and colonies work independently, and after a decade a colony

moves to another imperialist- Hence, this algorithm works

similarly as a multi-population method that works on a

processor. In the next section, we utilize a multi-population

ICA to solve some complex problems.

IV. THE PROPOSED METHOD

In this work, we utilize a multi-population model to

implement the Parallel Imperialist Competitive Algorithm

(PICA), by applying a selective local search strategy, in order

to solve systems of nonlinear equations. We intend to utilize the

full capacity of evolutionary algorithms (e.g. faster

convergence, run time speed, and accuracy) for solving such

problems. There are different approaches for parallelizing

evolutionary algorithms, such as the master slave, multi-

population, fine-grain, and hybrid methods; but multi-

population method has better convergences and has more

accurate results than other parallel methods. Of these, we use

the multi-population method. In the multi-population method,

there are some independent populations in different processors,

each covering its own independent area of the search space.

Each processor runs the ICA on its population with independent

parameter values. Due to this independency, different levels of

exploration and exploitation can be utilized, and therefore the

application can get out from local optimums. The other

advantage of the multi-population method is its ability for

migration, which can significantly improve performance of

solving nonlinear equations. It is the most important parallel

operation in the multi-population implementation, as letting

processors to share the best results and investigate areas with

other processors help discover better results in a smaller number

of iterations. There are different kinds of migration techniques,

for example, each processor can select the best or worst

countries to be sent to the other processors or can randomly

select some countries. In our work, we select the best countries

to be migrated between processors to share the best results

together, and the processors replace their worst countries with

the received best countries. Receiver processors are selected

based on the connection topology used. Figure 1 illustrates the

migration behaviour. For example, for a network with the fully

connected topology, each processor can receive countries from

any other processor. It can be very useful if all processors

receive all migrated countries, but in practice we have to find

balance between data communication cost (communication

time) and achieved improvement in results.

In this work, each country is a possible solution for the

selected nonlinear equation. Hence, the algorithm randomly

creates the initial populations, which are the possible solutions.

Some of them are then selected, at each iteration step, to be

processed by the ICA in order to converge them towards better

results.

Fig. 1. Imperialist Competetive Algorithm [28]

In our implementation, several processors are connected

together using a ring topology and message passing based

communication. The ring topology has been selected because

of its low communication cost and simplicity. Each processor

is first initialized with a set of independent countries (the

number of countries in each processor is the same) and the ICA

to be independently run on it. After some decades (the period

varies from an execution to another), the best country migrates

from each processor Pi to the next processor Pi+1 in the ring

and replaces the worst country in Pi+1. Since we utilize the ring

topology to connect processors together, and because the

migration takes place in all processors synchronously, the

numbers of countries in any two processors are equal at any

given time. The migration strategy can affect the result as well.

Generally, it is better to establish a balance between the

migration rate and data communication. The chosen ring

topology is utilized to reduce the migration rate and to decrease

the distance of the migrations.

Best

Worst

P1

Best

Worst

P2

Best

Worst

P3

Best

Worst

P4

Best

B
e
st

Best

B
e
st

Fig. 2. Multi-population migration operation

Figure 2 shows the architecture of the multi-population

structure with a ring topology. Figure 3 presents the Multi-

Population ICA pseudo code. In our implementation, all

parameters in different processors are equal, and all ICA

computations run independently in different processors. On the

other hand, the migration operations run synchronously as

explained above.

In the multi-population ICA, the pressure of selection
increases by growing the number of countries, which helps to
obtain more accurate results in a shortest time and converge to
the results faster than the sequential ICA. Therefore it is
beneficial to increase the number of countries.

Processor 𝑃𝑖:
1-Create independent initial countries.

2-Run ICA algorithm independently.

3-If now is time of migration do

a) Wait until all processors arrive to this point.

b) Send the best country to processor

(𝑃𝑖+1)mod(#processors).

c) Receive a country from (𝑃𝑖−1)mod(#processors) and

replace the worse country with the received one.

4-If termination condition is reached, then terminate algorithm.

5-Show the best country.
6-End.

Fig. 3. Multi-population ICA pseudo code

V. EXPERIMENT AND RESULTS

In this section, five commonly explored problems have been

utilized to demonstrate the performance of the PICA. The

obtained results have been compared with the other well-known

methods that have used the same problems. The parallel ICA

has been implemented on both share memory and massage

passing models. The massage passing interface (MPI) has been

utilized to parallelize our algorithm and MPICH2 to run the

algorithm.

In the multi-population ICA, processors have been connected

in a ring topology with different processors on the different

tests. The proposed algorithm has been tested on an Intel core

i3-330M, processors 2.13 GHz (64-bit) and memory 4 GB. The

best results of benchmarks have been obtained by 30

independent runs. The used parameters for solving the

problems have been illustrated in Table 1.

A. Benchmarks

 Test 1: 10-dimention Rastrigin Function

𝑓(𝑥) =∑[𝑥𝑖
2

10

𝑖=1

− 10 cos(2𝜋𝑥𝑖) + 10𝑛] |𝑥𝑖| ≤ 5.2 (3)

The answer of this test with f (0, 0, 0,…, 0) is 0. This test has

been solved by Mo et al. [2] and ICA [24] with 1000 iterations

and 300 population sizes. PICA has been applied to optimize it

with the same parameters.

TABLE I. USED PARAMETERS IN PICA FOR TESTS AND CASES

Parameters Test 1 Test 2 Case 1 Case 2 Case 3

Total population

size

300 300 250 250 300

Number of empires 10 10 10 10 10

Number of

iteration

1000 1000 45 50 1000

Revolution rate 0.04 0.04 0.04 0.04 0.04

Ξ 0.02 0.02 0.02 0.02 0.02

θ 0.5 0.5 0.5 0.5 0.5

β 2 2 2 2 2

The results of Mo et al. [2], ICA [24] and our proposed

algorithm have been presented in Tables 2-4.

Figures 4 and 5 indicate the convergence history of ICA and

PICA, respectively. The stability chart of PICA has been

indicated in Figure 6. PICA has reached to the optimized

answer before 50 iterations.

Test 2: This example has been used as a benchmark in [3] and

[24].

min 𝑓(𝑥) = ∑ [sin(𝑥𝑖) + sin(
2𝑥𝑖
3
)]

𝐷

𝑖=1

(4)

The answer of the test 2 is 1.21598D and the variables of the

function are in (3, 13). The comparison results of ICA [24] and

PICA with 1000 iterations and 300 population sizes have been

given in Table 5. PICA has solved Test 2 quicker than prior

methods before 200 iterations (see Figures 7-9).

B. Case study

In this section, three commonly explored systems of nonlinear

equations have been used to demonstrate the performance of the

proposed method, and the obtained results have been compared

with the other known methods.

Case 1: This example has been given in [3], [11], [24], and [25]:

{
𝑥1 − 3𝑥1𝑥2

2 − 1 = 0

3𝑥1
2𝑥2 − 𝑥2

3 + 1 = 0

(5)

The solutions in [3] and [11] have been obtained with 120

iterations with an unknown number of population sizes. The

parameters of the ICA method [24] have been set to 50

iterations with 250 countries. The obtained solutions by PICA

are better and more accurate than the previous works (see Table

6). Figures 10-12 indicate the convergence history of the Case

1. Figure 13 shows the stability chart of this case.

Case 2: (Problem 2 in [8], Test Problem 14.1.4 in [13], and

Case study in [24] and [25])

𝑓1(𝑥1, 𝑥2) = 0.5 sin(𝑥1𝑥1) − 0.25𝑥2 𝜋⁄ − 0.5𝑥1 = 0

𝑓2(𝑥1, 𝑥2) = (1 − 0.25 𝜋⁄)((exp(2𝑥1) − 𝑒) + 𝑒 𝑥2 𝜋⁄ − 2𝑒𝑥1 = 0

(6)

 The results of Case 2 in [8], [13], [24], and [25] with the 50

iterations and the 250 population sizes were compared with

PICA in Table 8. The obtained solutions of PICA have

outperformed the mentioned methods with 250 countries and

35 iterations. The speed up of the proposed algorithm gets better

than the other literatures (see figures 14-16).

Case 3: (Problem 6 in [8] and Test Problem 14.1.6 in [13])

Case 3 has been solved by the filled function method in [8] and

has been proposed as a problem in [13] and [24].

4.731 × 10−3𝑥1𝑥3 − 0.357𝑥2𝑥3 − 0.1238𝑥1 + 𝑥7 − 1.637
× 10−3𝑥2 − 0.9338𝑥4 − 0.3 = 0

0.2338𝑥1𝑥3 + 0.7623𝑥2𝑥3 + 0.2638𝑥1 − 𝑥7 − 0.07745𝑥2
− 0.6734𝑥4 − 0.6022 = 0

𝑥6𝑥8 + 0.3578𝑥1 + 4.731 × 10
−3𝑥2 = 0

−0.7623𝑥1 + 0.2238𝑥20.3461 = 0

𝑥1
2 + 𝑥2

2 − 1 = 0

𝑥3
2 + 𝑥4

2 − 1 = 0

𝑥5
2 + 𝑥6

2 − 1 = 0

𝑥7
2 + 𝑥8

2 − 1 = 0

−1 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2,… , 8.

(7)

 The number of iterations for this problem in [8], [13] and [24]

is 1000 and the population size is 300. Our results with the same

iterations and countries have been compared in Table 9. The

convergence history of ICA [24] and PICA have been shown in

Figures 17 and 18, respectively. Figure 19 shows the stability

chart of PICA for the Case 3. The statistical results of tests and

cases have been illustrated in Table 7. The comparison

statistical results of the serial ICA and the parallel ICA have

been given in Table 10.

VI. DISCUSSION

In this paper a parallel implementation of ICA based on the

multi-population method has been utilized to solve the systems

of nonlinear equations. There are different kinds of the PICA

implementation such as the master-slave, the multi-population,

and the hybrid methods that each one has different advantages.

For example, the Master-Slave method can be utilized when we

simply intend to increase the speed of our algorithm, but Multi-

Population method must be used when we intend to increase

both speed and accuracy. Multi-Population method increases

the number of the initial population and therefore, the pressure

of selection grows that it causes to find more accurate results.

In our implementation, the ring connection topology has been

considered to connect the processors. In our algorithm, the

migration operation causes that each processor has the ability

to send its countries to next processors and receives some

countries from previous processors. With the aforementioned

ability each processor shares the best results with other

processors which reduces the number of iterations

considerably.

In this paper, PICA has been compared with other methods

through some well-known benchmarks and case studies. PICA

has obtained more accurate results with the lower number of

iterations.

The most important result of PICA is about super linear
performance (where the efficiency value of the algorithm is
more than one). Our implementation achieved the super linear
performance that means it is an outstanding method and is the
best way to solve non-linear problems.

Fig. 4. The convergence history of Rastrigin Function (from [24])

Fig. 5. The convergence history of Rastrigin with PICA (test 1)

Fig. 6. The stability chart of Rastrigin with PICA (test 1)

Fig. 7. The convegence history of test 2 with D=100 (from [24])

Fig. 8. The convergence history of PICA for test 2 with D=100

Fig. 9. The Stability chart of test 2 with D=100

Fig. 10. The convergence history of case 1 (from [3])

Fig. 11. The convergence history of case 1 (form [24])

Fig. 12. The convergence history of case 1 with PICA

Fig. 13. The stability chart of case 1 with PICA

Fig. 14. The stability chart of case 1 with PICA

Fig. 15. The convergence history of case 2 (from [24])

Fig. 16. The convergence history of case 2 with PICA

Fig. 17. The stability chart of case 2 with PICA

Fig. 18. The convergence history of case 3 (from [24])

Fig. 19. The convergence history of case 3 with PICA

Fig. 20. The stability chart of case 3 with PICA

TABLE II. RESULTS OF TEST 1 WITH MO ET AL. (FROM [2])

Vari

ables

Initial

iteration

After 200

iterations

After 400

iterations

After 600

iterations

After 800

iterations

After 1000

iteration

𝒙𝟏 0.1431 -0.0001 -0.0007 0.0001 -0.0000 -0.0000

𝒙𝟐 2.1983 -0.0001 0.0000 0.0001 0.0001 0.0001

𝒙𝟑 1.9401 0.0000 0.0000 0.0001 -0.0000 0.0001

𝒙𝟒 -1.7080 -0.0002 -0.0001 0.0000 -0.0000 -0.0000

𝒙𝟓 0.2261 -0.9950 -0.9962 -0.9948 0.0001 0.0001

𝒙𝟔 0.9392 0.9950 0.9941 0.9949 0.9950 0.9949

𝒙𝟕 -0.1129 0.9949 0.9949 0.0001 -0.0001 0.0000

𝒙𝟖 -0.1516 0.9950 0.9949 0.9949 0.9949 -0.0000

𝒙𝟗 -2.1893 -0.0001 0.0000 0.0001 -0.0000 -0.0000

𝒙𝟏𝟎 4.9798 0.9950 0.0000 0.0001 -0.0000 -0.0000

TABLE III. RESULTS OF TEST 1 WITH ICA (FROM [24])

Variables Initial iteration After 200 iterations After 400 iterations After 600 iterations After 800 iterations After 1000 iteration

𝒙𝟏 -2.883527 -0.1084e-007 -0.1404e-008 -0.1404e-008 -0.1404e-008 -0.1404e-008

𝒙𝟐 -2.111072 0.1710e-007 0.0275e-008 0.0275e-008 0.0275e-008 0.0275e-008

𝒙𝟑 -0.869045 -0.0048e-007 -0.0656e-008 -0.0656e-008 -0.0656e-008 -0.0656e-008

𝒙𝟒 1.985114 0.6947e-007 0.0855e-008 0.0855e-008 0.0855e-008 0.0855e-008

𝒙𝟓 -1.156667 0.0328e-007 -0.1015e-008 -0.1015e-008 -0.1015e-008 -0.1015e-008

𝒙𝟔 3.083374 0.0356e-007 0.0899e-008 0.0899e-008 0.0899e-008 0.0899e-008

𝒙𝟕 3.093877 -0.0948e-007 0.0349e-008 0.0349e-008 0.0349e-008 0.0349e-008

𝒙𝟖 -2.020172 0.1528e-007 0.1610e-008 0.1610e-008 0.1610e-008 0.1610e-008

𝒙𝟗 2.832951 -0.2304e-007 -0.0180e-008 -0.0180e-008 -0.0180e-008 -0.0180e-008

𝒙𝟏𝟎 -2.208695 -0.2454e-007 0.0147e-008 0.0147e-008 0.0147e-008 0.0147e-008

𝒇(𝒙) 83.041615 1.3287e-012 0 0 0 0

TABLE IV. RESULTS OF TEST 1 WITH PICA (PRESENT STUDY)

Variables Initial iteration After 200 iterations After 400 iterations After 600 iterations After 800 iterations After 1000 iteration

𝒙𝟏 1.928441 -4.716237e-011 -4.716237e-011 -4.716237e-011 -4.716237e-011 -4.716237e-011

𝒙𝟐 -2.248101 2.157231e-011 2.157231e-011 2.157231e-011 2.157231e-011 2.157231e-011

𝒙𝟑 1.341671 -1.001342e-011 -1.001342e-011 -1.001342e-011 -1.001342e-011 -1.001342e-011

𝒙𝟒 0.728811 1.713127e-011 1.713127e-011 1.713127e-011 1.713127e-011 1.713127e-011

𝒙𝟓 1.728128 -7.887191e-011 -7.887191e-011 -7.887191e-011 -7.887191e-011 -7.887191e-011

𝒙𝟔 -2.839121 -2.837190e-012 -2.837190e-012 -2.837190e-012 -2.837190e-012 -2.837190e-012

𝒙𝟕 1.871831 1.238291e-011 1.238291e-011 1.238291e-011 1.238291e-011 1.238291e-011

𝒙𝟖 1.934281 -6.348271e-011 -6.348271e-011 -6.348271e-011 -6.348271e-011 -6.348271e-011

𝒙𝟗 1.409124 8.119381e-011 8.119381e-011 8.119381e-011 8.119381e-011 8.119381e-011

𝒙𝟏𝟎 0.365281 1.981381e-011 1.981381e-011 1.981381e-011 1.981381e-011 1.981381e-011

𝒇(𝒙) 1.241803e+002 0 0 0 0 0

TABLE V. COMPARISON RESULTS OF TEST 2 WITH D=100

𝒇(𝒙) Initial

iteration

After 100

iteration

After 200

iteration

After 300

iteration

After 400

iteration

After 500

iteration

After 600

iteration

After 700

iteration

After 800

iteration

After 900

iteration

ICA [24] 29.786871 -78.6467 -103.3897 -113.0125 -120.5298 -121.5923 -121.5979 -121.5982 -121.5982 -121.5982

PICA -20.0000 -95.0017 -121.5982 -121.5982 -121.5982 -121.5982 -121.5982 -121.5982 -121.5982 -121.5982

TABLE VI. COMPARISON RESULTS OF PICA FOR CASE 1 WITH [3], [11], [24] AND [25]

Methods 𝒙𝟏 𝒙𝟐 𝒇(𝒙)
PPSO [3] and Gyurhan [11] -0.29051455550725 1.08421508149135 4.686326815078573e-029

PPSO [3] and Gyurhan [11] -0.793700525984100 -0.793700525984100 1.577721810442024e-030

COA [25] 1.08421508149135 -0.29051455550725 4.686326815078573e-029

COA [25] -0.29051455550725 1.08421508149135 4.686326815078573e-029

ICA [24] 1.084215081491351 -0.290514555507251 3.562200025138631e-030

ICA [24] -0.793700525984100 -0.793700525984100 1.577721810442024e-030

ICA [24] -0.290514555507251 1.084215081491351 3.562200025138631e-030

PICA (present study) 1.0842150814913511 -0.2905145555072514 4.9303806576313238e-032

PICA (present study) -0.79370052598409995582 -0.79370052598409995582 3.9443045261050590e-031

PICA (present study) -0.2905145555072514 1.0842150814913511 4.9303806576313238e-032

TABLE VII. STATISTICAL RESULTS

Problem N Mean Std. Deviation Std. Error Mean Worst Best

Test 1 30 0.0 0.0 0.0 0.0 0.0

Test 2 30 -1.215981999999999e+002 7.226896453227138e-014 1.319444736062194e-014 -1.215982000000000e+002 -1.215982000000000e+002

Case 1 30 1.988586000000001e-031 1.739458967563944e-031 3.175803047964731e-032 3.944300000000000e-031 4.930400000000000e-032

Case 2 30 1.046312443884771e-026 1.511543708264576e-026 2.759688618905053e-027 4.414500000000001e-026 0.0

Case 3 30 6.898049999999997e-037 1.150107106181705e-037 2.099798685342363e-038 9.039099999999999e-037 5.800000000000000e-037

TABLE VIII. COMPARISON RESULTS OF CASE 2

Methods X Variable values f Functions values F(x)

The best in [8] 𝑥1 0.500432850000000 𝑓1 -0.000238520000000 7.693745216994211e-008

𝑥2 3.141863170000000 𝑓2 0.000141590000000

The best in [13] 𝑥1 0.299450000000000 𝑓1 6.139739265609290e-007 1.014347133848949e-012

𝑥2 2.836930000000000 𝑓2 -7.983627943186633e-007

𝑥1 0.500000000000000 𝑓1 2.111655261760603e-007 5.316365008296489e-012

𝑥2 3.141590000000000 𝑓2 -2.296034435467220e-006

The best in COA

[25]

𝑥1 0.299300000000000 𝑓1 -7.128922385554737e-005 5.792081721117691e-009

𝑥2 2.836600000000000 𝑓2 2.664447941302939e-005

The best in ICA

[24]

𝑥1 0.299448692495720 𝑓1 1.305289210051797e-012 5.631272867601562e-024

𝑥2 2.836927770471037 𝑓2 2.284838984678572e-013

𝑥1 0.500000000000000 𝑓1 0 0

𝑥2 3.141592653589794 𝑓2 0

The best of PICA 𝑥1 0.29944869249092598 𝑓1 -1.387778780781446e-016 6.856310602018560e-032

𝑥2 2.8369277704589400 𝑓2 2.220446049250313e-016

𝑥1 0.500000000000000 𝑓1 0 0

𝑥2 3.141592653589794 𝑓2 0

TABLE IX. COMPARISON RESULTS OF CASE 3

Methods x Variables values f Functions values

The best

in [8]

𝑥1 0.67154465 𝑓1 -0.00000375

𝑥2 0.74097111 𝑓2 0.00001537

𝑥3 0.95189459 𝑓3 0.00000899

𝑥4 -0.30643725 𝑓4 0.00001084

𝑥5 0.96381470 𝑓5 0.00001039

𝑥6 -0.26657405 𝑓6 0.00000709

𝑥7 0.40463693 𝑓7 0.00000049

𝑥8 0.91447470 𝑓8 -0.00000498

The best

in [13]

𝑥1 0.1644 𝑓1 -8.8531e-005

𝑥2 -0.9864 𝑓2 3.5894e-005

𝑥3 -0.9471 𝑓3 6.6216e-006

𝑥4 -0.3210 𝑓4 2.1560e-005

𝑥5 -0.9982 𝑓5 1.2320e-005

𝑥6 -0.0594 𝑓6 3.9410e-005

𝑥7 0.4110 𝑓7 -6.8400e-005

𝑥8 0.9116 𝑓8 -6.4440e-005

The best

of ICA

[24]

𝑥1 0.164431665854327 𝑓1 2.775557561562891e-016

𝑥2 -0.986388476850967 𝑓2 -1.110223024625157e-016

𝑥3 0.718452601027603 𝑓3 -1.110223024625157e-016

𝑥4 0.718452601027603 𝑓4 1.734723475976807e-018

𝑥5 0.997964383970433 𝑓5 0

𝑥6 0.063773727557003 𝑓6 0

𝑥7 -0.527809105283546 𝑓7 0

𝑥8 -0.849363025083964 𝑓8 0

The best

of PICA

𝑥1 0.164431665854327405 𝑓1 5.368529659036217811e-019

𝑥2 -0.986388476850967110 𝑓2 2.548307417523678423e-019

𝑥3 0.718452601027603350 𝑓3 -3.378192205891815512e-019

𝑥4 -0.695575919707310931 𝑓4 3.389211820587187123e-019

𝑥5 0.997964383970432520 𝑓5 0

𝑥6 0.063773727557002571 𝑓6 0

𝑥7 -0.527809105283546241 𝑓7 0

𝑥8 -0.849363025083964123 𝑓8 0

TABLE X. THE COMPARISON STATISTICAL RESULTS OF SERIAL ICA [24]

AND PICA

P
r
o

b
lem

S
p

e
e
d

 U
p

E
ffic

ie
n

cy

S
e
r
ia

l
IC

A

tim
e

P
IC

A
 tim

e

#
p

ro
c
esso

r
s

S
u

p
e
r

lin
e
a
r

p
e
r
fo

r
m

a
n

c
e

?

Test 1 4.02 2.01 3.38 0.84 2 Yes

Test 2 7.22 3.61 11.82 1.63 2 Yes

Case 1 2.82 1.41 0.0341 0.01
2

2 Yes

Case 2 5.1 2.55 2.1 0.41

1

2 Yes

Case 3 6.24 3.12 6.78 1.08 2 Yes

VII. CONCLUSION AND FUTURE WORKS

In this paper, the parallel imperialist competitive algorithm

based on the MPI instructions (Multi-Population) was utilized

to solve the systems of nonlinear equations. The PICA was

compared with the serial ICA and some of the other proposed

methods. According to the obtained results, the PICA is

suitable for solving different kinds of complex problems, and it

is faster and more efficient than the other methods. The figures

indicated that the answers of our algorithm are stable and the

convergence of the PICA to the best solution is faster than the

other methods, with the lower number of iterations and better

run time. As a result, we claim that the proposed PICA is a

faster and more accurate method, which can be employed to

solve and improve the complex problems. At the end, our future

works will consist of using the proposed parallel algorithm to

solve some of the more practical optimization problems, like

constrained engineering optimizatio

REFERENCES

[1] Y.Z. Luo, G.J. Tang, L.N. Zhou, Hybrid approach for solving systems of
nonlinear equations using chaos optimization and quasi-Newton method,
Appl. Soft. Comput. 8 (2008) 1068-1073.J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

[2] Y. Mo, H. Liu, Q. Wang, Conjugate direction particle swarm optimization
solving systems of nonlinear equations, Comput. Math. Appl. 57 (2009)
1877-1882.

[3] M. Jaberipour, E. Khorram, B. Karimi, Particle swarm algorithm for
solving systems of nonlinear equations, Comput. Math. Appl. 62 (2011)
566-576.

[4] E. Cantu-Paz, A Survey of Parallel Genetic Algorithms, Department of
Computer Science and Illinois Genetic Algorithms Laboratory University
of Illinois at Urbana-Champaign, 1997.

[5] H. Liu, P. Li, and Y. Wen, Parallel Ant Colony Optimization Algorithm,
World Congress on Intelligent Control and Automation, China, June,
2006.

[6] R. Parpinelli, C. Benitez, and S. Lopes, Parallel Approaches for the
Artificial Bee Colony Algorithm, Handbook of Swarm Intelligence,
8(2010) 329-345.

[7] C. Grosan, A. Abraham, A New Approach for Solving Nonlinear
Equations Systems, IEEE Trans. Syst. Man Cybern. A 38 (3) (2008)
Senior Member, IEEE.

[8] C. Wang, R. Luo, k. Wu, B. Han, A new filled function method for an
unconstrained nonlinear equation, Comput. Appl. Math. 235 (2011) 1689-
1699.

[9] L. Vanneschi, D. Codecasa, and G. Mauri, A Comparative Study of Four
Parallel and Distributed PSO Methods, New Generat. Comput. 29(2011)
129-161.

[10] J. Digalakis, and K. Margaritis, A Parallel Memetic Algorithm for Solving
Optimization Problems, 4th Metaheuristics International Conference,
Parallel Distributed Processing Laboratory, Greece, 2001.

[11] Gyurhan H. Nedzhibov, A family of multi-point iterative methods for
solving systems of nonlinear equations, J. Comput. Appl. Math.
222(2008) 244250.

[12] E. C. G. Wille, E. Y. H. S. Lopes, Discrete Capacity Assignment in IP
networks using Particle Swarm Optimization, Appl. Math. Comput.,217
(2011) 5338-5346.

[13] C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H.
Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer, C. A. Schweiger,
Handbook of Test Problems in Local and Global Optimization, Kluwer
Academic Publishers, Dordrecht, the Netherlands, 1999.

[14] A. Mousa, W. Wahed, R. Allah, A Hybrid Ant Colony Optimization
Approach Based Local Search Scheme for Multi Objective Design
Optimizations, Electr. Pow. Syst. Res. 81 (2011) 1014-1023.

[15] Ibrahiem M. M. El-Emary and Mona M. Abd El-Kareem, Toward Using
Genetic Algorithm for Solving Nonlinear Eqution Systems, World Appl.
Sci. J. 5 (2008) 282-289.

[16] M. Abdollahi, A. Isazadeh, D. Abdollahi, Solving systems of nonlinear
equations using imperialist competitive algorithm, The 8th International
Industrial Engineering Conference, 8 (2012) 1-6.

[17] Nikos E. Mastorakis, Solving Non-linear Equations via Genetic
Algorithms, Proceedings of the 6th WSEAS Int. Conf. on
EvolutionaryComputing, Lisbon, Portugal, June 16-18 (2005) 24-28.

[18] G. Li, Zh. Zeng, A neural-network algorithm for solving nonlinear
equation systems, IEEE International Conference on Computational
Intelligence and Security, CIS08 (2008) 20-23.

[19] G. Huan-Tong, S. Yi-Jie, S. Qing-Xi, W. Ting-Ting, Research of Ranking
Method in Evolution Strategy for Solving Nonlinear System of Equations,
IEEE International Conference on Information Science and Engineering,
ICISE09 (2009) 348-351.

[20] A. Ouyang, Y. Zhou, Q. Luo, Hybrid Particle Swarm Optimization
Algorithm for Solving Systems of Nonlinear Equations, IEEE
International Conference on Granular Computing, GRC09 (2009) 460-
465.

[21] J. Wu, Zh. Cui, J. Liu, Using Hybrid Social Emotional Optimization
Algorithm with Metropolis Rule to Solve Nonlinear equations, IEEE
International Conference on Cognitive Informatics & Cognitive
Computing, ICCI*CC’11 (2011) 405-411.

[22] N. Henderson, W. F. Sacco, G. Mendes Platt, Finding more than one root
of nonlinear equations via a polarization technique: An application to
double retrograde vaporization, Chem. Eng. Res. Des. 88 (2010) 551-561.

[23] E. Pourjafari, H. Mojallali, Solving nonlinear equations systems with a
new approach based on invasive weed optimization algorithm and
clustering, Swarm Evol. Comput. 4 (2012) 3343.

[24] M. Abdollahi, A. Isazadeh, D. Abdollahi, Imperialist competitive
algorithm for solving systems of nonlinear equations, Comput. Math.
Appl.65 (2013) 1894-1908.

[25] M. Abdollahi, Sh. Lotfi, D. Abdollahi, Solving systems of nonlinear
equations using cuckoo optimization algorithm, The 3rd International
conference on The Contemporary Issues in Computer Sciences and
Information Technology (CICIS), 3 (2012) 191-194.

[26] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an
algorithm for optimization inspired by imperialistic competition, in:IEEE
Congress on Evolutionary Computation, 2007, pp. 46614667.

[27] A. Majd, Sh. Lotfi and G. Sahebi, “Review on Parallel Evolutionary
Computing and Introduce Three General Framework to Parallelize All EC
Algorithms,” 5th Conference on Information and Knowledge Technology
(IKT), 2013.

[28] A. Majd, Sh. Lotfi, G. Sahebi, M. Daneshtalab and J. Plosila, “PICA:
Multi-Population Implementation of Parallel Imperialist Competitive
Algorithms,” 24th Euromicro International Conferences on Parallel,
Distributed and Network-Based Processing, PDP 2016.

[29] M. Abdollahi, A. Bouyer, D. Abdollahi, Improved cuckoo optimization
algorithm fo solving systems of nonlinear equations, J. Supercomput. 72
(2016) 1246-1269.

