
Multi-Population Parallel Imperialist Competitive Algorithm for Solving 

Systems of Nonlinear Equations 

Amin Majd 
Department of Information 

Technology 

University of Turku 

Turku, Finland 

Amin.Majd@utu.fi 

Mahdi Abdollahi 

Department of Computer 

Sciences 

University of Tabriz 

Tabriz, Iran 

m.abdolahi89@ms.tabrizu.ac.ir 
 

Golnaz Sahebi 
Department of Information 

Technology 

University of Turku 

Turku, Finland 

Golnaz.Sahebi@utu.fi 

Davoud Abdollahi 

Department of Mathematic 

Sciences 

University College of 

Daneshvaran 

Tabriz, Iran 

abdollahi_d@daneshvaran.ac.ir 

Masoud Daneshtalab 
Royal Institute of Technology (KTH)  

Stockholm, Sweden,  

masdan@kth.se 

Juha Plosila 
Department of Information Technology 

University of Turku 

Turku, Finland 

juplos@utu.fi 

Hannu Tenhunen  
Royal Institute of Technology 

Stockholm,Sweden 

University of Turku, Finland 

Hannu@kth.se 

 

Abstract— the widespread importance of optimization and 

solving NP-hard problems, like solving systems of nonlinear 

equations, is indisputable in a diverse range of sciences. Vast uses 

of non-linear equations are undeniable. Some of their applications 

are in economics, engineering, chemistry, mechanics, medicine, 

and robotics. There are different types of methods of solving the 

systems of nonlinear equations.  One of the most popular of them 

is Evolutionary Computing (EC). This paper presents an 

evolutionary algorithm that is called Parallel Imperialist 

Competitive Algorithm (PICA) which is based on a multi-

population technique for solving systems of nonlinear equations. 

In order to demonstrate the efficiency of the proposed approach, 

some well-known problems are utilized. The results indicate that 

the PICA has a high success and a quick convergence rate. 

Keywords— parallel imperialist competitive algorithm 

(PICA); multi-population technique; evolutionary computing 

(EC); super linear performance; nonlinear equations; multi-

objective optimization;  

I.  INTRODUCTION  

Systems of nonlinear equations are one of the NP-Hard 

problems, which resemble the multi-objective optimization 

problems. Systems of nonlinear equations are utilized in a range 

of engineering applications, such as weather forecast, 

petroleum geological prospecting, computational mechanics, 

and control fields. The quality of answers of the classical 

methods, like the Newton-type methods, depends on the initial 

guess of the solution. However, selecting suitable initial 

solutions for the most systems of nonlinear equations is 

extremely difficult. 

So far, several methods have been proposed for optimization 

problems. They can be classified into two major classes: 

mathematical methods and evolutionary computing (EC) 

methods. There are different types of EC methods, most of them 

are implemented in a sequential mode and some in a parallel 

mode.  

Sequential EC methods are more popular than other 

mathematical methods for solving nonlinear equations, but they 

do not always provide sufficient accuracy. There are different 

kinds of parallel EC methods that are capable of improving the 

accuracy of results. In this work, we utilize a multi-population 

EC method that improves the results of the used benchmarks. 

The rest of the paper is organized as follows: In Section II, the 

imperialist competitive algorithm is reviewed. Section III 

introduces the parallel implementation of the ICA based on the 

multi-population technique. In Section IV, the proposed 

algorithm is compared with the related previous works. Finally, 

Section V concludes the paper and indicates the future works. 

II. RELATED WORK 

Let us first look into the sequential algorithms that have been 

proposed for solving systems of nonlinear equations. El-Emary 

and El-Kareem employed Gauss-Legendre integration as a 

technique to solve the system of nonlinear equations and used 

genetic algorithm (GA) to discover the results without 

converting the nonlinear equations to linear equations [15]. 

Mastorakis employed genetic algorithm (GA) to solve a non-

linear equation as well as systems of non-linear equations [17]. 

Li and Zeng [18], used a neural-network algorithm for solving 

a set of nonlinear equations. The computation is carried out by 

a simple gradient descent rule with variable step-size levels 

[18]. Huan-Tong et al. proposed a modified evolution strategy 

(ES) based on a probability ranking method to solve 

complicated nonlinear systems of equations (NSE) problems 

[19]. M. Abdollahi et al. applied the imperialist competitive 

algorithm for solving nonlinear systems of equations [16] 

Ouyang et al. employed a hybrid particle swarm optimization 

(HPSO) algorithm. The particle swarm optimization (PSO) 

method focuses on ”exploration”, and the Nelder-Mead simplex 

method (SM) focuses on ”exploitation” [20], while Wu et al. 

used a new variation of the social emotional optimization 

algorithm called MSEOA, mainly inspired by the Metropolis 

Rule [21]. M. Abdollahi et al. proposed a cuckoo optimization 

algorithm for solving nonlinear systems equations [25], [29]. 

Luo at al. applied a combination of the chaos search and 

Newton type methods [1]. Grosan and Abraham employed a 

new perspective of the evolutionary algorithms (EA) [7], Mo et 

al. proposed a combination of the conjugate direction method 

(CD) [2], and M. Jaberipour used the particle swarm algorithm 

[3]. Henderson at al. [22], and Pourjafari et al. [23] introduced 

a methodology based on a polarization technique and a novel 

optimization method based on Invasive Weed Optimization 

(IWO), respectively, for finding all roots of a system of 

nonlinear equations. 

In past years, researchers have utilized some parallel EC 

methods for optimization problems such as Parallel Genetic 

Algorithms [4], and Parallel PSO [9], Parallel ABC (PABC) 

[6], Parallel Ant Colony Optimization (PACO) [5], and Parallel 

Memetic [10] algorithms. Wu and Kang used a parallel elite-

subspace evolutionary algorithm for solving systems of 



nonlinear equations [14]. Some parallel EC methods can 

achieve super-linear performance [12], where each one is 

implemented with different techniques and hardware platforms. 

For example, Parallel Genetic Algorithms are implemented in 

the following four categories [4]: Master-Slave Genetic 

Algorithms, Corse Grain Genetic Algorithms (Multi-

Populations Genetic Algorithms), Fine Grain Genetic 

Algorithms, and Hybrid Genetic Algorithms [27]. 

The obtained results of mathematical methods are sensitive to 

the initial guess of the solution. The population size of the 

evolutionary algorithms is large and the convergence of the 

evolutionary methods to the global minimum is slow. The EC 

methods are impractical for large-scale problems, like systems 

of nonlinear equations because of their high linear algebra costs 

and large memory requirements. For this reason, it is necessary 

to find an efficient algorithm for solving systems of nonlinear 

equations. Let systems of nonlinear equations be of the form: 

{
 
 

 
 
𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) = 0
.
.
.

𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

 

 

(1) 

In order to transform (1) to an optimization problem, we will 

use the auxiliary function: 

min𝑓(𝑥) =  ∑𝑓𝑖
2(𝑥),             𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛)

𝑛

𝑖=1

 
(2) 

Where f (x) is the global minimum that will be minimized. 

In this paper, a parallel imperialist competitive algorithm 

(PICA) based on the multi-population technique for solving 

systems of nonlinear equations problems is presented. The 

proposed method overcomes the mentioned weaknesses of 

evolutionary methods for solving the systems of nonlinear 

equations problems. We have also selected some well-known 

problems for the evaluation. 

III. BACKGROUND 

The Imperialist Competitive Algorithm (ICA) was introduced 

by E. Atashpaz and C. Lucas [26], and is inspired by 

imperialistic competition. ICA is an evolutionary algorithm and 

optimizes results of problems. In this algorithm, all countries 

are divided into two types: imperialist states and colonies. 

Imperialistic competition is the main part of this algorithm, and 

the expectation is that the colonies converge to the global 

minimum of the cost function. In the first step, the algorithm 

creates some countries and after sorting them the best countries 

are selected to be imperialists and the rest of the countries form 

the colonies of these imperialists (Fig 1, step 1). After dividing 

all colonies among imperialists, these colonies start moving 

toward their relevant imperialist countries (Fig 1, step 2). In the 

next step, the ICA computes the power of each imperialist and 

the imperialistic competition begins. The weakest imperialist 

loses its weakest colony and the selected imperialist captures 

this colony (Fig 1, step 5). These steps are then repeated until 

the termination condition is satisfied. The termination 

conditions can be different. For example, the ICA algorithm 

could stop after certain number of iterations or when all 

colonies have become members of one imperialist (see Fig. 1).  

ICA is a suitable method for optimization problems, but there 

exist some challenges concerning the evolutionary algorithms. 

For example, when we are considering a far-reaching search 

area, we need a large initial population to obtain an appropriate 

result, but with a resource constrained processor we may not be 

able to satisfy this requirement. Also, when we face a complex 

problem that needs complex computations, the run time will 

increase, and therefore we need to utilize an efficient method to 

improve the speed, stability, and accuracy. 

The sequential ICA algorithm inherently has a parallel 

structure, and therefore, a parallel ICA implementation is a 

viable solution to improve the ICA. In the ICA, each imperialist 

and colonies work independently, and after a decade a colony 

moves to another imperialist- Hence, this algorithm works 

similarly as a multi-population method that works on a 

processor. In the next section, we utilize a multi-population 

ICA to solve some complex problems. 

IV. THE PROPOSED METHOD 

In this work, we utilize a multi-population model to 

implement the Parallel Imperialist Competitive Algorithm 

(PICA), by applying a selective local search strategy, in order 

to solve systems of nonlinear equations. We intend to utilize the 

full capacity of evolutionary algorithms (e.g. faster 

convergence, run time speed, and accuracy) for solving such 

problems. There are different approaches for parallelizing 

evolutionary algorithms, such as the master slave, multi-

population, fine-grain, and hybrid methods; but multi-

population method has better convergences and has more 

accurate results than other parallel methods. Of these, we use 

the multi-population method. In the multi-population method, 

there are some independent populations in different processors, 

each covering its own independent area of the search space. 

Each processor runs the ICA on its population with independent 

parameter values. Due to this independency, different levels of 

exploration and exploitation can be utilized, and therefore the 

application can get out from local optimums. The other 

advantage of the multi-population method is its ability for 

migration, which can significantly improve performance of 

solving nonlinear equations. It is the most important parallel 

operation in the multi-population implementation, as letting 

processors to share the best results and investigate areas with 

other processors help discover better results in a smaller number 

of iterations. There are different kinds of migration techniques, 

for example, each processor can select the best or worst 

countries to be sent to the other processors or can randomly 

select some countries. In our work, we select the best countries 

to be migrated between processors to share the best results 

together, and the processors replace their worst countries with 

the received best countries. Receiver processors are selected 

based on the connection topology used. Figure 1 illustrates the 

migration behaviour. For example, for a network with the fully 

connected topology, each processor can receive countries from 

any other processor. It can be very useful if all processors 

receive all migrated countries, but in practice we have to find 

balance between data communication cost (communication 

time) and achieved improvement in results. 

In this work, each country is a possible solution for the 

selected nonlinear equation. Hence, the algorithm randomly 

creates the initial populations, which are the possible solutions. 

Some of them are then selected, at each iteration step, to be 

processed by the ICA in order to converge them towards better 

results. 



 
Fig. 1. Imperialist Competetive Algorithm [28] 

In our implementation, several processors are connected 

together using a ring topology and message passing based 

communication. The ring topology has been selected because 

of its low communication cost and simplicity.  Each processor 

is first initialized with a set of independent countries (the 

number of countries in each processor is the same) and the ICA 

to be independently run on it. After some decades (the period 

varies from an execution to another), the best country migrates 

from each processor Pi to the next processor Pi+1 in the ring 

and replaces the worst country in Pi+1. Since we utilize the ring 

topology to connect processors together, and because the 

migration takes place in all processors synchronously, the 

numbers of countries in any two processors are equal at any 

given time. The migration strategy can affect the result as well. 

Generally, it is better to establish a balance between the 

migration rate and data communication. The chosen ring 

topology is utilized to reduce the migration rate and to decrease 

the distance of the migrations.  
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Fig. 2. Multi-population migration operation 

Figure 2 shows the architecture of the multi-population 

structure with a ring topology. Figure 3 presents the Multi-

Population ICA pseudo code. In our implementation, all 

parameters in different processors are equal, and all ICA 

computations run independently in different processors. On the 

other hand, the migration operations run synchronously as 

explained above. 

In the multi-population ICA, the pressure of selection 
increases by growing the number of countries, which helps to 
obtain more accurate results in a shortest time and converge to 
the results faster than the sequential ICA. Therefore it is 
beneficial to increase the number of countries. 

Processor 𝑃𝑖: 
1-Create independent initial countries. 

2-Run ICA algorithm independently. 

3-If now is time of migration do 

a) Wait until all processors arrive to this point. 

b) Send the best country to processor 

(𝑃𝑖+1)mod(#processors). 

c) Receive a country from (𝑃𝑖−1)mod(#processors) and 

replace the worse country with the received one. 

4-If termination condition is reached, then terminate algorithm. 

5-Show the best country. 
6-End. 

Fig. 3. Multi-population ICA pseudo code 

V. EXPERIMENT AND RESULTS  

In this section, five commonly explored problems have been 

utilized to demonstrate the performance of the PICA. The 

obtained results have been compared with the other well-known 

methods that have used the same problems. The parallel ICA 

has been implemented on both share memory and massage 

passing models. The massage passing interface (MPI) has been 

utilized to parallelize our algorithm and MPICH2 to run the 

algorithm.  

In the multi-population ICA, processors have been connected 

in a ring topology with different processors on the different 

tests. The proposed algorithm has been tested on an Intel core 

i3-330M, processors 2.13 GHz (64-bit) and memory 4 GB. The 

best results of benchmarks have been obtained by 30 

independent runs. The used parameters for solving the 

problems have been illustrated in Table 1. 



A. Benchmarks 

    Test 1: 10-dimention Rastrigin Function 

𝑓(𝑥) =∑[𝑥𝑖
2

10

𝑖=1

− 10 cos(2𝜋𝑥𝑖) + 10𝑛]       |𝑥𝑖| ≤ 5.2 (3) 

The answer of this test with f (0, 0, 0,…, 0) is 0. This test has 

been solved by Mo et al. [2] and ICA [24] with 1000 iterations 

and 300 population sizes. PICA has been applied to optimize it 

with the same parameters.  

TABLE I.  USED PARAMETERS IN PICA FOR TESTS AND CASES 

Parameters Test 1 Test 2 Case 1 Case 2 Case 3 

Total population 

size 

300 300 250 250 300 

Number of empires 10 10 10 10 10 

Number of 

iteration 

1000 1000 45 50 1000 

Revolution rate 0.04 0.04 0.04 0.04 0.04 

Ξ 0.02 0.02 0.02 0.02 0.02 

θ 0.5 0.5 0.5 0.5 0.5 

β 2 2 2 2 2 

The results of Mo et al. [2], ICA [24] and our proposed 

algorithm have been presented in Tables 2-4. 

Figures 4 and 5 indicate the convergence history of ICA and 

PICA, respectively. The stability chart of PICA has been 

indicated in Figure 6. PICA has reached to the optimized 

answer before 50 iterations. 

Test 2: This example has been used as a benchmark in [3] and 

[24]. 

min 𝑓(𝑥) =  ∑ [sin(𝑥𝑖) + sin(
2𝑥𝑖
3
)]

𝐷

𝑖=1
 

(4) 

The answer of the test 2 is 1.21598D and the variables of the 

function are in (3, 13). The comparison results of ICA [24] and 

PICA with 1000 iterations and 300 population sizes have been 

given in Table 5. PICA has solved Test 2 quicker than prior 

methods before 200 iterations (see Figures 7-9). 

B. Case study 

In this section, three commonly explored systems of nonlinear 

equations have been used to demonstrate the performance of the 

proposed method, and the obtained results have been compared 

with the other known methods. 

Case 1: This example has been given in [3], [11], [24], and [25]: 

{
𝑥1 − 3𝑥1𝑥2

2 − 1 = 0

3𝑥1
2𝑥2 − 𝑥2

3 + 1 = 0
 

(5) 

The solutions in [3] and [11] have been obtained with 120 

iterations with an unknown number of population sizes. The 

parameters of the ICA method [24] have been set to 50 

iterations with 250 countries. The obtained solutions by PICA 

are better and more accurate than the previous works (see Table 

6). Figures 10-12 indicate the convergence history of the Case 

1. Figure 13 shows the stability chart of this case. 

Case 2: (Problem 2 in [8], Test Problem 14.1.4 in [13], and 

Case study in [24] and [25]) 

𝑓1(𝑥1, 𝑥2) = 0.5 sin(𝑥1𝑥1) − 0.25𝑥2 𝜋⁄ − 0.5𝑥1 = 0 

𝑓2(𝑥1, 𝑥2) = (1 − 0.25 𝜋⁄ )((exp(2𝑥1) − 𝑒) + 𝑒 𝑥2 𝜋⁄ − 2𝑒𝑥1 = 0 

(6) 

     The results of Case 2 in [8], [13], [24], and [25] with the 50 

iterations and the 250 population sizes were compared with 

PICA in Table 8. The obtained solutions of PICA have 

outperformed the mentioned methods with 250 countries and 

35 iterations. The speed up of the proposed algorithm gets better 

than the other literatures (see figures 14-16). 

 

Case 3: (Problem 6 in [8] and Test Problem 14.1.6 in [13]) 

Case 3 has been solved by the filled function method in [8] and 

has been proposed as a problem in [13] and [24]. 

4.731 × 10−3𝑥1𝑥3 − 0.357𝑥2𝑥3 − 0.1238𝑥1 + 𝑥7 − 1.637
× 10−3𝑥2  − 0.9338𝑥4 − 0.3 = 0 

0.2338𝑥1𝑥3 + 0.7623𝑥2𝑥3 + 0.2638𝑥1 − 𝑥7 − 0.07745𝑥2
− 0.6734𝑥4 − 0.6022 = 0 

𝑥6𝑥8 + 0.3578𝑥1 + 4.731 × 10
−3𝑥2 = 0 

−0.7623𝑥1 + 0.2238𝑥20.3461 = 0 

𝑥1
2 + 𝑥2

2 − 1 = 0 

𝑥3
2 + 𝑥4

2 − 1 = 0 

𝑥5
2 + 𝑥6

2 − 1 = 0 

𝑥7
2 + 𝑥8

2 − 1 = 0 

−1 ≤ 𝑥𝑖 ≤ 1,      𝑖 = 1,2,… , 8. 

(7) 

   The number of iterations for this problem in [8], [13] and [24] 

is 1000 and the population size is 300. Our results with the same 

iterations and countries have been compared in Table 9. The 

convergence history of ICA [24] and PICA have been shown in 

Figures 17 and 18, respectively. Figure 19 shows the stability 

chart of PICA for the Case 3. The statistical results of tests and 

cases have been illustrated in Table 7. The comparison 

statistical results of the serial ICA and the parallel ICA have 

been given in Table 10. 

VI. DISCUSSION  

In this paper a parallel implementation of ICA based on the 

multi-population method has been utilized to solve the systems 

of nonlinear equations. There are different kinds of the PICA 

implementation such as the master-slave, the multi-population, 

and the hybrid methods that each one has different advantages. 

For example, the Master-Slave method can be utilized when we 

simply intend to increase the speed of our algorithm, but Multi-

Population method must be used when we intend to increase 

both speed and accuracy. Multi-Population method increases 

the number of the initial population and therefore, the pressure 

of selection grows that it causes to find more accurate results. 

In our implementation, the ring connection topology has been 

considered to connect the processors. In our algorithm, the 

migration operation causes that each processor has the ability 

to send its countries to next processors and receives some 

countries from previous processors. With the aforementioned 

ability each processor shares the best results with other 

processors which reduces the number of iterations 

considerably. 

In this paper, PICA has been compared with other methods 

through some well-known benchmarks and case studies. PICA 

has obtained more accurate results with the lower number of 

iterations. 

The most important result of PICA is about super linear 
performance (where the efficiency value of the algorithm is 
more than one). Our implementation achieved the super linear 
performance that means it is an outstanding method and is the 
best way to solve non-linear problems. 



 

Fig. 4. The convergence history of Rastrigin Function (from [24]) 

 

Fig. 5. The convergence history of Rastrigin with PICA (test 1) 

 

Fig. 6. The stability chart of Rastrigin with PICA (test 1) 

 

Fig. 7. The convegence history of test 2 with D=100 (from [24]) 

 

Fig. 8. The convergence history of PICA for test 2 with D=100 

 

Fig. 9. The Stability chart of test 2 with D=100 

 

Fig. 10. The convergence history of case 1 (from [3]) 

 

Fig. 11. The convergence history of case 1 (form [24]) 



 

Fig. 12. The convergence history of case 1 with PICA 

 
Fig. 13. The stability chart of case 1 with PICA 

 
Fig. 14. The stability chart of case 1 with PICA 

 

Fig. 15. The convergence history of case 2 (from [24]) 

 

Fig. 16. The convergence history of case 2 with PICA 

 

Fig. 17. The stability chart of case 2 with PICA 

 

Fig. 18. The convergence history of case 3 (from [24]) 

 

Fig. 19. The convergence history of case 3 with PICA 



 

Fig. 20. The stability chart of case 3 with PICA 

TABLE II.  RESULTS OF TEST 1 WITH MO ET AL. ( FROM [2] ) 

Vari

ables 

Initial 

iteration 

After 200 

iterations 

After 400 

iterations 

After 600 

iterations 

After 800 

iterations 

After 1000 

iteration 

𝒙𝟏 0.1431 -0.0001 -0.0007 0.0001 -0.0000 -0.0000 

𝒙𝟐 2.1983 -0.0001 0.0000 0.0001 0.0001 0.0001 

𝒙𝟑 1.9401 0.0000 0.0000 0.0001 -0.0000 0.0001 

𝒙𝟒 -1.7080 -0.0002 -0.0001 0.0000 -0.0000 -0.0000 

𝒙𝟓 0.2261 -0.9950 -0.9962 -0.9948 0.0001 0.0001 

𝒙𝟔 0.9392 0.9950 0.9941 0.9949 0.9950 0.9949 

𝒙𝟕 -0.1129 0.9949 0.9949 0.0001 -0.0001 0.0000 

𝒙𝟖 -0.1516 0.9950 0.9949 0.9949 0.9949 -0.0000 

𝒙𝟗 -2.1893 -0.0001 0.0000 0.0001 -0.0000 -0.0000 

𝒙𝟏𝟎 4.9798 0.9950 0.0000 0.0001 -0.0000 -0.0000 

TABLE III.  RESULTS OF TEST 1 WITH ICA (FROM [24] ) 

Variables Initial iteration After 200 iterations After 400 iterations After 600 iterations After 800 iterations After 1000 iteration 

𝒙𝟏 -2.883527 -0.1084e-007 -0.1404e-008 -0.1404e-008 -0.1404e-008 -0.1404e-008 

𝒙𝟐 -2.111072 0.1710e-007 0.0275e-008 0.0275e-008 0.0275e-008 0.0275e-008 

𝒙𝟑 -0.869045 -0.0048e-007 -0.0656e-008 -0.0656e-008 -0.0656e-008 -0.0656e-008 

𝒙𝟒 1.985114 0.6947e-007 0.0855e-008 0.0855e-008 0.0855e-008 0.0855e-008 

𝒙𝟓 -1.156667 0.0328e-007 -0.1015e-008 -0.1015e-008 -0.1015e-008 -0.1015e-008 

𝒙𝟔 3.083374 0.0356e-007 0.0899e-008 0.0899e-008 0.0899e-008 0.0899e-008 

𝒙𝟕 3.093877 -0.0948e-007 0.0349e-008 0.0349e-008 0.0349e-008 0.0349e-008 

𝒙𝟖 -2.020172 0.1528e-007 0.1610e-008 0.1610e-008 0.1610e-008 0.1610e-008 

𝒙𝟗 2.832951 -0.2304e-007 -0.0180e-008 -0.0180e-008 -0.0180e-008 -0.0180e-008 

𝒙𝟏𝟎 -2.208695 -0.2454e-007 0.0147e-008 0.0147e-008 0.0147e-008 0.0147e-008 

𝒇(𝒙) 83.041615 1.3287e-012 0 0 0 0 

TABLE IV.  RESULTS OF TEST 1 WITH PICA (PRESENT STUDY ) 

Variables Initial iteration After 200 iterations After 400 iterations After 600 iterations After 800 iterations After 1000 iteration 

𝒙𝟏 1.928441 -4.716237e-011 -4.716237e-011 -4.716237e-011 -4.716237e-011 -4.716237e-011 

𝒙𝟐 -2.248101 2.157231e-011 2.157231e-011 2.157231e-011 2.157231e-011 2.157231e-011 

𝒙𝟑 1.341671 -1.001342e-011 -1.001342e-011 -1.001342e-011 -1.001342e-011 -1.001342e-011 

𝒙𝟒 0.728811 1.713127e-011 1.713127e-011 1.713127e-011 1.713127e-011 1.713127e-011 

𝒙𝟓 1.728128 -7.887191e-011 -7.887191e-011 -7.887191e-011 -7.887191e-011 -7.887191e-011 

𝒙𝟔 -2.839121 -2.837190e-012 -2.837190e-012 -2.837190e-012 -2.837190e-012 -2.837190e-012 

𝒙𝟕 1.871831 1.238291e-011 1.238291e-011 1.238291e-011 1.238291e-011 1.238291e-011 

𝒙𝟖 1.934281 -6.348271e-011 -6.348271e-011 -6.348271e-011 -6.348271e-011 -6.348271e-011 

𝒙𝟗 1.409124 8.119381e-011 8.119381e-011 8.119381e-011 8.119381e-011 8.119381e-011 

𝒙𝟏𝟎 0.365281 1.981381e-011 1.981381e-011 1.981381e-011 1.981381e-011 1.981381e-011 

𝒇(𝒙) 1.241803e+002 0 0 0 0 0 

TABLE V.  COMPARISON RESULTS OF TEST 2 WITH D=100 

𝒇(𝒙) Initial 

iteration 

After 100 

iteration 

After 200 

iteration 

After 300 

iteration 

After 400 

iteration 

After 500 

iteration 

After 600 

iteration 

After 700 

iteration 

After 800 

iteration 

After 900 

iteration 

ICA [24] 29.786871 -78.6467 -103.3897 -113.0125 -120.5298 -121.5923 -121.5979 -121.5982 -121.5982 -121.5982 

PICA -20.0000 -95.0017 -121.5982 -121.5982 -121.5982 -121.5982 -121.5982 -121.5982 -121.5982 -121.5982 

TABLE VI.  COMPARISON RESULTS OF PICA FOR CASE 1 WITH [3], [11], [24] AND [25] 

Methods 𝒙𝟏 𝒙𝟐 𝒇(𝒙) 
PPSO [3] and Gyurhan [11] -0.29051455550725 1.08421508149135 4.686326815078573e-029 

PPSO [3] and Gyurhan [11] -0.793700525984100 -0.793700525984100 1.577721810442024e-030 

COA [25] 1.08421508149135 -0.29051455550725 4.686326815078573e-029 

COA [25] -0.29051455550725 1.08421508149135 4.686326815078573e-029 

ICA [24] 1.084215081491351 -0.290514555507251 3.562200025138631e-030 

ICA [24] -0.793700525984100 -0.793700525984100 1.577721810442024e-030 

ICA [24] -0.290514555507251 1.084215081491351 3.562200025138631e-030 

PICA (present study) 1.0842150814913511 -0.2905145555072514 4.9303806576313238e-032 

PICA (present study) -0.79370052598409995582 -0.79370052598409995582 3.9443045261050590e-031 

PICA (present study) -0.2905145555072514 1.0842150814913511 4.9303806576313238e-032 

TABLE VII.  STATISTICAL RESULTS 

Problem N Mean Std. Deviation Std. Error Mean Worst Best 

Test 1 30 0.0 0.0 0.0 0.0 0.0 

Test 2 30 -1.215981999999999e+002 7.226896453227138e-014 1.319444736062194e-014 -1.215982000000000e+002 -1.215982000000000e+002 

Case 1 30 1.988586000000001e-031 1.739458967563944e-031 3.175803047964731e-032 3.944300000000000e-031 4.930400000000000e-032 

Case 2 30 1.046312443884771e-026 1.511543708264576e-026 2.759688618905053e-027 4.414500000000001e-026 0.0 

Case 3 30 6.898049999999997e-037 1.150107106181705e-037 2.099798685342363e-038 9.039099999999999e-037 5.800000000000000e-037 



TABLE VIII.  COMPARISON RESULTS OF CASE 2 

Methods X Variable values f Functions values F(x) 

The best in [8] 𝑥1 0.500432850000000 𝑓1 -0.000238520000000 7.693745216994211e-008 

𝑥2 3.141863170000000 𝑓2 0.000141590000000 

The best in [13] 𝑥1 0.299450000000000 𝑓1 6.139739265609290e-007 1.014347133848949e-012 

𝑥2 2.836930000000000 𝑓2 -7.983627943186633e-007 

𝑥1 0.500000000000000 𝑓1 2.111655261760603e-007 5.316365008296489e-012 

𝑥2 3.141590000000000 𝑓2 -2.296034435467220e-006 

The best in COA 

[25] 

𝑥1 0.299300000000000 𝑓1 -7.128922385554737e-005 5.792081721117691e-009 

𝑥2 2.836600000000000 𝑓2 2.664447941302939e-005 

The best in ICA 

[24] 

𝑥1 0.299448692495720 𝑓1 1.305289210051797e-012 5.631272867601562e-024 

𝑥2 2.836927770471037 𝑓2 2.284838984678572e-013 

𝑥1 0.500000000000000 𝑓1 0 0 

𝑥2 3.141592653589794 𝑓2 0 

The best of PICA 𝑥1 0.29944869249092598 𝑓1 -1.387778780781446e-016 6.856310602018560e-032 

𝑥2 2.8369277704589400 𝑓2 2.220446049250313e-016 

𝑥1 0.500000000000000 𝑓1 0 0 

𝑥2 3.141592653589794 𝑓2 0 

TABLE IX.  COMPARISON RESULTS OF CASE 3 

Methods x Variables values f Functions values 

The best 

in [8] 

𝑥1 0.67154465 𝑓1 -0.00000375 

𝑥2 0.74097111 𝑓2 0.00001537 

𝑥3 0.95189459 𝑓3 0.00000899 

𝑥4 -0.30643725 𝑓4 0.00001084 

𝑥5 0.96381470 𝑓5 0.00001039 

𝑥6 -0.26657405 𝑓6 0.00000709 

𝑥7 0.40463693 𝑓7 0.00000049 

𝑥8 0.91447470 𝑓8 -0.00000498 

The best 

in [13] 

𝑥1 0.1644 𝑓1 -8.8531e-005 

𝑥2 -0.9864 𝑓2 3.5894e-005 

𝑥3 -0.9471 𝑓3 6.6216e-006 

𝑥4 -0.3210 𝑓4 2.1560e-005 

𝑥5 -0.9982 𝑓5 1.2320e-005 

𝑥6 -0.0594 𝑓6 3.9410e-005 

𝑥7 0.4110 𝑓7 -6.8400e-005 

𝑥8 0.9116 𝑓8 -6.4440e-005 

The best 

of ICA 

[24] 

𝑥1 0.164431665854327 𝑓1 2.775557561562891e-016 

𝑥2 -0.986388476850967 𝑓2 -1.110223024625157e-016 

𝑥3 0.718452601027603 𝑓3 -1.110223024625157e-016 

𝑥4 0.718452601027603 𝑓4 1.734723475976807e-018 

𝑥5 0.997964383970433 𝑓5 0 

𝑥6 0.063773727557003 𝑓6 0 

𝑥7 -0.527809105283546 𝑓7 0 

𝑥8 -0.849363025083964 𝑓8 0 

The best 

of PICA 

𝑥1 0.164431665854327405 𝑓1 5.368529659036217811e-019 

𝑥2 -0.986388476850967110 𝑓2 2.548307417523678423e-019 

𝑥3 0.718452601027603350 𝑓3 -3.378192205891815512e-019 

𝑥4 -0.695575919707310931 𝑓4 3.389211820587187123e-019 

𝑥5 0.997964383970432520 𝑓5 0 

𝑥6 0.063773727557002571 𝑓6 0 

𝑥7 -0.527809105283546241 𝑓7 0 

𝑥8 -0.849363025083964123 𝑓8 0 

TABLE X.  THE COMPARISON STATISTICAL RESULTS OF SERIAL ICA [24] 

AND PICA 
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Test 1 4.02 2.01 3.38 0.84 2 Yes 

Test 2 7.22 3.61 11.82 1.63 2 Yes 

Case 1 2.82 1.41 0.0341 0.01
2 

2 Yes 

Case 2 5.1 2.55 2.1 0.41

1 

2 Yes 

Case 3 6.24 3.12 6.78 1.08 2 Yes 

VII.      CONCLUSION AND FUTURE WORKS  

In this paper, the parallel imperialist competitive algorithm 

based on the MPI instructions (Multi-Population) was utilized 

to solve the systems of nonlinear equations.  The PICA was 

compared with the serial ICA and some of the other proposed 

methods.  According to the obtained results, the PICA is 

suitable for solving different kinds of complex problems, and it 

is faster and more efficient than the other methods. The figures 

indicated that the answers of our algorithm are stable and the 

convergence of the PICA to the best solution is faster than the 

other methods, with the lower number of iterations and better 

run time. As a result, we claim that the proposed PICA is a 

faster and more accurate method, which can be employed to 

solve and improve the complex problems. At the end, our future 

works will consist of using the proposed parallel algorithm to 

solve some of the more practical optimization problems, like 

constrained engineering optimizatio 
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