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Background: White matter hyperintensities (WMHs) are markers for cerebrovascular
pathology, which are frequently seen in patients with mild cognitive impairment (MCI)
and Alzheimer’s disease (AD). Verbal fluency is often impaired especially in AD, but little
research has been conducted concerning the specific effects of WMH on verbal fluency
in MCI and AD.

Objective: Our aim was to examine the relationship between WMH and verbal fluency
in healthy old age and pathological aging (MCI/AD) using quantified MRI data.

Methods: Measures for semantic and phonemic fluency as well as quantified MRI
imaging data from a sample of 42 cognitively healthy older adults and 44 patients
with MCI/AD (total n = 86) were utilized. Analyses were performed both using the
total sample that contained seven left-handed/ambidextrous participants, as well with
a sample containing only right-handed participants (n = 79) in order to guard against
possible confounding effects regarding language lateralization.

Results: After controlling for age and education and adjusting for multiple correction,
WMH in the bilateral frontal and parieto-occipital areas as well as the right temporal area
were associated with semantic fluency in cognitively healthy and MCI/AD patients but
only in the models containing solely right-handed participants.

Conclusion: The results indicate that white matter pathology in both frontal and parieto-
occipital cerebral areas may have associations with impaired semantic fluency in right-
handed older adults. However, elevated levels of WMH do not seem to be associated
with cumulative effects on verbal fluency impairment in patients with MCI or AD. Further
studies on the subject are needed.

Keywords: verbal fluency, white matter hyperintensities, Alzheimer’s disease, mild cognitive impairment, vascular
cognitive impairment

INTRODUCTION

Aging is often accompanied by vascular changes in cerebral white matter (WM) (Feigin et al.,
2003), which typically show up as white matter hyperintensities (WMHs) when magnetic resonance
imaging (MRI) is utilized (Pantoni et al., 2007). These cerebrovascular changes can have a variety
of effects on cognitive functions, including impairments to information processing speed, executive
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functions, working memory, episodic memory, as well as
linguistic functions (de Groot et al., 2000; Gunning-Dixon and
Raz, 2000; Nordahl et al., 2005, 2006; Au et al., 2006; Pantoni et al.,
2007; Zhou and Jia, 2009; Chin et al., 2012; Jokinen et al., 2012;
Maillard et al., 2012; Lampe et al., 2019).

Cerebrovascular pathology and Alzheimer’s disease (AD) are
intertwined in several respects, as both share common risk
factors (Duron and Hanon, 2008) and often overlap and co-occur
(Toledo et al., 2013). Furthermore, the risk for developing AD
is increased by vascular diseases and elevated WMH (Breteler,
2000; Wolf et al., 2000; Prins et al., 2004), whereas AD patients
exhibit elevated levels of cerebral WM pathology (Brickman,
2013) as well as degeneration in specific WM tracts (Mito et al.,
2018). Thus, it is of critical importance to study the effects of
WM pathology on cognition in AD as well as in mild cognitive
impairment (MCI), which is often an early stage of AD. However,
the topic has received considerably less attention than the
association between gray matter morphology and cognition (for
exceptions, see Brickman et al., 2008; Brickman, 2013; Ramirez
et al., 2014; Bilello et al., 2015; Mito et al., 2018; Kaskikallio et al.,
2019a,b).

A deficit that occurs fairly early in AD is impaired word
finding (Farrell et al., 2014). Word generation is commonly
measured by verbal fluency (VF) tasks that involve generating
words according to cues within a preset time interval: category
cues are used for semantic fluency and letter cues for
phonological fluency (Lezak et al., 2012). Verbal fluency tasks
require using a variety of executive control processes (e.g.,
focusing on the task, updating material, inhibiting irrelevant
responses) and are thus also seen as effective probes for executive
functioning (Henry and Crawford, 2004). Overall, AD patients
appear to exhibit larger impairments in semantic fluency than in
phonological fluency (Henry et al., 2004). This likely reflects the
deterioration of the semantic memory store traditionally linked
to accumulating neuropathological changes in AD (Chertkow
and Bub, 1990; Hodges et al., 1992).

Functional neuroimaging studies have indicated that VF tasks
rely on relatively left-lateralized cortical networks (Birn et al.,
2010), involving the frontal and temporal regions, anterior
cingulate, superior parietal cortex, left hippocampus, thalamus,
and cerebellum (Phelps et al., 1997; Gourovitch et al., 2000;
Abrahams et al., 2003; Costafreda et al., 2006; Robinson et al.,
2012; Biesbroek et al., 2016). Furthermore, the right hemisphere
has been suggested to be more involved in semantic fluency tasks
over phonological fluency tasks in a number of studies (Schlösser
et al., 1998; Donnelly et al., 2011; Glikmann-Johnston et al.,
2015). More specifically, areas in the left inferior/middle frontal
cortex seem to contribute to both types of fluency (Costafreda
et al., 2006; Wagner et al., 2014; Schmidt et al., 2019). However,
phonological fluency seems to rely relatively more on the left
frontal cortex (presumably reflecting the need for additional
strategic effort) and semantic fluency relatively more on the left
temporal cortex (presumably reflecting the need for retrieval
from semantic memory) (Henry and Crawford, 2004; Baldo et al.,
2006, 2010). Since phonological tasks require more effort and
executive control, they are expected to impose more substantial
demands on planning and strategy formation than semantic

fluency tasks, which can rely more on utilizing pre-existing
semantic networks (Henry and Crawford, 2004). Nonetheless,
various retrieval strategies can be used in both types of tasks.

According to the dual stream model, the system for processing
auditory speech involves two language streams that diverge from
the superior temporal gyrus (Hickok and Poeppel, 2007; Saur
et al., 2008). A left-dominant dorsal stream connects the superior
temporal lobe and posterior frontal premotor association cortices
via the arcuate fasciculus and superior longitudinal fasciculus,
facilitating sensorimotor language production. On the other
hand, a bilateral ventral language stream connects the superior
and middle temporal lobe with the ventrolateral prefrontal cortex
via the extreme capsule and the middle/inferior longitudinal
fasciculi, extracting meaning from sounds (Hickok and Poeppel,
2007; Saur et al., 2008). The microstructural integrity of
WM tracts from both pathways has been associated with VF
performance in studies that have included healthy adolescents
and adults as well as various clinical populations. These tracts
include the left arcuate fasciculus and the bilateral superior
longitudinal fasciculus for the dorsal stream (Peters et al., 2012;
Allendorfer et al., 2016; Rodríguez-Aranda et al., 2016; Blecher
et al., 2019), and the bilateral inferior longitudinal fasciculus for
the ventral stream (Allendorfer et al., 2016; Rodríguez-Aranda
et al., 2016; Blecher et al., 2019). Associations have also been
reported for the bilateral frontal aslant track (Catani et al.,
2013; Kinoshita et al., 2015; Blecher et al., 2019) and the corpus
callosum (Rodríguez-Aranda et al., 2016).

Although numerous studies have been published on
the neuroanatomic correlates of VF, research about the
neurocorrelations between WM and VF in MCI and
AD populations has been fairly limited. Studies utilizing
diffusion tensor imaging have reported associations between
semantic fluency and WM microstructure measures in the
corpus callosum, right anterior periventricular, and posterior
periventricular regions (Kavcic et al., 2008; Chen et al., 2009).
Likewise, Rodríguez-Aranda et al. (2016) reported associations
between semantic fluency and a bilateral network of WM
tracts (uncinate fasciculus, inferior fronto-occipital fasciculus,
forceps minor, and corpus callosum) as well as phonological
fluency and several left-hemisphere tracts (anterior thalamic
radiation, superior longitudinal fasciculus, inferior longitudinal
fasciculus). Finally, Serra et al. (2010) reported that no significant
associations exist for these groups specifically.

Overall, the research literature regarding the effects of WM
pathology on verbal fluency in AD is quite limited, and previous
studies have contained fairly small samples. We have previously
examined effects of WM pathology on both general cognitive
functioning (Kaskikallio et al., 2019a) as well as on specific
cognitive domains (Kaskikallio et al., 2019b, 2020) in cognitively
healthy adults and patients with MCI or AD. In these studies,
verbal fluency was not included in the verbal function domain
score (Kaskikallio et al., 2019b, 2020) due to relatively low
shared variance with the other verbal tasks in factor analysis—
thus supporting the view that VF tasks tap additional cognitive
processes such as executive functions (e.g., Henry and Crawford,
2004; Aita et al., 2016). In this study, we investigated verbal
fluency per se. The aim was to examine the associations between
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WM pathology and VF in a sample consisting of a group of
cognitively healthy older adults and a group of amnestic MCI and
AD patients. A special focus was on examining possible group-
wise effects, i.e., would there be differences in the effects of WM
pathology between cognitively healthy and MCI/AD patients.
The sample utilized here is a portion of the sample that has
been used previously (Kaskikallio et al., 2019a, 2020), with the
quantified MRI being utilized in Kaskikallio et al. (2019b).

MATERIALS AND METHODS

Participants
The data used in the current study were originally collected in the
DEMPET and TWINPIB research projects over several years at
the National PET-Centre in Turku, Finland (Kemppainen et al.,
2006; Koivunen et al., 2011; Scheinin et al., 2011). The current
sample is a portion of the one that has been utilized before,
albeit with differing cognitive measurements and neuroimaging
analysis methods (Kaskikallio et al., 2019a,b, 2020). The studies
were carried out in accordance with relevant guidelines and
regulations and were approved by the Joint Ethical Committee
of the University of Turku and Turku University City Hospital.
The participants received oral and written information about the
study and gave informed consent.

The Petersen et al. (2001) criteria were used for diagnosing
MCI, whereas patients with AD fulfilled the Diagnostic
and Statistical Manual of Mental Disorders fourth edition
(DSM-IV) criteria for dementia as well as the National
Institute of Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) criteria for probable AD (McKhann et al.,
1984). Controlled concomitant metabolic and cardiovascular
diseases were allowed, but participants with Type I diabetes
were excluded. Furthermore, a minimum score of 25 in the
Mini-Mental State Exam was required for inclusion into the
cognitively healthy group. Patients with MCI were of the
amnestic type, which is typically characterized by episodic
memory impairment. The time lag between MRI data acquisition
and neuropsychological testing was 1 week, on average, and
2 weeks at the at the most. From the original sample of 148
participants, 62 participants had to be excluded due to insufficient
MRI data quality for quantification. The final sample consisted
of 42 cognitively healthy adults, 14 patients with MCI, and 30
patients with AD. The MCI and AD subgroups were pooled
together into due to relatively small group sizes. Further details
can be found in Kaskikallio et al. (2019a).

Demographic characteristics of study participants are reported
in Table 1. The cognitively healthy and patient (MCI + AD)
groups were similar with regard to age [t(84) = –0.463, p = 0.645],
education (U = 855.500, z = –0.653, p = 0.514) and gender
distribution [χ2(2) = 0.385, p = 0.535]. However, age and
education were kept as covariates, as they traditionally have
strong associations with cognitive performance. Furthermore,
the patient group had lower Mini-Mental State Exam scores
than the cognitively healthy group [t(83) = 4.846, p < 0.001].
Finally, three participants reported being left-handed and four

ambidextrous. As we did not want to limit the sample size any
further, it was decided to run the analyses both with and without
these participants in order to guard against possible confounding
effects regarding language lateralization (e.g., Szaflarski et al.,
2002).

Verbal Fluency Measures
Measures for semantic fluency (animals) and phonological
fluency (“S”) were administered. The participants were asked to
orally produce as many words as they could for the span of 1 min.
The total number of correct responses was reported. Cognitively
healthy controls had the best performances in all word fluency
measures, although no statistically significant differences were
found between the groups (see Table 2).

MRI Acquisition
A 1.5T Philips Intera (Best, the Netherlands) was used for MRI
acquisition. White matter hyperintensities were analyzed using
three-dimensional (3D) T1 FFE transaxial (TR/TE 25/5, 58 ms;
slice thickness, 2 mm; matrix, 512× 512) and 2D fluid attenuated

TABLE 1 | Demographic and clinical characteristics of study participants.

All Cognitively
healthy

Patient group
(MCI/AD)

n 86 42 44

Women% 41.9% 45.2% 38.6%

Age M (SD), years 71.76 (4.73) 71.52 (5.20) 71.00 (4.40)

MMSE Score M (SD) 25.81 (3.57) 27.50 (1.40) 24.16 (4.24)a

Right-handed 79 38 41

Left-handed 3 1 2

Ambidextreous 4 3 1

Education level

Primary school 43 20 23

Vocational school 32 15 17

Upper secondary 2 2 0

Academic degree 9 5 4

MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE, Mini-Mental State
Exam.
aData are missing from one participant in the patient group.

TABLE 2 | Word fluency performances in whole sample and in subgroups.

Word fluency
measure

All Cognitively
healthy

Patient group
(MCI + AD)

Group
differencea

All participants (n = 86)

Semantic fluency 21.55 (6.62) 22.36 (5.39) 20.77 (7.59) p > 0.05

Phonological
fluency

13.37 (6.51) 14.43 (6.03) 12.36 (6.86) p > 0.05

Right-handed only (n = 79)

Semantic fluency 21.67 (6.78) 22.50 (5.59) 20.90 (7.71) p > 0.05

Phonological
fluency

13.38 (6.47) 14.34 (5.93) 12.49 (6.89) p > 0.05

MCI, mild cognitive impairment; AD, Alzheimer’s disease.
Means are reported first, followed by standard deviations in brackets.
aStudent’s T-test was used to study differences between groups.
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inversion recovery (FLAIR) coronal (TR/TE, 11,000/140 ms; slice
thickness, 5 mm; matrix, 512× 512) images. The same sequences
were applied to the whole sample. White matter hyperintensities
were segmented according to the method presented in Wang et al.
(2012). This quantified MRI data has been utilized and details
reported previously in Kaskikallio et al. (2020). Comparisons
between the cognitively healthy and patient subgroups did
not yield statistically significant differences in WMH volumes,
although the patient groups exhibited systematically higher mean
volumes than the cognitively healthy group.

Statistical Analysis
Several multiple linear regression analyses were performed for
testing the main research questions. For each regression model,
age and level of education were entered as control variables in
step 1, after which a measure for WMH in each anatomical
region of interest was added as a dependent in step 2. Semantic
fluency or phonological fluency was set as the independent
variable for each analysis. Separate analyses were conducted for
the eight anatomical regions of interest (left frontal, right frontal,
left parieto-occipital, right parieto-occipital, left temporal, right
temporal, bilateral frontal, bilateral parieto-occipital).

Analyses including the whole sample were run first, followed
by analyses containing only right-handed participants. Type
I errors due to multiple testing were controlled by using
the Benjamini–Hochsberg procedure (Benjamini and Hochberg,
1995). A false discovery error rate of 0.05 was used to
produce adjusted p-values for each step 2 predictor variable,
against which the original p-values were compared against. The
procedure was performed to the nine predictor variables for
each hypothesis family (semantic fluency/phonological fluency)
for both the total sample and the sample containing only right-
handed participants. For those regression models that remained
significant after correction, further subgroup analyses were
performed separately for the control group and the patient group
(MCI + AD). The same procedure to guard against multiple
hypothesis testing was performed at this stage. Data analysis was
done with the IBM SPSS statistics software v. 24.

RESULTS

Analyses concerning the total sample (controls, MCI/AD)
and containing right-handed, ambidextrous, and left-handed
participants (n = 86) were performed first, followed by identical
analyses performed on a sample containing only right-handed
participants (n = 79) (see Table 3 for main analyses). Age and
education were controlled for in step 1 of each model.

In the whole sample, increased WMH volumes in both the
frontal and parieto-occipital areas, bilaterally, were significantly
associated with worse performance in the semantic fluency
task, although these associations did not survive correction
for multiple testing. In the sample containing only right-
handed participants, the results were similar, i.e., WMH
volumes in frontal and parieto-occipital areas, bilaterally,
were associated with lower semantic fluency performance (see
Figure 1). Additionally, a significant association was seen

between increased WMH volumes in the right temporal lobe
and worse performance in the semantic fluency task only in the
right-handed participants. The models concerning right-handed
participants remained significant after correcting for multiple
testing except for the association between left parieto-occipital
WMH and semantic fluency.

As only the models concerning right-handed
participants survived correction for multiple testing, left-
handed/ambidextrous participants were excluded from the
follow-up subgroup analyses. These concerned the areas
that were significantly associated with semantic fluency after
correction (left and right frontal, right parieto-occipital, right
temporal) and were run separately for the cognitively healthy
and MCI/AD subgroups. However, no significant associations
were found concerning these subgroups.

DISCUSSION

The results indicated that increases in frontal and parieto-
occipital WMH volumes, bilaterally, were associated with
decreases in semantic fluency when all groups were included
(healthy controls + MCI/AD patients). As we preferred to keep
the sample size as large as possible, these analyses contained all
the participants (including a few left-handed and ambidextrous
ones). In order to guard against possible confounding effects
regarding language lateralization, additional analyses were
performed with only right-handed participants. However, after
correcting for multiple testing, only the models concerning
the right-handed participants remained significant (all except
left parieto-occipital WMH, although bilateral parieto-occipital
WMH remained significant). No significant group-specific effects
in the control or patient groups specifically were seen.

The indications regarding an association between both frontal
and parieto-occipital WMH with decreased semantic fluency
are generally in line with previous findings: Verbal fluency
performance has been linked with a network of frontal and
parietal cortical regions, in addition to the temporal lobe and
other subcortical structures such as the anterior cingulate, left
hippocampus, thalamus, and cerebellum (Phelps et al., 1997;
Gourovitch et al., 2000; Abrahams et al., 2003; Costafreda
et al., 2006; Robinson et al., 2012; Biesbroek et al., 2016).
However, previous studies have often shown more left lateralized
associations for VF, whereas the associations seen here seemed
to be bilateral. We would argue that left lateralized networks
and certain cortical areas most certainly play a key role in VF
tasks but also that VF tasks may rely on a broader bilateral
network. This might apply more to semantic fluency, as some
investigators have suggested a larger involvement for the right
hemisphere in semantic fluency tasks over phonological tasks
(Schlösser et al., 1998; Donnelly et al., 2011; Glikmann-Johnston
et al., 2015). Indeed, in the current study, right temporal WMH
volumes seemed to be associated with decreased semantic fluency
performance in right-handed participants.

Related to this, a number of studies on various clinical groups
have implicated the right hemisphere in VF tasks: Impaired VF
performance has often been reported in patients with right frontal
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TABLE 3 | Regression models predicting word fluency performance from white matter hyperintensities.

All participants (n = 86) Only right-handed (n = 79)

Independent variables Semantic fluency Phonological fluency Semantic fluency Phonological fluency

R2 p1R2 B (95% CI) R2 p1R2 B (95% CI) R2 p1R2 B (95% CI) R2 p1R2 B (95% CI)

Step 1

Model 1 (M1): age and
education

0.089 0.021 0.211 0.000 0.085 0.034 0.240 0.000

Step 2

M1 + frontal L WMH 0.139 0.032 –0.98 (–1.88,
–0.09)

0.231 0.150 –0.61 (–1.44,
0.26)

0.146 0.024 –1.13 (–2.11,
–0.16)*

0.253 0.253 –0.50 (–1.38,
0.37)

M1 + frontal R WMH 0.136 0.039 –0.67 (–1.31,
–0.04)

0.231 0.153 –0.43 (–1.02,
0.16)

0.141 0.030 –0.78 (–1.49,
–0.08)*

0.253 0.248 –0.37 (–1.00,
0.26)

M1 + frontal L + R WMH 0.139 0.033 –0.42 (–0.79,
–0.04)

0.232 0.144 –0.26 (–0.61,
0.09)

0.145 0.024 –0.48 (–0.90,
–0.06)*

0.254 0.240 –0.22 (–0.59,
0.15)

M1 + temporal L WMH 0.100 0.329 –0.93 (–0.28,
0.95)

0.215 0.524 –0.56 (–2.28,
1.17)

0.100 0.264 –1.12 (–3.10,
0.86)

0.245 0.455 –0.65 (–2.39,
1.08)

M1 + temporal R WMH 0.125 0.071 –1.43 (–2.97,
0.12)

0.222 0.303 –0.75 (–2.19,
0.69)

0.144 0.025 –2.01 (–3.76,
–0.25)*

0.261 0.145 –1.15 (–2.70,
0.41)

M1 + Temporal L + R
WMH

0.115 0.130 –0.69 (–1.59,
0.21)

0.219 0.367 –0.38 (–1.21,
0.45)

0.124 0.071 –0.91 (–1.89,
0.08)

0.254 0.235 –0.52 (–1.39,
0.35)

M1 + parieto-occipital L
WMH

0.133 0.046 –0.72 (–1.42,
–0.01)

0.246 0.057 –0.63 (–1.27,
0.02)

0.134 0.043 –0.75 (–1.48,
–0.03)

0.275 0.058 –0.61 (–1.25,
0.02)

M1 + parieto-occipital R
WMH

0.161 0.010 –0.75 (–1.31,
–0.19)

0.238 0.094 –0.45 (–0.98,
0.08)

0.168 0.008 –0.80 (–1.38,
–0.22)*

0.270 0.084 –0.45 (–0.98,
0.06)

M1 + Parieto-occipital
L + R WMH

0.151 0.017 –0.39 (–0.71,
–0.07)

0.243 0.068 –0.28 (–1.57,
0.02)

0.155 0.015 –0.42 (–0.75,
–0.08)*

0.274 0.064 –0.28 (–0.57,
0.02)

Separate models have been run for each ROI and cognitive variable. In every model, education and age were entered as control variables in step 1 and the volume of
white matter intensities in step 2. The amount of explained variance (R2) for each model is reported with the corresponding p-value (p1R2) for the difference in explained
variance between model 1 and the current model. Coefficients (B) with 95% CIs are also provided.
WMH, white matter hyperintensity; L, left; R, right.
*These predictors remained significant after correcting for multiple testing.
Models that were initially significant (i.e., before correcting for multiple testing) have been bolded.

FIGURE 1 | Semantic fluency as a function of bilateral (A) frontal and (B) parieto-occipital white matter hyperintensities in right-handed participants (n = 79). WMH,
white matter hyperintensities (ml).

lesions (Perret, 1974; Martin et al., 1990; Loring et al., 1994;
Robinson et al., 2012), with a recent study identifying the right
inferior frontal gyrus as an important area for semantic fluency
(Biesbroek et al., 2016). As for WM tracks, VF impairments have
also been associated bilaterally with the inferior fronto-occipital

fasciculus and the superior longitudinal fasciculus in MS patients
(Blecher et al., 2019) and in a pooled sample of healthy old adults
and early AD patients (Rodríguez-Aranda et al., 2016). It is also
important to note that the degree of lateralization most likely
depends on age, as functional neuroimaging studies on older
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participant have indicated a general reduction in hemispheric
specialization in favor of more bilateral activation (Reuter-Lorenz
et al., 2000; Cabeza, 2002). This age-related restructuring of
the neural architecture has been posited to occur primarily by
recruiting additional cortical areas to preserve performance and
has been documented not only in VF tasks (Meinzer et al.,
2012; La et al., 2016) and overt naming (Wierenga et al., 2008)
but also in other cognitive functions such as the ventral visual
system (Park et al., 2004) and the motor system (Carp et al.,
2011). Furthermore, some investigators have speculated that
the involvement of the right hemisphere in semantic fluency
tasks may reflect the utilization of visuospatial mental imaging
strategies for these tasks (Biesbroek et al., 2016; Gordon et al.,
2018). Finally, it is important to note that only the models that
included solely right-handed participants remained significant
after multiple testing correction. This is discussed further in the
limitations section.

Regarding the results, there are a number of null findings
that need addressing. Possibly, the most relevant one is that no
group-specific associations were seen for the MCI/AD patient
group. This is in contrast with our previous results, as we have
previously reported indications of a cumulative effect of WM
pathology in the frontal areas on general cognitive functioning
in AD patients specifically (Kaskikallio et al., 2019b). We have
also found indications of similar group-specific cumulative effects
of frontal and temporal WMH volumes on processing speed
(Kaskikallio et al., 2019a, 2020). The results in the present study
do not support the notion that WM pathology would have
group-specific/cumulative effects on VF in MCI and AD patients,
contrasting some earlier findings that have been reported (Kavcic
et al., 2008; Chen et al., 2009). On the other hand, these
studies contained more limited sample sizes and also focused
on analyzing specific WM tracts, whereas the current study
utilized volumetric WMH measurements of larger lobar areas.
Despite the fact that our sample size was larger than those in
previous studies, it could still be too small to detect smaller
effects (see Limitations). Two other null findings should also
be mentioned: (Feigin et al., 2003) no significant associations
were found between VF tasks and left temporal WMH in the
main analyses, although the region has been implicated heavily
with semantic fluency tasks (Pantoni et al., 2007; Schmidt et al.,
2019) no significant associations were seen between phonological
fluency and WMH in any region. Possible reasons for these are
discussed in section “Limitations and Recommendations.”

Although the cognitively healthy controls had, on average,
higher VF performances that MCI/AD patients, the differences
were not statistically significant. The difference was significant
in the original sample, but regrettably, a number of participants
had to be dropped due to inadequate imaging resolution
for quantitative imaging analysis. Overall, the MCI/AD group
utilized in the final sample has relatively good cognitive
performance (a MMSE mean score of 24.16), which is also
reflected as higher VF performance [compare with, for example,
a study by Rinehardt et al. (2014), where VF performance of
MCI and AD patients is on a notably lower level compared to
the present study]. It should also be noted that since there were
no significant differences in VF scores and WMH distributions
between the subgroups, it is very likely that the AD patients

included in the final sample (which formed the majority of
the patient subgroup) were in relatively early phases of disease
progression at the time of data collection.

Thus, although word finding difficulties can appear relatively
early in AD and they are generally associated with VF scores
(Farrell et al., 2014), these hindrances might not necessarily
translate to significant deficits in VF for every patient. This
implies that, in these cases, semantic information structures
might still be relatively intact and accessible, although it is
important to remember that VF performance is likely affected
by a number of other components, including cognitive flexibility
and strategy utilization, working memory, speed of processing
and lexical retrieval, as well as basic linguistic abilities (Rinehardt
et al., 2014; Whiteside et al., 2016; Schmidt et al., 2017;
Gordon et al., 2018). From a methodological standpoint, it is
worth noting that although VF tasks demand the retrieval of
specific responses, they are less constrained than naming tasks
for example (Gordon et al., 2018): If a certain word is not
remembered in a VF task, a synonym can be used instead. In
these cases, underlying vocabulary knowledge might be used
to compensate for difficulties in word retrieval (Gordon et al.,
2018). A related finding is that reading and writing habits, which
are per se linked with vocabulary (Stanovich and Cunningham,
1992; Marulis and Neuman, 2010; Dylman et al., 2020), seem to
be associated with VF performance in both cognitively healthy
adults (Pawlowski et al., 2012) and patients with AD (Tessaro
et al., 2020). In at least non-clinical participants, the effect
seems to be even more stronger than education (Pawlowski
et al., 2012). Another methodological issue to consider is the
fact that differences exist regarding the cue content (i.e., object
categories and letter cues used in tasks), timing (e.g., 60 vs. 90 s),
and performance outcomes (e.g., correct words in total time
limit, correct words in certain time intervals, latency between
words, semantic clustering, etc.) of VF tasks in different studies.
Variation in the background variables discussed here might also
partly contribute to the non-significant subgroup differences in
VF performance in the current study. Finally, regarding the
effects of concomitant vascular pathology, it might be the case
that AD-related disease progression must be at a more advanced
stage before concomitant vascular pathology starts to have a
cumulative effect on VF performances.

LIMITATIONS AND RECOMMENDATIONS

We acknowledge that the study has a number of limitations.
First, the sample size (and thus the statistical power to detect
the effects reported) is not optimal, as a notable number of
participants had to be excluded due to insufficient MR image
quality for quantification. Post hoc calculations concerning
effect sizes seen in step 2 of hierarchical regression models
indicate that the statistical power of the current total sample
size is somewhat below the gold standard of 0.80 (0.60 for
frontal bilateral WMH and 0.77 for bilateral parieto-occipital
WMH). Thus, the relatively limited size of the final sample
might have an effect on the statistical power to detect smaller
effects especially in the patient subgroup and might also explain
the null findings mentioned previously. Despite the relatively
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small sample size, our sample is still almost twice the size of
previous published studies on the matter (Kavcic et al., 2008;
Chen et al., 2009; Serra et al., 2010; Rodríguez-Aranda et al.,
2016). Second, the diminished sample size also necessitated the
merging of the MCI and AD patient subgroups, which, although
being a fairly commonplace procedure in the literature, might
not be the optimal solution. Third, since several hierarchical
regression models have been run, the risk for family-wise Type
I errors (detecting a false positive) is increased. We attempted to
guard against false positives by using the Benjamini–Hochberg
procedure. After correction, only analyses containing solely
right-handed participants remained significant. It is possible
that any confounding effects regarding language lateralization
were nullified with the removal of left-handed/ambidextrous
participants, leading to slightly stronger effects in the regression
models. Regarding language lateralization, it is a well-known
fact that right-handed participants are more homogeneous with
regards to brain functions. As such, it is not surprising to
have results change when non-right-handed participants are
included or excluded from the analyses. Finally, the current
study only utilized total performance scores for measuring
VF. Complimentary methods for assessing VF, such as naming
latency or semantic clustering, have also been developed.

Overall, further research is needed on the possible group-wise
effects of WM pathology on VF in the MCI/AD continuum.
As the current study contains a number of unexpected null
results, we feel that it is important to keep in mind that a
critical feature for research literature to be trustworthy is that
“all studies with at least reasonable quality have been reported”
(Cumming, 2013). This is especially important in order to
minimize publication bias, i.e., the cherry picking of positive
findings and the exclusion of null or ambivalent findings. As
single studies are rarely final or conclusive, additional evidence
is required in the form of replications, follow-up studies, and
meta-analyses (Cumming, 2013). In the case of this study topic,
future studies would do well to incorporate larger sample sizes
and utilize heterogeneous measures for both imaging (e.g.,
diffusion tensor imaging of microstructural WM tract integrity
and volumetric approximation of WMH) as well as for behavioral
measurement (e.g., total performance scores, naming latency,
semantic clustering). However, transparency about reporting the
measures and calculations utilized in assessing VF should be
an important goal, as differences here can lead to difficulties in
interpreting and replicating the results. It would also be prudent
to take into consideration the stage of disease progression in
AD patients as well as measure/control background variables
besides age and education, including linguistic abilities such as
vocabulary and reading and writing habits. Due to the possibility
of confounding effects, using solely right-handed participants
might be recommendable.

CONCLUSION

In conclusion, as has been shown elsewhere, frontal and parieto-
occipital WMH seem to have an effect on semantic fluency.
Elevated levels of WMH, as measured by volumetric imaging

methods, seem to affect VF performances of both cognitively
healthy adults and patients with MCI or AD, i.e., no additive
effects of WMH in the patient group were found in this study.
However, more research is needed on the possible group-wise
effects of WM pathology on VF in the MCI/AD continuum,
as the current study has a number of limitations, including
the suboptimal statistical power of the current sample to detect
the reported effects as well as the merging of the MCI/AD
subgroups for analysis. We expect that future studies will
elucidate the subject matter further: follow-up studies should
aim to replicate the findings, incorporate larger sample sizes,
utilize more heterogeneous imaging and behavioral measures,
and account for background variables such as AD progression,
vocabulary abilities, and reading and writing habits.
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