
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

On Usability of Hash Fingerprinting for Endpoint

Application Identification

Jenny Heino
Department of Computing

University of Turku
Turku, Finland

Forcepoint LLC
Helsinki, Finland

jenny.a.heino@utu.fi

Abstract—In network security, a common challenge is the

ability to gain information about the communicating endpoints

based only on the network traffic. Methods for gaining end-
point awareness on the network level by fingerprinting different
network protocol layers have existed for long. A fairly recent
addition to these techniques have been different hash
 finger- printing algorithms, such as JA3 and JA3S,
that can be used for identifying the communicating endpoint
applications of the network connection. These algorithms
 pick a suitable set of protocol specific
parameters and concatenate their values into a string. An MD5
hash value is calculated from this string, which comprises the
fingerprint. In this article we contest the use of the MD5 hash in
the fingerprinting process, and propose that the original string of
concatenated protocol parameter values should be used instead.
We argue that the original string provides more value for the
network security landscape.

Index Terms—Computer network management, Firewalls

(computing), Middleboxes, Network security

I. INTRODUCTION

The ability to gain awareness of the communicating end-

points on the network level has been a target of research for a

long time. Knowing more about the protected endpoint can

greatly enhance the protection capabilities of network security

solutions, and give crucial information about the protected

network to network administrators. The downside is that the

ability to gain knowledge about the endpoint purely based

on eavesdropped network traffic can give an attacker leverage

when selecting a suitable exploit.

As an example, certain values in the TCP handshake can

be a good indication of the underlying operating system [1].

In addition, some application layer protocols, such as HTTP,

include a specific protocol header field to report the

endpoint application. For such protocols, simple string

based matching can be enough to identify the endpoint

application. Many network protocols, however,

 do not include any protocol

parameters that simply report the endpoint application.

Hash fingerprinting algorithms, such as JA3 and

 JA3S, have become popular for identifying the

endpoint applications from network connections within

the last few years. These algorithms gather a list of

protocol specific parameter values

Ayush Gupta
Department of Computing

University of Turku
Turku, Finland

ayush.a.gupta@utu.fi

Antti Hakkala
Department of Computing

University of Turku
Turku, Finland
ajahak@utu.fi

Seppo Virtanen
Department of Computing

University of Turku
Turku, Finland

seppo.virtanen@utu.fi

mailto:jenny.a.heino@utu.fi
mailto:ayush.a.gupta@utu.fi
mailto:ajahak@utu.fi
mailto:seppo.virtanen@utu.fi

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

from the network traffic, present them in a string form, and

calculate an MD5 hash value of the string. Different endpoint

applications support different features, and provide supported

features in a different order. Because of this, the calculated hash

fingerprint can be a good indication of what the endpoint application

 behind the network traffic is. Implementations of

the algorithms have already found their way into several network

security solutions.

These algorithms have especially been utilised in the secu- rity

community for identifying network connections initiated by

malicious endpoint applications. Malware developers often tend to

lean towards a quick and dirty implementation, result- ing in a

distinguishable network fingerprint. Still, it is rather easy to change

the produced fingerprint with small changes to the parameter values,

such as changing the order in which the supported features are

presented.

The hash algorithms have their limitations, but they certainly have

their use in network security. They are a quick way to gain some

information on the network traffic, and they can be useful for

identifying benign endpoint applications. Due to their nature,

they should not be used as the sole ground for identifying an

endpoint as benign, as a malicious entity can fake its hash

fingerprint to mimic a benign one with some effort. Instead,

they can be used as additional metadata for the network

connection.

Still, we believe that these algorithms have a weakness

which greatly affects their usability. This weakness is the final

step of calculating the MD5 hash value from the set of protocol

parameter values. Calculating an MD5 hash value means that

even a small change in the original string value creates an

entirely different fingerprint, losing all information about how

close the original values might have been to each other.

In this article we contest the last step of calculating the

hash value, and instead recommend using the original string

of concatenated protocol parameter values, that is, the pre-

hash string, for endpoint application identification. To support

our claim, we provide example JA3 values from four different

endpoint applications: Firefox, Thunderbird, Google Chrome

and Microsoft Edge. These endpoint applications were selected

due to the fact that Firefox and Thunderbird use the same

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

Fig. 1. A generic hash fingerprint structure. A protocol specific set of

suitable and distinctive parameters is selected, and the values for these

parameters are concatenated into a string. Different parameters are separated

with commas, and multiple values for the same parameter are separated with

dashes. Finally, an MD5 hash is calculated from this string, comprising the

final hash fingerprint.

underlying TLS library, as do Google Chrome and Microsoft

Edge. We show that, despite sometimes having a different

MD5 hash, the original pre-hash strings are very close to each

other when the underlying TLS library is the same.

II. HASH FINGERPRINTING

Hash fingerprinting a network protocol to identify the under-

lying endpoint application is a relatively new but active field of

study. All of the proposed hash fingerprinting algorithms have

the same structure. They select a suitable set of significant and

distinctive protocol parameters and concatenate the values for

these parameters into a string, separating different parameters

with commas, and multiple values for a single parameter with

dashes. Finally, an MD5 hash value is calculated out of the

string. This MD5 hash is then considered the fingerprint for

the particular endpoint application regarding the protocol. This

process is visualised in Figure 1.

Some protocols, such as HTTP, clearly state the commu-

nicating endpoint application in a specific protocol param-

eter field [2]–[4]. Other protocols do not include any such

fields. There are still certain differences in implementations

of these protocols that differentiate them from each other.

TLS is a good example: it does not include any protocol

fields that report the endpoint application, but the protocol

has many parameters that report the different features that

the endpoint application supports. These include the supported

cipher suites, supported named groups for key exchange, and

the extensions in the initial hello message [5].

The first publication proposing TLS handshake fingerprint-

ing was the presentation by Lee Brotherston at the 2015

DerbyCon [6]. This presentation paved the way for the

first named hash fingerprinting algorithms, JA3 and

JA3S. These algorithms for fingerprinting the endpoint

application from TLS traffic were invented by the

Salesforce employees John Althouse, Jeff Atkinson and

Josh Atkins and open-sourced by the company in 2017

[7].

To calculate the JA3 fingerprint, the following values

are collected from the Client Hello message: Client

Hello ver- sion, supported cipher suites, the list of

extensions, supported

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

Fig. 2. A screen capture from Wireshark, demonstrating the protocol values used for

calculating a JA3 fingerprint. JA3 fingerprint is the hash fingerprint for a TLS client. It is

calculated from the Client Hello message. For calculating the JA3 fingerprint, the

following protocol parameters are selected: Client Hello version, supported Cipher

Suites, list of Extensions, supported groups and supported point formats. The

values for these parameters are concatenated into a string, and the final JA3

fingerprint is generated from this string by calculating its MD5 hash value.

groups, and supported elliptic curve point formats. These values

are concatenated into a string, and an MD5 hash value is

calculated of the string. This hash value comprises the final JA3

fingerprint. Figure 2 displays a Client Hello message

generated by Google Chrome as visualised by the Wireshark

network protocol analyser, and Figure 3 displays the JA3 value

calculated for this Client Hello message. Similar protocol

parameters are selected from the Server Hello message to

calculate the JA3S fingerprint.

Since the publication of JA3 and JA3S hash fingerprinting

algorithms, more algorithms have been proposed for other

protocols. Salesforce has published hash fingerprinting algo-

rithms for SSH (HASSH and HASSHServer, developed by

Ben Reardon) [8] and gQUIC (CYU, developed by Caleb

Yu) [9]. In addition, independent researchers have published

hash fingerpinting algorithms for RDP (RDFP, developed

by Adel Karimishiraz) [10], DHCP (developed by Fatema

Bannatwala) [11] and SMB (SMBFP, developed by Michael

R. Torres) [12].

Out of the proposed hash fingerprinting algorithms, the

JA3 and JA3S fingerprints have gained the widest popularity.

Many network security solutions have implemented these

algorithms [13], and especially the JA3 fingerprint has become a

common tool for many security analysts and incident respon-

ders. There are public databases of JA3 hashes, such as the

JA3er database [14] and the SSL Blacklist by abuse.ch [15].

The popularity of JA3 over the other algorithms can be

attributed not only to its status as the pioneer of the hash

fingerprinting algorithms, but also to the popularity of the

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

Fig. 3. JA3 pre-hash string and the final JA3 fingerpint calculated from the

Client Hello visible in Figure 2. The parameter values are presented in decimal

format, so for example the original version value 0x0303, which indicates TLS

1.2, is presented as 771. The Client Hello message that this JA3 fingerprint

was calculated from was produced by the Google Chrome browser version

95.0.4638.69 on Windows operating system.

TLS protocol. RDP, DHCP and SMB are all protocols used

mainly in internal networks. QUIC, in turn, has experienced

vast changes since the CYU fingerprint was developed, and

the CYU algorithm does not apply to the IETF standardized

version of QUIC from RFC 9000 [16].

It is worth to note that these hash fingerprinting methods

identify the underlying protocol implementation, which often

is not enough to uniquely identify the endpoint application it-

self. A good example is the TLS library developed by Google,

BoringSSL, which is a fork from the OpenSSL library [17].

The BoringSSL library is used by Google Chrome and other

Chromium based web browsers, such as Microsoft Edge [18]. It

is also used by the Chromium Embedded Framework, which in

turn is used by many other popular desktop applications,

including Spotify [19]. Because of this, a JA3 fingerprint

produced by the Google Chrome web browser can have a

collision with a JA3 fingerprint produced by Spotify.

III. SPOOFING AND RANDOMIZATION

All of the passive traffic identification methods referenced

here are easy to evade with enough labour. As long as a

malicious entity is able to modify the relevant parts of the

traffic, it can make it look like a benign endpoint application.

The hash fingerprinting algorithms are no exception to this

rule.

It is already common that malicious tools fake the User-

Agent header value in HTTP traffic. Mimicking a benign

hash fingerprint is, however, not as easy as faking the User-

Agent header value. For a malicious tool to mask the hash

fingerprint value as a benign one, it either needs to use

the same underlying protocol implementation as the

benign application it mimics, or implement the same

features as the benign application. Both of these

alternatives can be too much work for a malware

developer, who often seeks to find the best profit with as

little work as necessary.

Instead of mimicking a benign endpoint application, it is easier for a malicious entity to randomize its protocol parameters so that it cannot be statically fingerprinted with the hash fingerprinting methods. As an example, by either

http://95.0.4638.69/

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

presenting only a random subset of the actually supported cipher

suites, or presenting all supported cipher suites but in a random

order, it is easy for the malicious entity to prevent detection by a

JA3 fingerprint. This has already been seen in the wild by Akamai

researchers, who reported that bots are randomizing their TLS

parameters to evade detection by JA3 fingerprints [20].

Because of this, the endpoint application identification made based

on the hash fingerprint should be taken with a grain of salt. As an

example, if a malicious tool uses the BoringSSL library developed

by Google, it may falsely be identified as the Google Chrome

browser based on its JA3 fingerprint and be let through. And vice

versa: if the same tool is identified to be malicious and its traffic is

thus flagged as malicious based on its JA3 fingerprint, the result may

be that legitimate Google Chrome traffic gets flagged as malicious.

IV. IMPROVING SECURITY EFFICACY WITH HASH
FINGERPRINTS

Even though they are not a silver bullet, the hash fingerprints can still

give valuable metadata about the network connection to a network

administrator. In most cases they give a good indication about

what the endpoint application is, thus giving a better understanding

of the network. In addition, the hash fingerprints can be a great tool

for adding endpoint context to a network security solution.

A network security solution capable of deep packet in-

spection may not be aware of the communicating endpoint

application. This might cause issues such as false positive and

false negative identifications, as different endpoint applications

have different vulnerabilities. Traffic that may be benign to

one endpoint application can trigger a vulnerability in another.

Using the hash fingerprints, a network security solution can

make an educated guess about the endpoint application, which

it can utilise when making a deep packet inspection based

traffic termination decision. This can, as an example, make it

 possible to terminate a network connection only if the

receiving endpoint application is vulnerable to a

 specific attack.

As mentioned previously, public databases already exist for

JA3 fingerprints, the most extensive being the JA3er database,

which anyone can contribute to. The advantage of a public

database which anyone can contribute to is that it can easily

become very extensive. The disadvantage is that it is also

easy to contaminate the database as it is difficult to verify

the accuracy of a submission.

As opposed to using a public database, it is also possible

to gather a private database of trusted hash fingerprints from

a protected network. Using a private database removes the

risk of an outsider contaminating the database, but it requires

additional work to populate and verify the content of the

database. Still, if implemented properly, a private database can

give an accurate representation of the trusted network and be a

good additional tool for validating network traffic.

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

V. WEAKNESS

As stated, the hash fingerprints, especially the JA3 and JA3S

fingerprints, have already managed to establish their ground

in the network security landscape. They definitely have their

value when making a quick assessment of the traffic. But we

argue that they have a weakness which greatly reduces their

usability, which is the final step of calculating the MD5 hash

of the string of protocol parameter values.

Hash values are, indeed, a quick and efficient tool for

validating that two entities have the same content. They are

often used in the information security field when identifying

different malicious entities from legitimate ones. As an exam-

ple, a reputation check for a file based on its hash value is a

very common way for antivirus software to check whether a

file has been identified as malicious before. Despite their

popularity, file reputation checks based on MD5 and SHA1

hashes are prone to collision attacks and public tools exist for

creating a collision, such as [21].

For large entities, such as files, calculating a hash value

makes a lot more sense than comparing the likeness of the

entities byte by byte. The hash values are short and easy to

share, and the algorithms for calculating the values are fast.

The advantage gained from calculating a hash value in such

cases is evident. But when the original value is rather short,

such as it is with the protocol hash fingerprinting algorithms,

the advantage gained from calculating a hash value starts to

lose its effect, and it can even turn into a disadvantage.

When calculating a hash value of an entity, even a change

of one byte in the original content entirely changes the output

of the hash algorithm. This is how the hash algorithms are

designed to work. A good hashing algorithm is designed to

be non-invertible and have correlation freeness, meaning that

even a small change in the original value should produce an

entirely different output [22].

But when considering the original pre-hash string for the

protocol hash fingerprinting algorithms, the information lost

when calculating an MD5 hash out of the pre-hash string

outweighs the advantage gained from calculating the MD5

hash. The pre-hash string is relatively short, thus storing and

sharing an MD5 hash value instead gives little added value. In

addition, gaining an entirely different fingerprint after a small

change in the original value, such as one added cipher suite in

the list of supported cipher suites in a JA3 fingerprint, loses

all information about the original values being so close to

each other. With the protocol hash fingerprinting values, this

is a clear disadvantage: one added cipher suite, when all other

values and their ordering remains the same, indicates

that the underlying implementation is otherwise the

same, but support for one new cipher suite has been

added.

One advantage of using an MD5 sum instead of the pre-

hash string is that it is faster for a human to pick up a

difference between two values when the value is

entirely different, as it is with an MD5 hash value.

Programmatically, there is no notable difference in the

effectiveness of comparing the pre- or post-hash value. It

can be argued that the ability of a human

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

to quickly distinguish two values should not be the basis for

choosing the hash value instead of the more informative pre- hash

string.

VI. USING THE PRE-HASH STRING AS THE FINGERPRINT

INSTEAD

Based on the disadvantages of using the MD5 hash for the

protocol hash fingerprinting algorithms, we propose that the pre-

hash string of these algorithms should be used as the fingerprint

instead. We claim that the information that can be gained from the

pre-hash string greatly outweighs the value gained from using the

MD5 hash value.

The pre-hash string consists of a list of the protocol parame- ter

values that the endpoint application supports or has chosen to use. In

addition to providing an indication of the underlying software

component, this value also gives quick visibility into many other

useful properties related to the traffic itself, such as the used protocol

version and other supported features. This information can give

valuable context for a network security solution or an incident

responder. A quick look into this value can reveal features in the

traffic that can immediately be utilised for flagging the connection

as suspicious.

In addition, using this pre-hash string of the protocol param- eter

values as the fingerprint makes it possible to identify that two

different fingerprints are approximately equal. This can make it

possible to identify that a certain connection belongs to the same

endpoint application as another connection, even when the

fingerprint itself is different. This can happen for example

when a new software version is released: the release brings

support for a new feature, thus changing the fingerprint, but

otherwise the values and their ordering remains the same. This

also makes it possible to identify an endpoint application which

randomizes its protocol values.

VII. A COMPARISON OF THE JA3 HASH AND THE
PRE-HASH STRING FOR FOUR ENDPOINT APPLICATIONS

To give a lightweight proof-of-concept to support our claim,

we compared the JA3 hash and pre-hash string of four different

endpoint applications on Windows 10 operating system. The

endpoint applications we selected for our proof of concept

were Firefox web browser (version 94.0.1.0), Thunderbird

email client (version 91.2.1.0), Google Chrome web browser

(version 95.0.4638.69) and Microsoft Edge web browser (ver-

sion 95.0.1020.44). We selected these particular endpoint

applications, because the underlying TLS libraries for Firefox

and Thunderbird are the same [23], as are the underlying TLS

libraries for Google Chrome and Microsoft Edge. We selected

the latest two distinctive JA3 values produced by each endpoint

application on our test machine at a given point in time, and

analysed them. These values can be seen in Table I.

Looking first at the values for Firefox and Thunderbird,

we see that all MD5 hashes are entirely different in each

instance. However, taking a deeper look into the pre-hash

strings, there is actually very little difference in these values. In

 all cases, the supported cipher suites are exactly the

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

TABLE I

JA3 VALUES FOR FIREFOX, THUNDERBIRD, GOOGLE CHROME AND MICROSOFT EDGE ON WINDOWS OPERATING SYSTEM

JA3 values for Firefox web browser version 94.0.1.0, Thunderbird email client verion 91.2.1.0, Google Chrome web browser

version 95.0.4638.69 and Microsoft Edge web browser version 95.0.1020.44 produced on Windows 10 Operating System. The

values were selected based on being the two latest distinctive JA3 values produced by the endpoint application in question in

our test environment at the moment of the test.

same: ”4865-4867-4866-49195-49199-52393-52392-49196-

49200-49162-49161-49171-49172-156-157-47-53-10”. The

supported groups are also exactly the same: ”29-23-24-25-

256-257”. And in all instances the supported elliptic curve

point formats are empty.

The only difference between the four JA3 values for Firefox

and Thunderbird is in the extensions. And even there the

difference is quite small. In each instance, the extensions begin

with the same 5 extensions in the same order: ”0-23-65281-

10-11”. In addition there are other common sub-strings in all

values: each one has the three extensions ”5-34-51” in this

order, and each one has the four extensions ”43-13-45-28” in

this order. The differences are in extensions 16, 35, 42, 41 and

21, which appear in some values but not all.

Taking a look at the values for Google Chrome and

Microsoft Edge, we can make very similar remarks.

One of the values is exactly the same

 for Google Chrome and Microsoft Edge: this is the JA3 value with MD5 hash cd08e31494f9531f560d64c695473da9. In addition to this value, there is one distinctive value

for each browser. Again, the cipher suites are ex- actly the same: ”4865-4866-4867-49195-49199-49196-49200- 52393-52392-49171-49172-156-157-47-53”. It needs to be noted, though, that this string of cipher suites is different

than the one for Firefox and Thunderbird. The

 supported

Endpoint

Application
Pre-hash string MD5 Hash

Firefox 771,4865-4867-4866-49195-49199-52393-52392-49196-

49200-49162-49161-49171-49172-156-157-47-53-10,0-23-
65281-10-11-16-5-34-51-43-13-45-28-41,29-23-24-25-256-

257,0

1af5d1fe5c1c9bdba4ec723ac5cab44f

Firefox 771,4865-4867-4866-49195-49199-52393-52392-49196-

49200-49162-49161-49171-49172-156-157-47-53-10,0-23-
65281-10-11-16-5-34-51-42-43-13-45-28-41,29-23-24-25-

256-257,0

a0262d81f08838bbb1877a10e3fd70f1

Thunderbird 771,4865-4867-4866-49195-49199-52393-52392-49196-

49200-49162-49161-49171-49172-156-157-47-53-10,0-23-
65281-10-11-35-5-34-51-43-13-45-28-21,29-23-24-25-256-

257,0

490dba4384bdcf3fb9f1682374dd4afc

Thunderbird 771,4865-4867-4866-49195-49199-52393-52392-49196-

49200-49162-49161-49171-49172-156-157-47-53-10,0-23-
65281-10-11-35-16-5-34-51-43-13-45-28-21,29-23-24-25-

256-257,0

6b5e0cfe988c723ee71faf54f8460684

Chrome 771,4865-4866-4867-49195-49199-49196-49200-52393-

52392-49171-49172-156-157-47-53,0-23-65281-10-11-35-
16-5-13-18-51-45-43-27-17513-41,29-23-24,0

598872011444709307b861ae817a4b60

Chrome 771,4865-4866-4867-49195-49199-49196-49200-52393-

52392-49171-49172-156-157-47-53,0-23-65281-10-11-35-
16-5-13-18-51-45-43-27-17513-21,29-23-24,0

cd08e31494f9531f560d64c695473da9

Microsoft

Edge
771,4865-4866-4867-49195-49199-49196-49200-52393-

52392-49171-49172-156-157-47-53,0-23-65281-10-11-35-

16-5-13-18-51-45-43-27-17513-21,29-23-24,0

cd08e31494f9531f560d64c695473da9

Microsoft

Edge
771,4865-4866-4867-49195-49199-49196-49200-52393-

52392-49171-49172-156-157-47-53,0-23-65281-10-11-35-

16-5-13-18-51-45-43-27-17513,29-23-24,0

e1d8b04eeb8ef3954ec4f49267a783ef

http://94.0.1.0/
http://91.2.1.0/
http://95.0.4638.69/
http://95.0.1020.44/

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

groups string is also identical for each value: ”29-23-24” - which,

again, is different than the one produced by Firefox and

Thunderbird. Similar to Firefox and Thunderbird, the supported

elliptic curve point formats are empty.
Taking a look at the extensions, the similarities are even greater

than between the values for Firefox and Thunderbird. The values are

identical except for the very last extension. One instance has the

extension 41 as the last extension, another one has 21 as the last

extension, and the last one does not have either of them.
There are greater differences between the extensions when

comparing the extensions for Firefox and Thunderbird to the

extensions for Google Chrome and Microsoft Edge. As an

example, the extensions 18, 27 and 17513 are present in

all values for Google Chrome and Microsoft Edge, but in

none of the values for Firefox and Thunderbird. Similarly, the

extensions 28 and 34 are present in all values for Firefox and

Thunderbird, but in none of the values for Google Chrome

and Microsoft Edge.
The purpose of this lightweight proof-of-concept is to

demonstrate with a real life example how significant the

benefits of using the pre-hash string instead of the MD5 hash

value can be. We can quickly see which pre-hash strings

belong to the same TLS libraries, even when the MD5 hashes

are entirely different. It is clear that the sample set is very

small, which is why further research is needed to

 better

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

validate the claim.

VIII. CONCLUSION

Moving towards utilising the pre-hash string of the hash

fingerprinting algorithms can pave an easier way forward for

incident responders and future research. Collecting and sharing

the pre-hash strings instead of the MD5 hashes provides

a greatly extended view into the properties of the network

connection. Instead of focusing on the exact match of an MD5

sum, network security solutions can move towards checking if

the matches are close to each other. We tested the suitability of

our proposition with a proof-of-concept experiment, where we

saw that the pre-hash string can indeed improve the capability

of identifying endpoint applications. Even though the MD5

hashes were entirely different, the pre-hash strings could be

used for identifying the endpoint application. The pre-hash

string has, in addition, a lot of potential for many different

machine learning applications. Extensive use of the pre-hash

string instead of the MD5 hash value could enable for easy-

to-apply machine learning methods.

ACKNOWLEDGMENT

Jenny Heino wishes to thank her colleagues at Forcepoint

NGFW for inspiring discussions regarding hash fingerprinting

algorithms and emerging network security topics in the ever

changing network security landscape.

REFERENCES

[1] E. Hjelmvik, Passive OS Fingerprinting. [Online]. Accessed 6th July

2021. Available: https://www.netresec.com/?page=Blog\&month=2011-

11\&post=Passive-OS-Fingerprinting (URL)
[2] Mozilla Foundation, Firefox user agent string reference. [Online]. Ac-

cessed 11th April 2022. Available: https://developer.mozilla.org/en-US/

docs/Web/HTTP/Headers/User-Agent/Firefox (URL)
[3] Microsoft Corporation, Detecting Microsoft Edge from your website.

[Online]. Accessed 11th April 2022. Available: https://docs.microsoft.

com/en-us/microsoft-edge/web-platform/user-agent-guidance (URL)
[4] Google, User Agent Strings - Google Chrome. [Online]. Accessed 11th

April 2022. Available: https://developer.chrome.com/docs/multidevice/

user-agent/ (URL)
[5] Eric Rescorla and Tim Dierks, The Transport Layer Security (TLS)

Protocol Version 1.2. RFC-5246. [Online]. Accessed 11th April 2022.

Available: https://www.rfc-editor.org/rfc/rfc5246 (URL)
[6] L. Brotherston, “Stealthier attacks and smarter defending with TLS fin-

gerprinting,” DerbyCon V (2015), Louisville, Kentucky, USA. (conference

presentation)
[7] J. Althouse, J. Atkinson and J. Atkins, Open Sourcing JA3. [Online].

Accessed 22nd September 2021. Available: https://engineering.salesforce.

com/open-sourcing-ja3-92c9e53c3c41 (URL)
[8] B. Reardon, Open Sourcing HASSH. [Online]. Accessed 15th September

2021. Available: https://engineering.salesforce.com/open-sourcing-hassh-

abed3ae5044c (URL)
[9] C. Yu, GQUIC Protocol Analysis and Fingerprinting in Zeek. [Online].

Accessed 11th April 2022. Available: https://engineering.salesforce.

com/gquic-protocol-analysis-and-fingerprinting-in-zeek-

a4178855d75f
(URL)

[10] A. Karimishiraz, RDP Fingerprinting. [Online]. Accessed 11th

April
2022. Available: https://medium.com/@0x4d31/rdp-client-

fingerprinting- 9e7ac219f7f4 (URL)
[11] T. Coffeen, “DHCPv6 Fingerprinting and BYOD,” in

 NANOG 59, Chandler, Arizona, USA, 2013. [Online]. Accessed

6th October 2021. Available:

 https://archive.nanog.org/meetings/abstract?id=2206 (Confer-

ence presentation)
[12] M. R. Torres, SMBFP SMB Fingerprinting Zeek package.

[Online]. Accessed 11th April 2022. Available:

https://github.com/micrictor/smbfp (URL)

https://www.netresec.com/?page=Blog
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent/Firefox
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent/Firefox
https://docs.microsoft.com/en-us/microsoft-edge/web-platform/user-agent-guidance
https://docs.microsoft.com/en-us/microsoft-edge/web-platform/user-agent-guidance
https://developer.chrome.com/docs/multidevice/user-agent/
https://developer.chrome.com/docs/multidevice/user-agent/
https://www.rfc-editor.org/rfc/rfc5246
https://engineering.salesforce.com/open-sourcing-ja3-92c9e53c3c41
https://engineering.salesforce.com/open-sourcing-ja3-92c9e53c3c41
https://engineering.salesforce.com/open-sourcing-hassh-abed3ae5044c
https://engineering.salesforce.com/open-sourcing-hassh-abed3ae5044c
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f(URL)%5b10%5d
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f(URL)%5b10%5d
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f(URL)%5b10%5d
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f(URL)%5b10%5d
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f(URL)%5b10%5d
https://medium.com/@0x4d31/rdp-client-fingerprinting-9e7ac219f7f4
https://medium.com/@0x4d31/rdp-client-fingerprinting-9e7ac219f7f4
https://medium.com/@0x4d31/rdp-client-fingerprinting-9e7ac219f7f4
https://archive.nanog.org/meetings/abstract?id=2206
https://github.com/micrictor/smbfp(URL)
https://github.com/micrictor/smbfp(URL)

“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.”

J. Heino, A. Gupta, A. Hakkala and S. Virtanen, "On Usability of Hash Fingerprinting for Endpoint Application

Identification," 2022 IEEE International Conference on Cyber Security and Resilience (CSR), 2022, pp. 38-43, doi:

10.1109/CSR54599.2022.9850305.

[13] J. Althouse, J. Atkinson and J. Atkins, JA3 - A method for profiling SSL/TLS

Clients. [Online]. Accessed 11th April 2022. Available: https:

//github.com/salesforce/ja3 (URL)
[14] JA3er.com, SSL Fingerprint JA3. [Online]. Accessed 11th April 2022.

Available: https://ja3er.com/ (URL)
[15] Abuse.ch, SSLBL | Malicious JA3 Fingerprints. [Online]. Accessed 11th

April 2022. Available: https://sslbl.abuse.ch/ja3-fingerprints/ (URL)
[16] J. Iyengar and M. Thomson, QUIC: A UDP-Based Multiplexed and

Secure Transport. RFC-9000. [Online]. Accessed 11th April 2022. Avail- able:

https://datatracker.ietf.org/doc/html/rfc9000 (URL)
[17] Google, BoringSSL. [Online]. Accessed 6th July 2021. Available: https:

//boringssl.googlesource.com/boringssl/ (URL)
[18] Microsoft, Download the new Microsoft Edge based on

Chromium. [Online]. Accessed 11th April 2022. Available:

https://support.microsoft.com/en-us/microsoft-edge/download-the-

new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-

00010dba52cf (URL)
[19] Spotify AB, Open Source @ Spotify.com: Chromium Embedded Frame-

work (CEF). [Online]. Accessed 11th April 2022. Available: https://www.

spotify.com/us/opensource/ (URL)
[20] M. Zioni, E. Shuster, S. Shavit, Y. Daya, Bots Tampering With TLS to

Avoid Detection. [Online]. Accessed 15th September 2021. Avail- able:

 https://www.akamai.com/blog/security/bots-tampering-with-tls-to- avoid-

detection (URL)
[21] P. Selinger, MD5 Collision Demo. [Online]. Accessed 17th July 2021.

Available: https://www.mscs.dal.ca/∼selinger/md5collision/ (URL)
[22] S. Al-Kuwari, J. H. Davenport, R. J. Bradford, “Cryptographic Hash

Functions: Recent Design Trends and Security Notions,” IACR Cryptology

ePrint Archive, Report 2011/565
[23] Mozilla Corporation, Network Security Services (NSS) – Firefox Source

Docs documentation. [Online]. Accessed 11th April 2022. Available:

https://firefox-source-docs.mozilla.org/security/nss/index.html (URL)

https://github.com/salesforce/ja3
https://github.com/salesforce/ja3
https://ja3er.com/
https://sslbl.abuse.ch/ja3-fingerprints/
https://datatracker.ietf.org/doc/html/rfc9000
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf
https://www.spotify.com/us/opensource/
https://www.spotify.com/us/opensource/
https://www.akamai.com/blog/security/bots-tampering-with-tls-to-avoid-detection
https://www.akamai.com/blog/security/bots-tampering-with-tls-to-avoid-detection
https://www.akamai.com/blog/security/bots-tampering-with-tls-to-avoid-detection
https://www.mscs.dal.ca/
https://firefox-source-docs.mozilla.org/security/nss/index.html

