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Abstract
We show that as soon as ℎ → ∞ with 𝑋 → ∞, almost
all intervals (𝑥 − ℎ log𝑋, 𝑥] with 𝑥 ∈ (𝑋∕2, 𝑋] contain
a product of at most two primes. In the proof we use
Richert’s weighted sieve, with the arithmetic informa-
tion eventually coming from results of Deshouillers and
Iwaniec on averages of Kloosterman sums.
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1 INTRODUCTION

By probabilisticmodels, one expects that short intervals of the type (𝑥 − ℎ log𝑋, 𝑥] contain primes
for almost all 𝑥 ∈ (𝑋∕2, 𝑋] as soon as ℎ → ∞ with 𝑋 → ∞. Heath–Brown [12] has established
this assuming simultaneously the Riemann hypothesis and the pair correlation conjecture for the
zeros of the Riemann zeta function. Without such strong hypotheses we are rather far from this
claim— the best result [14] today is that almost all intervals of length 𝑋1∕20 contain primes.
One can ask a similar question about almost-primes, that is, 𝑃𝑘 numbers that have at most

𝑘 prime factors or 𝐸𝑘 numbers that have exactly 𝑘 prime factors. In the second case the best
results are due to Teräväinen [20] who showed that, for any 𝜀 > 0, almost all intervals of length
(log log𝑋)6+𝜀 log𝑋 contain an𝐸3 number and that almost all intervals of length (log𝑋)3.51 contain
an 𝐸2-number.
The case of 𝑃𝑘 numbers is significantly easier than that of 𝐸𝑘 numbers since the so-called par-

ity barrier does not apply; due to the parity barrier classical sieve methods based only on so-
called type I information cannot distinguish numbers having an even number of prime factors
from those having an odd number of prime factors. In particular classical sieve methods can, in
favourable circumstances, be used to show that a given set contains 𝑃2 numbers, but to show that
it contains 𝐸2 numbers requires additional arithmetic information. For more information about
the parity barrier, see for example, [7, Section 16.4].
Following Friedlander [8, 9], Friedlander and Iwaniec [7] showed that as soon as ℎ → ∞ with

𝑋 → ∞, almost all intervals (𝑥 − ℎ log𝑋, 𝑥] contain 𝑃19-numbers.
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In [7, Between Corollary 6.28 and Proposition 6.29] Friedlander and Iwaniec discuss the possi-
bility to improve their result. In particular they mention that using linear sieve theory and esti-
mates for general bilinear forms of exponential sums with Kloosterman fractions from [6], one
should be able to improve 𝑃19 to 𝑃3. Then they say that ‘It would be interesting to get integers
with at most two prime divisors’. This is the aim of the current note.
Let us introduce a few notational conventions before stating our main theorem: The letter 𝑝

with or without subscripts always denotes a prime number. We writeΩ(𝑛) for the total number of
prime factors of 𝑛 and𝜔(𝑛) for the number of distinct prime factors of 𝑛. Furthermore wewrite 𝟏𝑃
for the indicator function of a claim 𝑃. Further notational conventions, including our asymptotic
notation, are described in Section 1.1.

Theorem 1.1. There exists a constant 𝑐 > 0 such that the following holds. Let 𝑋 ⩾ 2 and 2 ⩽ ℎ ⩽
𝑋1∕100. Then ∑

𝑥−ℎ log𝑋<𝑛⩽𝑥

𝑝∣𝑛⇒𝑝>𝑋1∕8

𝟏Ω(𝑛)⩽2 ⩾ 𝑐ℎ

for all 𝑥 ∈ (𝑋∕2, 𝑋] apart from an exceptional set of measure 𝑂(𝑋∕ℎ).

Hence, as soon as ℎ → ∞ with 𝑋 → ∞, almost all intervals of length ℎ log𝑋 contain 𝑃2-
numbers. Previously it was known, as a consequence of the work of Teräväinen [20] on 𝐸2 num-
bers, that almost all intervals of length (log𝑋)3.51 contain 𝑃2-numbers. Before Teräväinen’s work,
the best result was due toMikawa [17] who showed that as soon as ℎ → ∞with𝑋, almost all inter-
vals (𝑥 − ℎ(log𝑋)5, 𝑥] contain 𝑃2-numbers. On the other hand, by work of Wu [21] it is known
that the interval (𝑥 − 𝑥101∕232, 𝑥] contains 𝑃2 numbers for all sufficiently large 𝑥.
The corresponding upper bound ∑

𝑥−ℎ log𝑋<𝑛⩽𝑥

𝑝∣𝑛⇒𝑝>𝑋1∕8

𝟏Ω(𝑛)⩽2 = 𝑂(ℎ)

for all 𝑥 ∈ (𝑋∕2, 𝑋] apart froman exceptional set ofmeasure𝑂(𝑋∕ℎ) follows immediately from [7,
Corollary 6.28].
We will give an outline of the proof of Theorem 1.1 in Section 1.2.

1.1 Notation

We write Λ(𝑛) for the von Mangoldt function, so that

Λ(𝑛) =

{
log 𝑝 if 𝑛 = 𝑝𝑘 for some prime 𝑝 and positive integer 𝑘;
0 otherwise;

and 𝜇(𝑛) for the Möbius function so that

𝜇(𝑛) =

{
(−1)𝜔(𝑛) if 𝑛 is square-free;
0 otherwise.
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Furthermore we write 𝜑(𝑛) for the Euler 𝜑-function so that

𝜑(𝑛) =
∑
1⩽𝑘⩽𝑛
(𝑘,𝑛)=1

1.

For 𝑓∶ ℝ → ℂ and g ∶ ℝ → ℝ+, we write 𝑓(𝑥) = 𝑂(g(𝑥)) or 𝑓(𝑥) ≪ g(𝑥) if there exists a con-
stant 𝐶 > 0 such that |𝑓(𝑥)| ⩽ 𝐶g(𝑥) for every 𝑥. Similarly, when also 𝑓 takes positive real values,
we write 𝑓(𝑥) ≫ g(𝑥) if there exist a constant 𝑐 such that 𝑓(𝑥) ⩾ 𝑐g(𝑥) for every 𝑥. If there is a
subscript (e.g. 𝑂𝑘(g(𝑥))), then the implied constant is allowed to depend on the parameter(s) in
the subscript.
We say that g ∶ ℝ → ℝ is smooth if it has derivatives of all orders. We will constantly work with

smooth compactly supported functions whose support and derivatives are bounded from above
independently of our parameters tending to infinity (e.g. 𝑋), so that

𝑑𝑘

𝑑𝑥𝑘
g(𝑥) ≪𝑘 1 for every 𝑘 ⩾ 0, (1)

where the implied constant depends only on 𝑘.
For 𝑢 ∈ ℂ we write 𝑒(𝑢) ∶= 𝑒(2𝜋𝑖𝑢) and, for any function,

g ∈ 𝕃1(ℝ) ∶=
{
𝑓∶ ℝ → ℝ∶ ∫

∞

−∞
|𝑓(𝑥)|𝑑𝑥 < ∞},

we denote by ĝ the Fourier transform

ĝ(𝜉) = ∫
∞

−∞
g(𝑥)𝑒(−𝜉𝑥)𝑑𝑥.

If g is a smooth and compactly supported function satisfying (1), then one obtains by repeated
partial integration that

ĝ(𝜉) ≪𝑘
1

1 + |𝜉|𝑘 for any 𝜉 ∈ ℝ and 𝑘 ⩾ 0. (2)

In summation conditions, we write 𝑚 ∼ 𝑀 for 𝑚 ∈ (𝑀, 2𝑀]. Furthermore we write 𝐴 ≍ 𝐵
when 𝐴 ≪ 𝐵 ≪ 𝐴. For 𝑎 ∈ ℤ and 𝑞 ∈ ℕ we write 𝑎 for the inverse of 𝑎 (mod 𝑞) (the modulus
will be clear from the context, for example, in 𝑒( 𝑐𝑢

𝑣
) the inverse is (mod 𝑣)).

1.2 Outline of the proof

In this section we provide a simplified outline of the proof of Theorem 1.1.
We start by applying Richert’s weighted sieve (see, e.g. [7, Chapter 25]) which is tailored to

finding 𝑃𝑘 numbers. More precisely, writing𝐻 = ℎ log𝑋, 𝑧 = 𝑋5∕36 and 𝑃(𝑧) =
∏
𝑝<𝑧 𝑝, we show

in Section 2 that, for almost all 𝑥 ∈ (𝑋∕2, 𝑋],

∑
𝑥−𝐻<𝑛⩽𝑥
(𝑛,𝑃(𝑧))=1

𝟏Ω(𝑛)⩽2 ⩾
1

2

∑
𝑥−𝐻<𝑛⩽𝑥

𝟏(𝑛,𝑃(𝑧))=1 −
1

2

∑
𝑧⩽𝑝<2𝑋1∕2

(
1 −
log 𝑝

log 𝑦

) ∑
𝑥−𝐻<𝑛𝑝⩽𝑥

𝟏(𝑛,𝑃(𝑧))=1. (3)
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Now classical sieve methods such as the 𝛽-sieve (see, e.g. [7, Chapter 11]) are very suitable for
finding lower and upper bounds for 𝟏(𝑛,𝑃(𝑧))=1—we use a lower bound sieve in the first sum and
an upper bound sieve in the second sum on the right-hand side of (3). We have∑

𝑢∣𝑛

𝜆−𝑢 ⩽ 𝟏(𝑛,𝑃(𝑧))=1 ⩽
∑
𝑢∣𝑛

𝜆+𝑢,𝑝, (4)

where 𝜆−𝑢 are lower bound and 𝜆
+
𝑢,𝑝 are upper bound linear sieve weights of levels𝑈 ∶= 𝑋

5∕9 and
𝑈∕𝑝. In particular 𝜆−𝑢 are supported on 𝑢 ⩽ 𝑈 and 𝜆+𝑢,𝑝 are supported on 𝑢 ⩽ 𝑈∕𝑝. For precise
definitions of sieve weights we use, see Section 2.
Combining (3) and (4), we see that for almost all 𝑥 ∈ (𝑋∕2, 𝑋], one has

2
∑

𝑥−𝐻<𝑛⩽𝑥
(𝑛,𝑃(𝑧))=1

𝟏Ω(𝑛)⩽2 ⩾
∑
𝑢

𝜆−𝑢

∑
𝑥−𝐻<𝑛⩽𝑥
𝑢∣𝑛

1 −
∑

𝑧⩽𝑝<2𝑋1∕2

(
1 −
log 𝑝

log 𝑦

)∑
𝑢

𝜆+𝑢,𝑝

∑
𝑥−𝐻<𝑛𝑝⩽𝑥

𝑢∣𝑛

1.

Writing, for 𝑑 ∈ {𝑢, 𝑢𝑝},

𝐸𝑑(𝑥) =
∑

𝑥−𝐻<𝑛⩽𝑥
𝑑∣𝑛

1 −
𝐻

𝑑
,

one obtains

2
∑

𝑥−𝐻<𝑛⩽𝑥
(𝑛,𝑃(𝑧))=1

𝟏Ω(𝑛)⩽2 ⩾ 𝐻
∑
𝑢

𝜆−𝑢
𝑢
− 𝐻

∑
𝑧⩽𝑝<2𝑋1∕2

1

𝑝

(
1 −
log 𝑝

log 𝑦

)∑
𝑢

𝜆+𝑢,𝑝

𝑢

+
∑
𝑢

𝜆−𝑢 𝐸𝑢(𝑥) −
∑

𝑧⩽𝑝<2𝑋1∕2

∑
𝑢

𝜆+𝑢,𝑝

(
1 −
log 𝑝

log 𝑦

)
𝐸𝑝𝑢(𝑥).

On the right-hand side the first line gives themain term, and a calculation using known properties
of the linear sieve coefficients shows that it is≫ ℎ (see Section 3 for details)— here it is important
that the level of distribution 𝑈 = 𝑋5∕9 is a sufficiently large power of 𝑋; dealing with the error
terms would be substantially simpler for 𝑈 = 𝑋1∕2−𝜀 but the main term would be negative and
thus the result useless.
Consequently Theorem 1.1 follows once we have shown that

∫
𝑋

𝑋∕2

|||||
∑
𝑢

𝜆−𝑢 𝐸𝑢(𝑥)
|||||
2

𝑑𝑥 ≪ ℎ𝑋 (5)

and

∫
𝑋

𝑋∕2

|||||||
∑

𝑧⩽𝑝<2𝑋1∕2

(
1 −
log 𝑝

log 𝑦

)∑
𝑢

𝜆+𝑢,𝑝𝐸𝑝𝑢(𝑥)

|||||||
2

𝑑𝑥 ≪ ℎ𝑋. (6)
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Proposition 5.1 below more-or-less reduces showing (5) to showing the following three claims:

∑
𝑑⩽𝑈

𝑑

⎛⎜⎜⎜⎝
∑
𝑢⩽𝑈

𝑢≡0 (mod 𝑑)

𝜆−𝑢
𝑢

⎞⎟⎟⎟⎠
2

≪
1

log𝑋
, (7)

∑
0<|𝑘|⩽𝐻

||||||||||||
∑

𝑢1,𝑢2⩽𝑈
(𝑢1,𝑢2)∣𝑘

𝜆−𝑢1
𝜆−𝑢2

⎛⎜⎜⎜⎜⎜⎝
∑
𝑚1

𝑋∕2<𝑢1𝑚1⩽𝑋
𝑢1𝑚1≡𝑘 (mod 𝑢2)

1 −
𝑋∕2

[𝑢1, 𝑢2]

⎞⎟⎟⎟⎟⎟⎠

||||||||||||
≪

𝑋

log𝑋
, (8)

∑
𝑛∈(𝑋∕2,𝑋]

(∑
𝑑∣𝑛

𝜆−
𝑑

)2
≪

𝑋

log𝑋
. (9)

Here (7) and (9) follow from studying the structure of the sieve weights. Actually to make these
estimates easier, we shall use the 𝛽-sieve with 𝛽 = 30 for sieving small primes 𝑝 < 𝑋𝛿 (see Sec-
tion 2 for the choice of our sieve weights).
Since𝑈 is significantly larger than 𝑋1∕2, the claim (8) is not obvious, but there is a well-known

strategy for attacking it; for simplicity let us concentrate here on the case (𝑢1, 𝑢2) = 1. We consider
a weighted variant and use Poisson summation to the sum over𝑚1 ≡ 𝑘𝑢1 (mod 𝑢2) to relate it to
averages of Kloosterman fractions of the type

𝑋
∑

0<|𝑘|⩽𝐻
|||||||||
∑

𝑢1,𝑢2⩽𝑈
(𝑢1,𝑢2)=1

𝜆−𝑢1
𝜆−𝑢2

𝑢1𝑢2

∑
0<|𝓁|⩽ 𝑢1𝑢2

𝑋1−𝜀∕20

𝑒

(
𝑘𝓁𝑢1
𝑢2

)|||||||||
.

Such sums can be estimated using the work of Deshouillers and Iwaniec [4] and its consequences.
To apply these results, one needs some factorability properties of the coefficients 𝜆−𝑢𝑗 . Here we can
utilize the well-factorability of the linear sieve coefficients.
The claim (6) can be proved similarly, except in this case well-factorability is not so useful as

𝑢 is smaller. However, we can decompose the prime 𝑝 by Vaughan’s identity and again finish
by applying suitable bounds for averages of Kloosterman fractions. Also we will need to argue
somewhat more carefully to avoid 𝜆+𝑝,𝑢 depending on 𝑝, making it to depend only on a dyadic-
type interval to which 𝑝 belongs.
In the above-mentioned work Mikawa [17] also used weighted sieve and estimates for Kloost-

erman sums but he did not take advantage of cancellations among the sieve weights for which
reason he needed longer intervals (see Remark 2.2 below for more information about [17]).

2 SETTING UP THE SIEVES

Let us introduce the set-up of Richert’s [18] weighted sieve following [7, Chapter 25]. For 𝑥 ∈
(𝑋∕2, 𝑋] and 2 ⩽ ℎ ⩽ 𝑋1∕100, write (𝑥) ∶= (𝑥 − ℎ log𝑋, 𝑥] ∩ ℕ and, for any 𝑧0 ⩾ 2, 𝑃(𝑧0) ∶=
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∏
𝑝<𝑧0

𝑝. Define

𝐷 ∶= 𝑋5∕9, 𝑧 ∶= 𝐷1∕4 = 𝑋5∕36, 𝑦 ∶= 𝐷9∕10 = 𝑋1∕2, (10)

and

𝑤𝑛 ∶= 1 −
∑
𝑝∣𝑛

𝑧⩽𝑝<2𝑦

(
1 −
log 𝑝

log 𝑦

)
.

The coefficients 𝑤𝑛 have been chosen in such a way that we can prove that, for almost all 𝑥 ∈
(𝑋∕2, 𝑋], ∑

𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

𝟏Ω(𝑛)⩽2 ⩾
1

2

∑
𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

𝑤𝑛 (11)

and ∑
𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

𝑤𝑛 ≫ ℎ. (12)

If we can show that these two claims hold for all 𝑥 ∈ (𝑋∕2, 𝑋] apart from an exceptional set of
size 𝑂(𝑋∕ℎ), then Theorem 1.1 clearly follows.
Let us first deduce (11) which is much easier. We have, for 𝑥 ∈ (𝑋∕2, 𝑋],

∑
𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

𝑤𝑛 ⩽
∑
𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

(
1 −
∑
𝑝∣𝑛

(
1 −
log 𝑝

log 𝑦

))
⩽
∑
𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

(
1 −

(
𝜔(𝑛) −

log𝑋

log 𝑦

))

=
∑
𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

(3 − 𝜔(𝑛)) ⩽ 2
∑
𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

𝟏𝜔(𝑛)⩽2.

There are only≪ 𝑋∕𝑧 integers 𝑛 ∈ (𝑋∕2, 𝑋] with (𝑛, 𝑃(𝑧)) = 1 for which Ω(𝑛) > 2 but 𝜔(𝑛) ⩽ 2
(since such numbers are divisible by 𝑝2 for some 𝑝 > 𝑧). Hence, to deduce Theorem 1.1 it indeed
suffices to show that (12) holds for all 𝑥 ∈ (𝑋∕2, 𝑋] apart from an exceptional set of measure
𝑂(𝑋∕ℎ).
Writing, for  ⊆ ℕ,

𝑆(, 𝑧) ∶= |{𝑛 ∈ ∶ (𝑛, 𝑃(𝑧)) = 1}| and 𝑑 = {𝑛 ∈ ℕ∶ 𝑑𝑛 ∈ },
we have ∑

𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

𝑤𝑛 = 𝑆((𝑥), 𝑧) −
∑
𝑧⩽𝑝<2𝑦

(
1 −
log 𝑝

log 𝑦

)
𝑆((𝑥)𝑝, 𝑧). (13)
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To find a lower bound for 𝑆((𝑥), 𝑧), we introduce 𝛽-sieve and linear sieve weights (see, e.g. [7,
Section 6.4]).

Remark 2.1. The reason that we do not use only the linear sieve is that using 𝛽-sieve (with, e.g.
𝛽 = 30) to sieve out primes < 𝑋𝛿 makes getting certain mean square estimates (like (49) below)
easier. However, it is suggested in [7, between Corollary 6.28 and Proposition 6.29] that one could
prove such mean square estimates also for the linear sieve alone.
On the other hand, the reason that we do not use only the 𝛽-sieve with 𝛽 = 30 is that the linear

sieve leads to superior sieving results — in particular our lower bound for (13) would be negative
if we only used the 𝛽-sieve.

Let 𝛽 = 30, let 𝛿 > 0 be small and take𝑤 = 𝑋𝛿 and𝐸 = 𝑋1∕1000. Write also 𝑃(𝑤, 𝑧) =
∏
𝑤⩽𝑝<𝑧 𝑝

and define

+ ∶= {𝑑 = 𝑝1⋯𝑝𝑟 ∣ 𝑃(𝑤, 𝑧)∶ 𝑝1 > 𝑝2 > … > 𝑝𝑟, 𝑝1⋯𝑝𝑚𝑝2𝑚 < 𝐷 for all odd𝑚},
− ∶= {𝑑 = 𝑝1⋯𝑝𝑟 ∣ 𝑃(𝑤, 𝑧)∶ 𝑝1 > 𝑝2 > … > 𝑝𝑟, 𝑝1⋯𝑝𝑚𝑝2𝑚 < 𝐷 for all even𝑚},
+ ∶= {𝑒 = 𝑝1⋯𝑝𝑟 ∣ 𝑃(𝑤)∶ 𝑝1 > 𝑝2 > … > 𝑝𝑟, 𝑝1⋯𝑝𝑚𝑝𝛽𝑚 < 𝐸 for all odd𝑚},
− ∶= {𝑒 = 𝑝1⋯𝑝𝑟 ∣ 𝑃(𝑤)∶ 𝑝1 > 𝑝2 > … > 𝑝𝑟, 𝑝1⋯𝑝𝑚𝑝𝛽𝑚 < 𝐸 for all even𝑚}.

Now define the upper and lower bound linear sieve weights 𝜆±
𝑑
= 𝜇(𝑑)𝟏𝑑∈± and the upper and

lower bound 𝛽-sieve weights 𝜌±𝑒 = 𝜇(𝑒)𝟏𝑒∈± , so that, for any 𝑛 ∈ ℕ, (see, e.g. [7, Equations (6.26)
and (6.27) with = {𝑛}]) ∑

𝑑∣𝑛

𝜆−
𝑑
⩽ 𝟏(𝑛,𝑃(𝑤,𝑧))=1 ⩽

∑
𝑑∣𝑛

𝜆+
𝑑
,

∑
𝑒∣𝑛

𝜌−𝑒 ⩽ 𝟏(𝑛,𝑃(𝑤))=1 ⩽
∑
𝑒∣𝑛

𝜌+𝑒 .
(14)

We cannot obtain a lower bound for 𝟏(𝑛,𝑃(𝑧)) directly by multiplying the lower bounds for
𝟏(𝑛,𝑃(𝑤,𝑧))=1 and 𝟏(𝑛,𝑃(𝑤))=1 since for some 𝑛 both lower bounds might be negative. However, we
can use (14) to derive a lower bound for 𝟏(𝑛,𝑃(𝑧))=1 that is familiar from the vector sieve (see, e.g. [11,
Lemma 10.1]):

𝟏(𝑛,𝑃(𝑧))=1 = 𝟏(𝑛,𝑃(𝑤,𝑧))=1𝟏(𝑛,𝑃(𝑤))=1

=

(∑
𝑑∣𝑛

𝜆+
𝑑

)
𝟏(𝑛,𝑃(𝑤))=1 −

(∑
𝑑∣𝑛

𝜆+
𝑑
− 𝟏(𝑛,𝑃(𝑤,𝑧))=1

)
𝟏(𝑛,𝑃(𝑤))=1

⩾
∑
𝑑∣𝑛

𝜆+
𝑑

∑
𝑒∣𝑛

𝜌−𝑒 −

(∑
𝑑∣𝑛

𝜆+
𝑑
− 𝟏(𝑛,𝑃(𝑤,𝑧))=1

)∑
𝑒∣𝑛

𝜌+𝑒

⩾
∑
𝑑∣𝑛

∑
𝑒∣𝑛

(
𝜆+
𝑑
𝜌−𝑒 − 𝜆

+
𝑑
𝜌+𝑒 + 𝜆

−
𝑑
𝜌+𝑒
)
=
∑
𝑘∣𝑛

𝛼−
𝑘
,
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where

𝛼−
𝑘
= 𝟏𝑘∣𝑃(𝑧)

(
𝜆+
(𝑘,𝑃(𝑤,𝑧))

𝜌−
(𝑘,𝑃(𝑤))

+ 𝜆−
(𝑘,𝑃(𝑤,𝑧))

𝜌+
(𝑘,𝑃(𝑤))

− 𝜆+
(𝑘,𝑃(𝑤,𝑧))

𝜌+
(𝑘,𝑃(𝑤))

)
(15)

say. Hence

𝑆((𝑥), 𝑧) ⩾ ∑
𝑑∣𝑃(𝑧)

𝛼−
𝑑
|(𝑥)𝑑|. (16)

Note that 𝛼−
𝑘
are supported on 𝑘 ⩽ 𝐷𝐸, so they are lower bound sieve weights with level 𝐷𝐸.

Let us now turn to obtaining an upper bound for 𝑆((𝑥)𝑝, 𝑧). If we can obtain level of distri-
bution 𝐷𝐸 for (𝑥), we can typically apply a sieve of level 𝐷𝐸∕𝑝 to (𝑥)𝑝. However, it will be
technically convenient if the level is more stable when 𝑝 varies and if 𝑝 has a smooth weight.
To achieve this we introduce a smooth partition of the unity. Let 𝜓∶ ℝ+ → [0, 1] be a smooth

function such that 𝜓(𝑥) = 0 for 𝑥 ⩽ 1, 𝜓(𝑥) = 1 for 𝑥 ⩾
√
2, and

𝑑𝑘

𝑑𝑥𝑘
𝜓(𝑥) ≪𝑘 1 for every 𝑘 ∈ ℕ.

Defining then 𝜎∶ ℝ+ → [0, 1] by

𝜎(𝑥) ∶=

⎧⎪⎨⎪⎩
𝜓(𝑥) if 0 < 𝑥 ⩽

√
2;

1 − 𝜓

(
𝑥√
2

)
if 𝑥 >
√
2,

(17)

the function 𝜎(𝑥) is compactly supported in [1, 2], and for all 𝑥 ∈ ℝ+ we have

∑
𝑎∈ℤ

𝜎

(
𝑥√
2
𝑎

)
= 1, (18)

and

𝑑𝑘

𝑑𝑥𝑘
𝜎(𝑥) ≪𝑘 1 for every 𝑘 ∈ ℕ. (19)

Consequently, writing

 =
[⌊

log 𝑧

log
√
2

⌋
− 2,

⌊
log 𝑦

log
√
2

⌋]
∩ ℕ, (20)

we have, for any 𝑝 ∈ ℙ,

∑
𝑎∈
𝜎

(
𝑝√
2
𝑎

) ⎧⎪⎨⎪⎩
= 1, if 𝑧 ⩽ 𝑝 < 𝑦;
= 0, if 𝑝 < 𝑧∕4 or 𝑝 > 2𝑦;
∈ [0, 1], otherwise.

(21)



ALMOST PRIMES IN ALMOST ALL VERY SHORT INTERVALS 9

Hence

∑
𝑧⩽𝑝<2𝑦

(
1 −
log 𝑝

log 𝑦

)
𝑆((𝑥)𝑝, 𝑧) ⩽

∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

)
𝑆((𝑥)𝑝, 𝑧). (22)

Note that, for 𝑎 ∈ , the smooth weight 𝜎(𝑝∕√2𝑎) is supported on
𝑝 ∈ [
√
2
𝑎
,
√
2
𝑎+2
] ⊆ [𝑧∕4, 2𝑦].

For 𝑎 ∈ , let
𝐷𝑎 = 𝐷∕

√
2
𝑎+2

(23)

and

+𝑎 ∶= {𝑑 = 𝑝1⋯𝑝𝑟 ∣ 𝑃(𝑤, 𝑧)∶ 𝑝1 > 𝑝2 > … > 𝑝𝑟, 𝑝1⋯𝑝𝑚𝑝2𝑚 < 𝐷𝑎 for all odd𝑚}.

Define the upper bound linear sieve weights 𝜆+
𝑑,𝑎
= 𝜇(𝑑)𝟏𝑑∈+𝑎 , so that, for any 𝑎 ∈  and 𝑛 ∈ ℕ,

𝟏(𝑛,𝑃(𝑤,𝑧))=1 ⩽
∑
𝑑∣𝑛

𝜆+
𝑑,𝑎
.

Recalling also (14) we see that, for any 𝑎 ∈  and 𝑛 ∈ ℕ,

𝟏(𝑛,𝑃(𝑧))=1 = 𝟏(𝑛,𝑃(𝑤,𝑧))=1𝟏(𝑛,𝑃(𝑤))=1 ⩽

(∑
𝑑∣𝑛

𝜆+
𝑑,𝑎

)(∑
𝑒∣𝑛

𝜌+𝑒

)
=
∑
𝑘∣𝑛

𝛼+
𝑘,𝑎
, (24)

where

𝛼+
𝑘,𝑎
∶= 𝟏𝑘∣𝑃(𝑧)𝜆

+
(𝑘,𝑃(𝑤,𝑧)),𝑎

𝜌+
(𝑘,𝑃(𝑤))

. (25)

Note that 𝛼+
𝑘,𝑎

are supported on 𝑘 ⩽ 𝐷𝑎𝐸 = 𝐷𝐸∕
√
2
𝑎+2

.
Combining (13) and (22) and then using (16) and (24) we obtain

∑
𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

𝑤𝑛 ⩾ 𝑆((𝑥), 𝑧) −
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

) ∑
𝑛∈(𝑥)𝑝

𝟏(𝑛,𝑃(𝑧))=1

⩾
∑
𝑑∣𝑃(𝑧)

𝛼−
𝑑
|(𝑥)𝑑| −∑

𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

) ∑
𝑑∣𝑃(𝑧)

𝛼+
𝑑,𝑎
|(𝑥)𝑑𝑝|.

Writing, for 𝑒 ∈ {𝑑, 𝑑𝑝},

|(𝑥)𝑒| = ℎ log𝑋𝑒 +

(|(𝑥)𝑒| − ℎ log𝑋𝑒
)
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we see that, for every 𝑥 ∈ (𝑋∕2, 𝑋],∑
𝑛∈(𝑥)
(𝑛,𝑃(𝑧))=1

𝑤𝑛 ⩾ ℎ log𝑋 ⋅𝑀(𝑧, 𝑦) + 𝐸−(𝑥, 𝑦, 𝑧) − 𝐸+(𝑥, 𝑦, 𝑧),

where

𝑀(𝑧, 𝑦) ∶=
∑
𝑑∣𝑃(𝑧)

𝛼−
𝑑

𝑑
−
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

) ∑
𝑑∣𝑃(𝑧)

𝛼+
𝑑,𝑎

𝑑𝑝
,

𝐸−(𝑥, 𝑦, 𝑧) ∶=
∑
𝑑∣𝑃(𝑧)

𝛼−
𝑑

(|(𝑥)𝑑| − ℎ log𝑋𝑑
)
,

𝐸+(𝑥, 𝑦, 𝑧) ∶=
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

) ∑
𝑑∣𝑃(𝑧)

𝛼+
𝑑,𝑎

(|(𝑥)𝑑𝑝| − ℎ log𝑋𝑑𝑝
)
.

Hence, in order to establish that (12) holds for all 𝑥 ∈ (𝑋∕2, 𝑋] apart from an exceptional set of
measure 𝑂(𝑋∕ℎ), it suffices to show that

𝑀(𝑧, 𝑦) ≫
1

log𝑋
(26)

and that

∫
𝑋

𝑋∕2
|𝐸±(𝑥, 𝑦, 𝑧)|2𝑑𝑥 ≪ ℎ𝑋. (27)

We will establish (26) in Section 3. In Section 4 we collect some lemmas needed in establish-
ing (27). Then we will do some preliminary work on type I sums in almost all very short intervals
in Section 5 before establishing (27) in Section 6.

Remark 2.2. We have not optimized the level of distribution or the sieve weights as the current
set-up suffices for obtaining 𝑃2-numbers. As pointed out to the author by James Maynard and
Maksym Radziwiłł, it might be possible to alternatively use Greaves’ most sophisticated weighted
sieve [10] together with Bettin–Chandee [1] estimates for Kloosterman sums. In this alternative
approach the estimation of 𝑆2 from Proposition 5.1 below would be simpler, whereas the sieve
weights and thereby the estimation of 𝑆1 would become more complicated.
On the other hand, after the completion of this work, the author realized, thanks to a comment

by Andrew Granville, that it would probably suffice to use Kloosterman sum estimates based on
theWeil bound as Mikawa [17] does. This would again simplify the treatment of 𝑆2. However, our
results in Section 5 give better bilinear level of distribution in almost all short intervals, which
might be of benefit for other applications, so we have decided to keep the current approach.

3 HANDLING THEMAIN TERM𝑴(𝒛, 𝒚)

Take a small 𝜀′ > 0 and, for 𝑧0 ⩾ 2, write 𝑉(𝑧0) ∶=
∏
𝑝<𝑧0
(1 − 1∕𝑝). Recall that 𝑤 = 𝑋𝛿. By the

fundamental lemma of the sieve (see, e.g. [7, (6.31)–(6.33) and Lemma 6.8]), we have, once 𝛿 is
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small enough in terms of 𝜀′,

(1 − 𝜀′)𝑉(𝑤) ⩽
∑
𝑒∣𝑃(𝑤)

𝜌−𝑒
𝑒
⩽ 𝑉(𝑤) ⩽

∑
𝑒∣𝑃(𝑤)

𝜌+𝑒
𝑒
⩽ (1 + 𝜀′)𝑉(𝑤) (28)

Let 𝐹(𝑠) and 𝑓(𝑠) be the linear sieve functions (see, e.g. in [7, (12.1, 12.2)]) so that in particular

𝑓(4) = 𝑒𝛾(log 3)∕2 and, for 0 < 𝑠 ⩽ 3, 𝐹(𝑠) = 2𝑒𝛾∕𝑠. (29)

By the linear sieve theory (see, e.g. [7, (12.4, 12.5)] — note that [7, (12.4)] actually holds for 𝑠 > 0)
we have

∑
𝑑∣𝑃(𝑤.𝑧)

𝜆+
𝑑,𝑎

𝑑
⩽

(
𝐹

(
log𝐷𝑎
log 𝑧

)
+ 𝜀′
) ∏
𝑤⩽𝑝<𝑧

(
1 −
1

𝑝

)
,

∑
𝑑∣𝑃(𝑤.𝑧)

𝜆−
𝑑

𝑑
⩾

(
𝑓

(
log𝐷

log 𝑧

)
− 𝜀′
) ∏
𝑤⩽𝑝<𝑧

(
1 −
1

𝑝

)
,

∑
𝑑∣𝑃(𝑤.𝑧)

𝜆+
𝑑

𝑑
⩽

(
𝐹

(
log𝐷

log 𝑧

)
+ 𝜀′
) ∏
𝑤⩽𝑝<𝑧

(
1 −
1

𝑝

)
.

(30)

Recall that 𝑧 = 𝐷1∕4. Hence, once 𝛿 is small enough in terms of 𝜀′, the definition of𝑀(𝑧, 𝑦) and
the sieve bounds (28) and (30) imply that

𝑀(𝑧, 𝑦)

𝑉(𝑧)
=
1

𝑉(𝑧)

( ∑
𝑑∣𝑃(𝑤,𝑧)

𝜆−
𝑑

𝑑

∑
𝑒∣𝑃(𝑤)

𝜌+𝑒
𝑒
+
∑

𝑑∣𝑃(𝑤,𝑧)

𝜆+
𝑑

𝑑

( ∑
𝑒∣𝑃(𝑤)

𝜌−𝑒
𝑒
−
∑
𝑒∣𝑃(𝑤)

𝜌+𝑒
𝑒

)

−
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

)
1

𝑝

∑
𝑑∣𝑃(𝑤,𝑧)

𝜆+
𝑑,𝑎

𝑑

∑
𝑒∣𝑃(𝑤)

𝜌+𝑒
𝑒

)

⩾ (𝑓(4) − 𝜀′)(1 − 𝜀′) − 2𝜀′
𝑉(𝑤)

𝑉(𝑧)

∑
𝑑∣𝑃(𝑤,𝑧)

𝜆+
𝑑

𝑑

−
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

)
1

𝑝

(
𝐹

(
log𝐷𝑎
log 𝑧

)
+ 𝜀′
)
(1 + 𝜀′)

⩾ 𝑓(4) −
∑
𝑧<𝑝⩽𝑦

(
1 −
log 𝑝

log 𝑦

)
1

𝑝
𝐹

(
log𝐷∕𝑝

log 𝑧

)
− 100𝜀′.

Now we are in the situation of [7, Section 25.3 with 𝑠 = 4, 𝑢 = 10∕9, and 𝜂 = 1] but for complete-
ness we evaluate the lower bound also here.
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Plugging in the values from (29) and evaluating the sums over 𝑝 by the prime number theorem
and then substituting 𝑡 = 𝐷𝛼, we get

𝑀(𝑧, 𝑦)

𝑉(𝑧)
⩾
𝑒𝛾 log 3

2
− 2𝑒𝛾 ∫

𝑦

𝑧

(
1 −
log 𝑡

log 𝑦

)
1

𝑡

log𝐷1∕4

log(𝐷∕𝑡)

𝑑𝑡

log 𝑡
− 200𝜀′

=
𝑒𝛾 log 3

2
− 2𝑒𝛾 ∫

9∕10

1∕4

(
1 −
10𝛼

9

)
1

4(1 − 𝛼)

𝑑𝛼

𝛼
− 200𝜀′.

Evaluating the integral, we obtain

𝑀(𝑧, 𝑦)

𝑉(𝑧)
⩾
𝑒𝛾

2
log 3

(
1 −

1

log 3

(
log(27) −

10

9
log(15∕2)

))
− 200𝜀′.

By a numerical calculation and (32) below we see that indeed 𝑀(𝑧, 𝑦) ≫ 1∕ log𝑋 once 𝜀′ is
small enough.

4 AUXILIARY RESULTS

Before turning to proving (27) we collect here some known auxiliary results. We will use some
standard estimates for multiplicative functions. Note first that, for any divisor-bounded (i.e. a
function bounded by 𝑑(𝑛)𝐶 for some 𝐶) multiplicative function 𝑓∶ ℕ → ℂ, we have

∑
𝑛⩽𝑋

|𝑓(𝑛)|
𝑛

≪
∏
𝑝⩽𝑋

(
1 +
|𝑓(𝑝)|
𝑝

)
. (31)

Furthermore, for 𝑘 ∈ ℝ and 𝑧 ⩾ 𝑤 ⩾ 2,

∏
𝑤<𝑝⩽𝑧

(
1 +
𝑘

𝑝

)
≍𝑘

(
log 𝑧

log𝑤

)𝑘
. (32)

The following consequence of Shiu’s [19] bound allows us to estimate divisor sums.

Lemma 4.1. Let𝑚 ⩾ 1 and let 𝑋 ⩾ 𝑧 ⩾ 2. Then

∑
𝑛⩽𝑋

𝜏(𝑛)𝑚𝟏(𝑛,𝑃(𝑧))=1 ≪𝑚
𝑋

log𝑋
⋅
(
log𝑋

log 𝑧

)2𝑚
.

Proof. By Shiu’s bound [19, Theorem 1]

∑
𝑛⩽𝑋

𝜏(𝑛)𝑚𝟏(𝑛,𝑃(𝑧))=1 ≪𝑚 𝑋
∏
𝑝⩽𝑋

(
1 +
2𝑚𝟏𝑝>𝑧 − 1

𝑝

)
and the claim follows immediately from (32). □
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Next we record Vaughan’s identity in a form that is convenient for us.

Lemma 4.2. Let 𝑋 ⩾ 2. There exists 𝑘 ≪ (log𝑋)2 such that, for each 𝑋 < 𝑛 ⩽ 2𝑋, one has

Λ(𝑛) =

𝑘∑
𝑗=1

∑
𝑛=𝑢𝑣

𝑎𝑗(𝑢)𝑏𝑗(𝑣),

where 𝑎𝑗(𝑢) and 𝑏𝑗(𝑣) are real coefficients such that

(i) for each 𝑗 = 1,… , 𝑘 and every 𝑛, one has |𝑎𝑗(𝑛)|, |𝑏𝑗(𝑛)| ⩽ 1 + log 𝑛;
(ii) for each 𝑗 = 1,… , 𝑘, there exist 𝑈𝑗 ∈ (1∕2, 𝑋1∕2] and 𝑉𝑗 ∈ [𝑋1∕2∕2, 2𝑋] such that 𝑎𝑗(𝑢) are

supported on 𝑢 ∈ (𝑈𝑗, 2𝑈𝑗] and 𝑏𝑗(𝑣) are supported on 𝑣 ∈ (𝑉𝑗, 2𝑉𝑗]. Moreover 𝑈𝑗𝑉𝑗 ∈
(𝑋∕4, 2𝑋];

(iii) for each 𝑗 with 𝑉𝑗 ⩾ 4𝑋2∕3 one has 𝑏𝑗(𝑣) = 𝜎(𝑣∕𝑉𝑗) log 𝑣 or 𝑏𝑗(𝑣) = 𝜎(𝑣∕𝑉𝑗) where 𝜎(𝑥) is as
in (17).

Proof. By [13, Proposition 13.4] with 𝑦 = 𝑧 = 𝑋1∕3, we have, for 𝑛 ∈ (𝑋, 2𝑋],

Λ(𝑛) =
∑
𝑛=𝑎𝑏
𝑏⩽𝑋1∕3

𝜇(𝑏) log 𝑎 −
∑
𝑛=𝑎𝑏𝑐
𝑏,𝑐⩽𝑋1∕3

𝜇(𝑏)Λ(𝑐) +
∑
𝑛=𝑎𝑏𝑐
𝑏,𝑐>𝑋1∕3

𝜇(𝑏)Λ(𝑐) =∶ 𝑆1(𝑛) − 𝑆2(𝑛) + 𝑆3(𝑛), (33)

say. Let us show that 𝑆2(𝑛) can bewritten as a sumof𝑂((log𝑋)2) sums of the form
∑
𝑛=𝑢𝑣 𝑎(𝑢)𝑏(𝑣)

with 𝑎(𝑢), 𝑏(𝑣), 𝑈, and𝑉 as 𝑎𝑗(𝑢), 𝑏𝑗(𝑣), 𝑈𝑗 , and𝑉𝑗 above. One can deal with 𝑆1(𝑛) and 𝑆3(𝑛) sim-
ilarly.
Consider 𝑛 ∈ (𝑋, 2𝑋]. In 𝑆2(𝑛)we write 𝑏𝑐 = 𝑘 and note that 𝑘 ∈ [1, 𝑋2∕3] and 𝑎 ∈ [𝑋1∕3, 2𝑋].

We split the variable 𝑘 into dyadic ranges and make a smooth dyadic partition of the variable 𝑎
recalling (18). We obtain, for 𝑋 < 𝑛 ⩽ 2𝑋,

𝑆2(𝑛) =
∑
𝑖,𝑗

𝑋1∕3∕2⩽
√
2
𝑖
⩽2𝑋

1
2
⩽2𝑗⩽𝑋2∕3

∑
𝑛=𝑎𝑘

𝜎
⎛⎜⎜⎝ 𝑎√2𝑖
⎞⎟⎟⎠
⎛⎜⎜⎜⎝𝟏𝑘∼2𝑗

∑
𝑘=𝑏𝑐
𝑏,𝑐⩽𝑋1∕3

𝜇(𝑏)Λ(𝑐)

⎞⎟⎟⎟⎠.

The first sum runs over 𝑂((log𝑋)2) pairs (𝑖, 𝑗). For each such pair, the sum over 𝑛 = 𝑎𝑘 is of the
desired shape, with 𝑈 = min{2𝑗,

√
2
𝑖
} and 𝑉 = max{2𝑗,

√
2
𝑖
}. In particular the requirement (i)

holds since
∑
𝑐∣𝑘 Λ(𝑐) = log 𝑘. □

The following lemma gives two convenient consequences of the Poisson summation formula.

Lemma 4.3. Let 𝑓∶ ℝ → ℝ be such that 𝑓 and 𝑓 are in 𝐿1(ℝ) and have bounded variation.

(i) For any 𝑢 ∈ ℝ and 𝑣 ∈ ℝ+, one has

∑
𝑛∈ℤ

𝑓(𝑣𝑛 + 𝑢) =
1

𝑣

∑
ℎ∈ℤ

𝑓

(
ℎ

𝑣

)
𝑒

(
𝑢ℎ

𝑣

)
.
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(ii) For any 𝑎, 𝑞 ∈ ℕ and 𝑌 > 0, one has

∑
𝑛∈ℤ

𝑛≡𝑎 (mod 𝑞)

𝑓
(
𝑛

𝑌

)
=
𝑌

𝑞

∑
ℎ∈ℤ

𝑓

(
𝑌

𝑞
ℎ

)
𝑒

(
𝑎ℎ

𝑞

)
.

Proof. Part (i) is [13, Formula (4.24)]. Part (ii) follows from part (i) after writing∑
𝑛∈ℤ

𝑛≡𝑎 (mod 𝑞)

𝑓
(
𝑛

𝑌

)
=
∑
𝑚∈ℤ

𝑓
( 𝑞
𝑌
𝑚 +

𝑎

𝑌

)
.

□

Let us finally record two lemmas that we use to bound averages of Kloosterman fractions. The
first one is [5, Lemma 1] with 𝜚 = 1.

Lemma 4.4. Let 𝐶,𝐷,𝑈,𝑉 ⩾ 1 and |𝑐(𝑢, 𝑣)| ⩽ 1. Then, for any 𝜀 > 0,
∑
1⩽𝑐⩽𝐶

∑
1⩽𝑑⩽𝐷
(𝑐,𝑑)=1

||||||||
∑
1⩽𝑢⩽𝑈

∑
1⩽𝑣⩽𝑉
(𝑣,𝑐)=1

𝑐(𝑢, 𝑣)𝑒

(
𝑢
𝑣𝑑

𝑐

)||||||||
≪ (𝐶𝐷𝑈𝑉)1∕2+𝜀

(
(𝐶𝐷)1∕2 + (𝑈 + 𝑉)1∕4

(
𝐶𝐷(𝑈 + 𝑉)(𝐶 + 𝑉2) + 𝑈𝑉2𝐷2

)1∕4)
.

The second one is an immediate consequence of [4, Theorem 12].

Lemma 4.5. Let 𝐶,𝐷,𝑁, 𝑅, 𝑆 ⩾ 1∕2 and let 𝑏𝑛,𝑟,𝑠 be bounded complex coefficients. Let g ∶ ℝ2 → ℝ
be a smooth compactly supported function such that

.

|||||| 𝜕
𝜈1+𝜈2

𝜕𝑥
𝜈1
1
𝜕𝑥
𝜈2
2

g(𝑥1, 𝑥2)
||||||≪𝜈1,𝜈2 1 for every 𝜈1, 𝜈2 ⩾ 0. (34)

Then, for any 𝜀 > 0,

∑
𝑅<𝑟⩽2𝑅
𝑆<𝑠⩽2𝑆
(𝑟,𝑠)=1

∑
0<𝑛⩽𝑁

𝑏𝑛,𝑟,𝑠
∑
𝑐,𝑑

(𝑟𝑑,𝑠𝑐)=1

g
(
𝑐

𝐶
,
𝑑

𝐷

)
𝑒

(
𝑛
𝑟𝑑

𝑠𝑐

)

≪ (𝐶𝐷)𝜀(𝑁𝑅𝑆)1∕2+𝜀
(
𝐶𝑆(𝑅𝑆 + 𝑁)(𝐶 + 𝐷𝑅) + 𝐶2𝐷𝑆

√
(𝑅𝑆 + 𝑁)𝑅 + 𝐷2𝑁𝑅∕𝑆

)1∕2
.

5 TYPE I SUMS IN ALMOST ALL SHORT INTERVALS

We shall use the following general result as a starting point for showing (27).
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Proposition 5.1. Let 𝑋 ⩾ 𝐻 ⩾ 2. Let g ∶ ℝ → [0, 1] be a smooth function that is compactly sup-
ported on [1∕4, 2] and satisfies (1). For 𝑑 ∈ ℕ, define

𝛾𝑑,𝐻 ∶=
∑
𝑚⩾1
(𝑚,𝑑)=1

(
𝑑

𝜋𝑚
sin
(
𝜋𝑚𝐻

𝑑

))2
.

Let 𝑎𝑑 ∈ ℝ be bounded for all 𝑑. Let 2 ⩽ 𝐷0 ⩽ 𝑋1−𝛿 for some fixed 𝛿 ∈ (0, 1). Then

∫
∞

−∞
g
(
𝑥

𝑋

)⎛⎜⎜⎜⎝
∑

𝑑⩽𝐷0,𝑚∈ℕ
𝑥−𝐻<𝑑𝑚⩽𝑥

𝑎𝑑 − 𝐻
∑
𝑑⩽𝐷0

𝑎𝑑
𝑑

⎞⎟⎟⎟⎠
2

𝑑𝑥 = 𝑆1 + 𝑆2 + 𝑆3 + 𝑂(𝐻
3(log𝑋)3),

where

𝑆1 ∶= 2ĝ(0)𝑋
∑
𝑑⩽𝐷0

𝛾𝑑,𝐻

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷0

𝑚≡0 (mod 𝑑)

𝑎𝑚
𝑚

⎞⎟⎟⎟⎠
2

,

𝑆2 ∶=
∑

0<|𝑘|⩽𝐻(𝐻 − |𝑘|)
∑

𝑑1,𝑑2⩽𝐷0
(𝑑1,𝑑2)∣𝑘

𝑎𝑑1𝑎𝑑2

⎛⎜⎜⎜⎝
∑
𝑚1,𝑚2

𝑑1𝑚1=𝑑2𝑚2+𝑘

g
(
𝑑1𝑚1
𝑋

)
−

ĝ(0)𝑋
[𝑑1, 𝑑2]

⎞⎟⎟⎟⎠,

𝑆3 ∶= 𝐻
∑
𝑛

g
(
𝑛

𝑋

)(∑
𝑑∣𝑛

𝑎𝑑

)2
− ĝ(0)𝐻𝑋 1

𝑋10

∑
𝑛⩽𝑋10

(∑
𝑑∣𝑛

𝑎𝑑

)2
.

Remark 5.2. This can be compared with [7, Proposition 6.25] which is non-trivial for 𝐷0 <
𝑋1∕2(log𝑋)−𝐶 . For our choices of 𝑎𝑑 we will be able to estimate 𝑆𝑗 successfully for a wider range
of 𝐷0.

Proof of Proposition 5.1. We start by squaring out, obtaining

𝑆 ∶= ∫
∞

−∞
g
(
𝑥

𝑋

)⎛⎜⎜⎜⎝
∑

𝑑⩽𝐷0,𝑚∈ℕ
𝑥−𝐻<𝑑𝑚⩽𝑥

𝑎𝑑 − 𝐻
∑
𝑑⩽𝐷0

𝑎𝑑
𝑑

⎞⎟⎟⎟⎠
2

𝑑𝑥

= ∫
∞

−∞
g
(
𝑥

𝑋

)⎛⎜⎜⎜⎝
∑

𝑑⩽𝐷0,𝑚∈ℕ
𝑥−𝐻<𝑑𝑚⩽𝑥

𝑎𝑑

⎞⎟⎟⎟⎠
2

𝑑𝑥 − 2𝐻
∑
𝑑1⩽𝐷0

𝑎𝑑1
𝑑1 ∫

∞

−∞
g
(
𝑥

𝑋

)⎛⎜⎜⎜⎝
∑

𝑑2⩽𝐷0,𝑚∈ℕ
𝑥−𝐻<𝑑2𝑚⩽𝑥

𝑎𝑑2

⎞⎟⎟⎟⎠𝑑𝑥

+ 𝐻2 ∫
∞

−∞
g
(
𝑥

𝑋

)
𝑑𝑥

(∑
𝑑⩽𝐷0

𝑎𝑑
𝑑

)2
.

(35)
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Here

∫
∞

−∞
g
(
𝑥

𝑋

)⎛⎜⎜⎜⎝
∑

𝑑2⩽𝐷0,𝑚∈ℕ
𝑥−𝐻<𝑑2𝑚⩽𝑥

𝑎𝑑2

⎞⎟⎟⎟⎠𝑑𝑥 =
∑
𝑑2⩽𝐷0

𝑎𝑑2

∑
𝑚

∫
𝑑2𝑚+𝐻

𝑑2𝑚
g
(
𝑥

𝑋

)
𝑑𝑥

=
∑
𝑑2⩽𝐷0

𝑎𝑑2 ∫
𝐻

0

∑
𝑚

g
(
𝑑2𝑚 + 𝑡

𝑋

)
𝑑𝑡.

(36)

Applying the Poisson summation (Lemma 4.3(i)) and (2) we get, for every 𝑑2 ⩽ 𝐷0 ⩽ 𝑋1−𝛿,

∑
𝑚

g
(
𝑑2𝑚 + 𝑡

𝑋

)
=
𝑋

𝑑2

∑
ℎ∈ℤ

ĝ
(
ℎ𝑋

𝑑2

)
𝑒

(
𝑡ℎ

𝑑2

)
=
𝑋

𝑑2
ĝ(0) + 𝑂

⎛⎜⎜⎜⎝
𝑋

𝑑2

∑
ℎ∈ℤ
ℎ≠0

(
𝑑2
ℎ𝑋

) 10
𝛿

⎞⎟⎟⎟⎠
=
𝑋

𝑑2
ĝ(0) + 𝑂(𝑋−9).

Using this in (36) we see that

∫
∞

−∞
g
(
𝑥

𝑋

)⎛⎜⎜⎜⎝
∑

𝑑2⩽𝐷0,𝑚∈ℕ
𝑥−𝐻<𝑑2𝑚⩽𝑥

𝑎𝑑2

⎞⎟⎟⎟⎠𝑑𝑥 = 𝐻𝑋ĝ(0)
∑
𝑑2⩽𝐷0

𝑎𝑑2
𝑑2
+ 𝑂(𝐻𝐷0𝑋

−9).

Substituting this into (35), we obtain

𝑆 = ∫
∞

−∞
g
(
𝑥

𝑋

)⎛⎜⎜⎜⎝
∑

𝑑⩽𝐷0,𝑚∈ℕ
𝑥−𝐻<𝑑𝑚⩽𝑥

𝑎𝑑

⎞⎟⎟⎟⎠
2

𝑑𝑥 − 𝐻2𝑋ĝ(0)

(∑
𝑑⩽𝐷0

𝑎𝑑
𝑑

)2
+ 𝑂

(
𝐻2𝐷0 log𝑋

𝑋9

)
.

Squaring out, the first term equals

∑
𝑑1,𝑑2⩽𝐷0
𝑚1,𝑚2|𝑑1𝑚1−𝑑2𝑚2|⩽𝐻

𝑎𝑑1𝑎𝑑2 ∫
∞

−∞
g
(
𝑥

𝑋

)
𝟏𝑥−𝐻<𝑑1𝑚1,𝑑2𝑚2⩽𝑥𝑑𝑥

=
∑
|𝑘|⩽𝐻

∑
𝑑1,𝑑2⩽𝐷0
𝑚1,𝑚2

𝑑1𝑚1=𝑑2𝑚2+𝑘

𝑎𝑑1𝑎𝑑2 ⋅ (𝐻 − |𝑘|)(g(𝑑1𝑚1𝑋
)
+ 𝑂
(
𝐻

𝑋

))

=
∑
|𝑘|⩽𝐻(𝐻 − |𝑘|)

∑
𝑑1,𝑑2⩽𝐷0
(𝑑1,𝑑2)∣𝑘

𝑎𝑑1𝑎𝑑2

∑
𝑚1,𝑚2

𝑑1𝑚1=𝑑2𝑚2+𝑘

g
(
𝑑1𝑚1
𝑋

)
+ 𝑂
⎛⎜⎜⎝𝐻
2

𝑋

∑
|𝑘|⩽𝐻

∑
𝑋∕4⩽𝑛⩽2𝑋

𝜏(𝑛)𝜏(𝑛 + 𝑘)
⎞⎟⎟⎠.
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The error term here is by the inequality |𝑥𝑦| ⩽ 𝑥2 + 𝑦2 and the Shiu bound (Lemma 4.1)
≪
𝐻2

𝑋

∑
|𝑘|⩽𝐻

∑
𝑋∕4⩽𝑛⩽2𝑋

(𝜏(𝑛)2 + 𝜏(𝑛 + 𝑘)2) ≪
𝐻3

𝑋

∑
𝑋∕5⩽𝑛⩽3𝑋

𝜏(𝑛)2 ≪ 𝐻3(log𝑋)3.

Consequently, subtracting and adding the expected main term,

𝑆 =
∑
|𝑘|⩽𝐻(𝐻 − |𝑘|)

∑
𝑑1,𝑑2⩽𝐷0
(𝑑1,𝑑2)∣𝑘

𝑎𝑑1𝑎𝑑2

⎛⎜⎜⎜⎝
∑
𝑚1,𝑚2

𝑑1𝑚1=𝑑2𝑚2+𝑘

g
(
𝑑1𝑚1
𝑋

)
−

ĝ(0)𝑋
[𝑑1, 𝑑2]

⎞⎟⎟⎟⎠
+ ĝ(0)𝑋

∑
|𝑘|⩽𝐻(𝐻 − |𝑘|)

∑
𝑑1,𝑑2⩽𝐷0
(𝑑1,𝑑2)∣𝑘

𝑎𝑑1𝑎𝑑2
[𝑑1, 𝑑2]

− 𝐻2𝑋ĝ(0)

(∑
𝑑⩽𝐷0

𝑎𝑑
𝑑

)2
+ 𝑂(𝐻3(log𝑋)3).

(37)

The 𝑘 ≠ 0 summands of the first line contribute 𝑆2 whereas the 𝑘 = 0 summand equals

𝐻
∑

𝑑1,𝑑2⩽𝐷0

𝑎𝑑1𝑎𝑑2

⎛⎜⎜⎜⎝
∑
𝑚1,𝑚2

𝑑1𝑚1=𝑑2𝑚2

g
(
𝑑1𝑚1
𝑋

)
−

ĝ(0)𝑋
[𝑑1, 𝑑2]

⎞⎟⎟⎟⎠
= 𝐻
∑
𝑛

g
(
𝑛

𝑋

)(∑
𝑑∣𝑛

𝑎𝑑

)2
− ĝ(0)𝐻𝑋

∑
𝑑1,𝑑2⩽𝐷0

𝑎𝑑1𝑎𝑑2
1

𝑋10

∑
𝑛⩽𝑋10

[𝑑1,𝑑2]∣𝑛

1 + 𝑂(1)

= 𝑆3 + 𝑂(1).

Hence it suffices to show that the main term on the second line of (37) contributes 𝑆1, that is,

ĝ(0)𝑋
∑

𝑑1,𝑑2⩽𝐷0

𝑎𝑑1𝑎𝑑2
𝑑1𝑑2

⎛⎜⎜⎜⎝(𝑑1, 𝑑2)
∑
|𝑘|⩽𝐻
(𝑑1,𝑑2)∣𝑘

(𝐻 − |𝑘|) − 𝐻2⎞⎟⎟⎟⎠ = 𝑆1. (38)

Here ∑
|𝑘|⩽𝐻
(𝑑1,𝑑2)∣𝑘

(𝐻 − |𝑘|) = 𝐻 + 2 ∑
1⩽𝑟⩽⌊𝐻∕(𝑑1,𝑑2)⌋(𝐻 − 𝑟(𝑑1, 𝑑2))

= 𝐻 + 2

⌊
𝐻

(𝑑1, 𝑑2)

⌋ 𝐻 − (𝑑1, 𝑑2) + 𝐻 − ⌊ 𝐻

(𝑑1,𝑑2)

⌋
(𝑑1, 𝑑2)

2

= 𝐻 +

⌊
𝐻

(𝑑1, 𝑑2)

⌋(
2𝐻 − (𝑑1, 𝑑2) −

⌊
𝐻

(𝑑1, 𝑑2)

⌋
(𝑑1, 𝑑2)

)
.
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Writing 𝜃𝑑1,𝑑2 ∶=
𝐻

(𝑑1,𝑑2)
− ⌊ 𝐻

(𝑑1,𝑑2)
⌋, this equals

𝐻 +

(
𝐻

(𝑑1, 𝑑2)
− 𝜃𝑑1,𝑑2

)
(𝐻 − (𝑑1, 𝑑2) + 𝜃𝑑1,𝑑2(𝑑1, 𝑑2)) =

𝐻2

(𝑑1, 𝑑2)
+ (𝑑1, 𝑑2)𝜃𝑑1,𝑑2(1 − 𝜃𝑑1,𝑑2),

so (38) reduces to the claim

ĝ(0)𝑋
∑

𝑑1,𝑑2⩽𝐷0

𝑎𝑑1𝑎𝑑2
𝑑1𝑑2

(𝑑1, 𝑑2)
2𝜃𝑑1,𝑑2(1 − 𝜃𝑑1,𝑑2) = 𝑆1. (39)

Writing 𝜓(𝑥) for the one-periodic function which is 𝑥(1 − 𝑥) for 𝑥 ∈ [0, 1] we see that 𝜃𝑑1,𝑑2(1 −
𝜃𝑑1,𝑑2) = 𝜓(𝐻∕(𝑑1, 𝑑2)). It is easy to see that we have the Fourier expansion

𝜓(𝑥) =
1

6
−
1

2𝜋2

∑
𝑘≠0
1

𝑘2
𝑒(𝑘𝑥) =

1

6
−
1

𝜋2

∑
𝑘⩾1

cos(2𝜋𝑘𝑥)

𝑘2

=
1

6
−
1

𝜋2

∑
𝑘⩾1

1 − 2 sin(𝜋𝑘𝑥)2

𝑘2
=
2

𝜋2

∑
𝑘⩾1

sin(𝜋𝑘𝑥)2

𝑘2
.

Hence the left-hand side of (39) equals

2ĝ(0)𝑋
∑

𝑑1,𝑑2⩽𝐷0

𝑎𝑑1𝑎𝑑2
𝑑1𝑑2

∑
𝑘⩾1

(
(𝑑1, 𝑑2)

𝜋𝑘
sin

(
𝜋𝑘𝐻

(𝑑1, 𝑑2)

))2
.

Writing 𝑘 = 𝑒𝑚 with 𝑒 = (𝑘, (𝑑1, 𝑑2)), this equals

2ĝ(0)𝑋
∑

𝑑1,𝑑2⩽𝐷0

𝑎𝑑1𝑎𝑑2
𝑑1𝑑2

∑
𝑒⩾1

𝑒∣(𝑑1,𝑑2)

∑
𝑚⩾1

(𝑚,(𝑑1,𝑑2)∕𝑒)=1

(
(𝑑1, 𝑑2)

𝜋𝑒𝑚
sin

(
𝜋𝑒𝑚𝐻

(𝑑1, 𝑑2)

))2
.

Substituting 𝑑 = (𝑑1, 𝑑2)∕𝑒, this is

2ĝ(0)𝑋
∑

𝑑1,𝑑2⩽𝐷0

𝑎𝑑1𝑎𝑑2
𝑑1𝑑2

∑
𝑑⩾1

𝑑∣(𝑑1,𝑑2)

∑
𝑚⩾1
(𝑚,𝑑)=1

(
𝑑

𝜋𝑚
sin
(
𝜋𝑚𝐻

𝑑

))2

= 2ĝ(0)𝑋
∑
𝑑⩽𝐷0

𝛾𝑑,𝐻
∑

𝑑1,𝑑2⩽𝐷0
𝑑∣(𝑑1,𝑑2)

𝑎𝑑1𝑎𝑑2
𝑑1𝑑2

= 𝑆1,

and (39) follows. □

In order to estimate 𝑆2 we shall use Lemmas 4.4 and 4.5 that are consequences of the work
of Deshouillers and Iwaniec [4] on averages of Kloosterman sums. The following two lemmas
and their proofs have very much in common with [2, Theorems 5 and 7] and [3, 5]. Note that [2,
Theorem 5] was used in a similar context in [15], whereas results from [3, 5] have been used in
studying almost all intervals of length 𝑋𝜃 (see, e.g. [14]).
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It will suffice to study 𝑆2 with 𝑎𝑑 replaced by a type II sequence (i.e. 𝑎𝑑 =
∑
𝑑=𝑚𝑛 𝛼𝑚𝛽𝑛 for

some complex coefficients 𝛼𝑚, 𝛽𝑛 supported on certain ranges) and with 𝑎𝑑 replaced by a type I
sequence (i.e. 𝑎𝑑 =

∑
𝑑=𝑚𝑛 𝛼𝑚 with 𝛼𝑚 supported on small and medium sized𝑚).

In type II case we shall use the following lemma.

Lemma 5.3. Let 2 ⩽ 𝐻 ⩽ 𝑋1∕60, and let g be a smooth compactly supported function satisfying (1).
Let 𝛼𝑚, 𝛽𝑛 and 𝛾𝑞 be bounded complex coefficients and𝑀,𝑁,𝑄 ⩾ 1. Assume that

𝑁 ⩽ 𝑀 ≪ 𝑋21∕50 and max{𝑀𝑁,𝑄} ≪ 𝑋14∕25. (40)

Then

∑
0<|𝑘|⩽𝐻

|||||||||
∑
𝑚∼𝑀
𝑛∼𝑁

𝛼𝑚𝛽𝑛
∑
𝑞∼𝑄
(𝑚𝑛,𝑞)∣𝑘

𝛾𝑞

⎛⎜⎜⎜⎝
∑
𝓁

𝓁𝑚𝑛=𝑘 (mod 𝑞)

g
(
𝓁𝑚𝑛
𝑋

)
−

ĝ(0)𝑋
[𝑚𝑛, 𝑞]

⎞⎟⎟⎟⎠
|||||||||
≪ 𝑋1−1∕900. (41)

This will readily follow from the following bound.

Lemma 5.4. Let 𝜀 > 0, let 𝑋 ⩾ 𝐻 ⩾ 2, and let g be a smooth compactly supported function satisfy-
ing (1). Let 𝛼𝑚, 𝛽𝑛 and 𝛾𝑞 be bounded complex coefficients and𝑀,𝑁,𝑄 ⩾ 1. Then

∑
0<|𝑘|⩽𝐻

|||||||||
∑
𝑚∼𝑀
𝑛∼𝑁

𝛼𝑚𝛽𝑛
∑
𝑞∼𝑄
(𝑚𝑛,𝑞)∣𝑘

𝛾𝑞

⎛⎜⎜⎜⎝
∑
𝓁

𝓁𝑚𝑛=𝑘 (mod 𝑞)

g
(
𝓁𝑚𝑛
𝑋

)
−

ĝ(0)𝑋
[𝑚𝑛, 𝑞]

⎞⎟⎟⎟⎠
|||||||||

≪ 𝐻1∕2𝑋1∕2+𝜀∕10

[
(𝑀𝑄)2 +

(
𝐻𝑀𝑁𝑄

𝑋
+𝑁

)
⋅
[
𝑀𝑄

(
𝐻𝑀𝑁𝑄

𝑋
+𝑁

)
(𝑄 + 𝑁2) +

𝐻(𝑀𝑁)3𝑄

𝑋

]]1∕4
.

(42)

Proof of Lemma 5.3 assuming Lemma 5.4. Writing 𝑊 = max{𝑀𝑁,𝑄} and noticing that 𝑁2 ⩽
𝑀𝑁 ⩽ 𝑊, we see that(

𝐻𝑀𝑁𝑄

𝑋
+𝑁

)[
𝑀𝑄

(
𝐻𝑀𝑁𝑄

𝑋
+𝑁

)
(𝑄 + 𝑁2) +

𝐻(𝑀𝑁)3𝑄

𝑋

]

≪

(
𝐻𝑊2

𝑋
+ 𝑁

)[(
𝐻𝑊2

𝑋
+ 𝑁

)
𝑀𝑊2 +

𝐻𝑊4

𝑋

]
≪

(
𝐻𝑊2

𝑋
+ 𝑁

)2
𝑀𝑊2

≪
𝐻2𝑀𝑊6

𝑋2
+ 𝑁𝑊3 ≪ 𝐻2𝑋89∕50 +𝑊7∕2 ≪ 𝐻2𝑋89∕50 + 𝑋49∕25.

Hence Lemma 5.4 implies that the left-hand side of (41) is

≪ 𝐻1∕2𝑋1∕2+1∕10000(𝑋49∕100 + 𝐻1∕2𝑋89∕200)

and the claim follows since𝐻 ⩽ 𝑋1∕60. □
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Proof of Lemma 5.4. Writing 𝛿 = (𝑚𝑛, 𝑞), the left-hand side of (42) is at most

∑
0<𝛿⩽𝐻

∑
0<|𝑘|⩽𝐻∕𝛿

|||||||||||
∑
𝑚∼𝑀
𝑛∼𝑁
𝛿∣𝑚𝑛

𝛼𝑚𝛽𝑛
∑
𝑐∼𝑄∕𝛿

(𝑐,𝑚𝑛∕𝛿)=1

𝛾𝛿𝑐

⎛⎜⎜⎜⎜⎝
∑
𝓁

𝓁𝑚𝑛
𝛿
≡𝑘 (mod 𝑐)

g
(
𝓁𝑚𝑛
𝑋

)
−

ĝ(0)𝑋
𝑐𝑚𝑛

⎞⎟⎟⎟⎟⎠

|||||||||||
.

The summation condition can be rewritten as 𝓁 ≡ 𝑘𝑚𝑛
𝛿
(mod 𝑐). Thus, by Poisson summation

(Lemma 4.3(ii)), this equals

∑
0<𝛿⩽𝐻

∑
0<|𝑘|⩽𝐻∕𝛿

|||||||||||
∑
𝑚∼𝑀
𝑛∼𝑁
𝛿∣𝑚𝑛

𝛼𝑚𝛽𝑛
∑
𝑐∼𝑄∕𝛿

(𝑐,𝑚𝑛∕𝛿)=1

𝛾𝛿𝑐
𝑋

𝑐𝑚𝑛

∑
𝓁∈ℤ
𝓁≠0

ĝ
(

𝓁𝑋
𝑐𝑚𝑛

)
𝑒

(
𝑘𝓁𝑚𝑛∕𝛿
𝑐

)|||||||||||
. (43)

By (2) the contribution of |𝓁| > 𝑀𝑁𝑄

𝛿𝑋1−𝜀∕20
is

≪ 𝐻𝑋(log𝑋)4
∑

|𝓁|> 𝑀𝑁𝑄

𝛿𝑋1−𝜀∕20

(
𝑀𝑁𝑄

𝛿𝑋𝓁

)200∕𝜀
≪ 𝑋−5.

We write in (43) 𝜇 = (𝑚, 𝛿) and 𝜈 = 𝛿∕𝜇 so that 𝑚 = 𝜇𝑑 for some 𝑑 ∈ ℕ with (𝑑, 𝜈) = 1. Since
𝛿 ∣ 𝑚𝑛, wemust have 𝜈 ∣ 𝑛 and thuswe canwrite 𝑛 = 𝜈𝑣 for some 𝑣 ∈ ℕ. Then𝑚𝑛∕𝛿 = 𝑑𝑣 so that
(𝑑𝑣, 𝑐) = 1. With this notation the part of (43) with 0 < |𝓁| ⩽ 𝑀𝑁𝑄

𝛿𝑋1−𝜀∕20
equals, for certain bounded

coefficients 𝑐𝑘,𝛿,

𝐸𝐼𝐼 ∶= 𝑋
∑
0<𝛿⩽𝐻

∑
0<|𝑘|⩽𝐻∕𝛿 𝑐𝑘,𝛿

∑
𝛿=𝜇𝜈

∑
𝑐∼𝑄∕𝛿

𝛾𝛿𝑐
𝑐

∑
𝑑∼𝑀∕𝜇
(𝑑,𝑐𝜈)=1

𝛼𝜇𝑑

𝜇𝑑

∑
𝑣∼𝑁∕𝜈
(𝑣,𝑐)=1

𝛽𝜈𝑣
𝜈𝑣

⋅
∑

0<|𝓁|⩽ 𝑀𝑁𝑄

𝛿𝑋1−𝜀∕20

ĝ
(

𝓁𝑋
𝛿𝑐𝑑𝑣

)
𝑒

(
𝑘𝓁𝑑𝑣
𝑐

)
.

(44)

We write 𝑢 = 𝑘𝓁, and, in order to separate the variables 𝑢 and 𝑣 from the remaining ones,

ĝ
(

𝓁𝑋
𝛿𝑐𝑑𝑣

)
= ∫

∞

−∞
g(𝜉)𝑒
(
−

𝓁𝑋
𝛿𝑐𝑑𝑣

𝜉

)
𝑑𝜉 =

𝛿𝑐𝑑

𝑋 ∫
∞

−∞
g
(
𝜉
𝛿𝑐𝑑

𝑋

)
𝑒

(
−
𝓁
𝑣
𝜉

)
𝑑𝜉.

Hence

𝐸𝐼𝐼 ≪
𝑋1+𝜀∕60

𝑀𝑁𝑄

∑
𝜇,𝜈

0<𝜇𝜈⩽𝐻

𝜇𝜈 max
𝜉≍
𝑋𝜇

𝑀𝑄

∑
𝑐∼ 𝑄
𝜇𝜈

∑
𝑑∼𝑀∕𝜇
(𝑑,𝑐)=1

|||||||||
∑

0<|𝑢|⩽ 𝐻𝑀𝑁𝑄

𝜇2𝜈2𝑋1−𝜀∕20

∑
𝑣∼𝑁∕𝜈
(𝑣,𝑐)=1

𝛼𝜉,𝜇,𝜈(𝑢, 𝑣)𝑒

(
𝑢𝑑𝑣

𝑐

)|||||||||
,
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where

𝛼𝜉,𝜇,𝜈(𝑢, 𝑣) ∶= 𝑁
𝛽𝜈𝑣
𝜈𝑣

1

𝑋𝜀∕60

∑
𝑢=𝑘𝓁
0<|𝑘|⩽ 𝐻

𝜇𝜈

0<|𝓁|⩽ 𝑀𝑁𝑄

𝜇𝜈𝑋1−𝜀∕20

𝑐𝑘,𝜇𝜈𝑒

(
−
𝓁
𝑣
𝜉

)
≪ 1.

Now, for each 𝜇 and 𝜈, we apply Lemma 4.4 with

𝐶 =
2𝑄

𝜇𝜈
, 𝐷 =

2𝑀

𝜇
, 𝑉 =

2𝑁

𝜈
, and 𝑈 =

𝐻𝑀𝑁𝑄

𝜇2𝜈2𝑋1−𝜀∕20
.

Notice that in this notationwe have𝐶𝐷𝑈𝑉 = 8𝐻(𝑀𝑁𝑄)2∕(𝜇4𝜈4𝑋1−𝜀∕20). Hence, by Lemma 4.4,

𝐸𝐼𝐼 ≪ 𝐻
1∕2𝑋1∕2+𝜀∕20

∑
𝜇,𝜈

0<𝜇𝜈⩽𝐻

1

𝜇𝜈

[(
𝑀𝑄

𝜇2𝜈

)1∕2
+

(
𝐻𝑀𝑁𝑄

𝜇2𝜈2𝑋1−𝜀∕20
+
𝑁

𝜈

)1∕4

⋅

[
𝑀𝑄

𝜇2𝜈

(
𝐻𝑀𝑁𝑄

𝜇2𝜈2𝑋1−𝜀∕20
+
𝑁

𝜈

)(
𝑄

𝜇𝜈
+
(
𝑁

𝜈

)2)
+

𝐻𝑀𝑁𝑄

𝜇2𝜈2𝑋1−𝜀∕20

(
𝑀𝑁

𝜇𝜈

)2]1∕4]
.

The sums over 𝛿 and 𝜇 clearly contribute 𝑂(𝑋𝜀∕100). Hence the above is

≪ 𝐻1∕2𝑋1∕2+𝜀∕10

[
(𝑀𝑄)1∕2 +

(
𝐻𝑀𝑁𝑄

𝑋
+𝑁

)1∕4

⋅
[
𝑀𝑄

(
𝐻𝑀𝑁𝑄

𝑋
+𝑁

)
(𝑄 + 𝑁2) +

𝐻(𝑀𝑁)3𝑄

𝑋

]1∕4]
,

as claimed. □

In the type I case (i.e. when studying 𝑆2 from Proposition 5.1 with 𝑎𝑑 replaced by a type I
sequence 𝑎𝑑 =

∑
𝑑=𝑚𝑛 𝛼𝑚 with 𝛼𝑚 supported on small and medium sized 𝑚) we shall use the

following lemma.

Lemma5.5. Let 2 ⩽ 𝐻 ⩽ 𝑋1∕60, let𝛼𝑚 and 𝛾𝑟 be bounded complex coefficients, and let𝑀,𝑁,𝑄, 𝑅 ⩾
1∕2 be such that

max{𝑀𝑁,𝑄𝑅} ≪ 𝑋31∕50 and max{𝑀, 𝑅} ≪ 𝑋6∕25. (45)

Let g1, g2, g3 ∶ (0,∞) → ℝ be smooth compactly supported functions such that (1) holds for g = g𝑗
for each 𝑗 ∈ {1, 2, 3}. Then

∑
0<|𝑘|⩽𝐻

|||||
∑
𝑚∼𝑀
𝑛

𝛼𝑚g1
(
𝑛

𝑁

) ∑
𝑞
𝑟∼𝑅

(𝑞𝑟,𝑚𝑛)∣𝑘

𝛾𝑟g2

(
𝑞

𝑄

)( ∑
𝓁

𝓁𝑚𝑛=𝑘 (mod 𝑞𝑟)

g3

(
𝓁𝑚𝑛
𝑋

)
−

ĝ3(0)𝑋
[𝑚𝑛, 𝑞𝑟]

)|||||≪ 𝑋1−1∕900.
(46)

Again this follows from a more general result.



22 MATOMÄKI

Lemma 5.6. Let 𝜀 > 0, let 𝑋 ⩾ 𝐻 ⩾ 2, let 𝛼𝑚 and 𝛾𝑟 be bounded complex coefficients and let
𝑀,𝑁,𝑄, 𝑅 ⩾ 1∕2 be such that𝑄 ≪ 𝑀𝑁. Let g1, g2, g3 ∶ (0,∞) → ℝ be smooth compactly supported
functions such that (1) holds for g = g𝑗 for each 𝑗 ∈ {1, 2, 3}. Then

∑
0<|𝑘|⩽𝐻

|||||
∑
𝑚∼𝑀
𝑛

𝛼𝑚g1
(
𝑛

𝑁

) ∑
𝑞
𝑟∼𝑅

(𝑞𝑟,𝑚𝑛)∣𝑘

𝛾𝑟g2

(
𝑞

𝑄

)( ∑
𝓁

𝓁𝑚𝑛=𝑘 (mod 𝑞𝑟)

g3

(
𝓁𝑚𝑛
𝑋

)
−

ĝ3(0)𝑋
[𝑚𝑛, 𝑞𝑟]

)|||||
≪ 𝐻1∕2𝑋1∕2+𝜀

[
𝑅

(
𝑀𝑅 +

𝐻𝑀𝑁𝑄𝑅

𝑋

)
𝑀 +𝑄𝑅

√(
𝑀𝑅 +

𝐻𝑀𝑁𝑄𝑅

𝑋

)
𝑀 +

𝐻𝑀2𝑁2

𝑋

]1∕2
.

(47)

Proof of Lemma 5.5 assuming Lemma 5.6. We consider two cases.
Case 1 (𝑄 ⩽ 𝑀𝑁): We write𝑊 = max{𝑀𝑁,𝑄𝑅} and 𝑈 = max{𝑀, 𝑅}. Then

𝑅

(
𝑀𝑅 +

𝐻𝑀𝑁𝑄𝑅

𝑋

)
𝑀 +𝑄𝑅

√(
𝑀𝑅 +

𝐻𝑀𝑁𝑄𝑅

𝑋

)
𝑀 +

𝐻𝑀2𝑁2

𝑋

≪ 𝑈2
(
𝑈2 +

𝐻𝑊2

𝑋

)
+𝑊

√(
𝑈2 +

𝐻𝑊2

𝑋

)
𝑈 +

𝐻𝑊2

𝑋

≪ 𝑈4 + 𝐻
𝑈2𝑊2

𝑋
+ 𝑈3∕2𝑊 +𝐻1∕2

𝑈1∕2𝑊2

𝑋1∕2
≪ 𝑋49∕50 + 𝐻𝑋18∕25 + 𝐻1∕2𝑋43∕50.

Hence by Lemma 5.6 the left-hand side of (46) is

≪ 𝐻1∕2𝑋1∕2+1∕10000
(
𝑋49∕50 + 𝐻𝑋18∕25 + 𝐻1∕2𝑋43∕50

)1∕2
and the claim follows since𝐻 ⩽ 𝑋1∕60.
Case 2 (𝑄 > 𝑀𝑁): In this case we can interchange the roles of𝑀,𝑁 with those of 𝑅,𝑄 in the

claim (46) by writing 𝓁𝑚𝑛 ≡ 𝑘 (mod 𝑞𝑟) first as 𝓁𝑚𝑛 = 𝑘 + 𝓁′𝑞𝑟, then using

g3

(
𝓁𝑚𝑛
𝑋

)
= g3

(
𝓁′𝑞𝑟
𝑋

)
+ 𝑂
(
𝐻

𝑋

)
and finally re-writing 𝓁𝑚𝑛 = 𝑘 + 𝓁′𝑞𝑟 as 𝓁′𝑞𝑟 = −𝑘 (mod 𝑚𝑛), so that our claim becomes

∑
0<|𝑘|⩽𝐻

|||||
∑
𝑞
𝑟∼𝑅

𝛾𝑟g2

(
𝑞

𝑄

) ∑
𝑚∼𝑀
𝑛

(𝑚𝑛,𝑞𝑟)∣𝑘

𝛼𝑚g1
(
𝑛

𝑁

)
( ∑

𝓁′
𝓁′𝑞𝑟=−𝑘 (mod 𝑚𝑛)

g3

(
𝓁′𝑞𝑟
𝑋

)
−

ĝ3(0)𝑋
[𝑞𝑟,𝑚𝑛]

)|||||≪ 𝑋1−1∕900.
Since 𝑁 ⩽ 𝑄𝑅, this follows from Case 1 with the roles of 𝑅,𝑄 and𝑀,𝑁 interchanged. □
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Proof of Lemma 5.6. Arguing as in the beginning of the proof of Lemma 5.4 (i.e. writing 𝛿 =
(𝑚𝑛, 𝑞𝑟) and using Poisson summation (Lemma 4.3(ii))), we see that the left-hand side of (47) is

≪
∑
0<𝛿⩽𝐻

∑
0<|𝑘|⩽𝐻∕𝛿

|||||
∑

𝑚∼𝑀,𝑛∈ℕ
𝛿∣𝑚𝑛

𝛼𝑚g1
(
𝑛

𝑁

) ∑
𝑟∼𝑅,𝑞∈ℕ
𝛿∣𝑞𝑟

(𝑞𝑟∕𝛿,𝑚𝑛∕𝛿)=1

𝛾𝑟g2

(
𝑞

𝑄

)

⋅
𝑋

𝑚𝑛𝑞𝑟∕𝛿

∑
𝓁∈ℤ
𝓁≠0

ĝ3

(
𝓁𝑋

𝑚𝑛𝑞𝑟∕𝛿

)
𝑒

(
𝑘𝓁𝑚𝑛∕𝛿
𝑞𝑟∕𝛿

)|||||.
Similarly to the proof of Lemma 5.4 we can truncate the innermost sum to 0 < |𝓁| ⩽ 𝑀𝑁𝑄𝑅

𝛿𝑋1−𝜀∕20
. Still

following proof of Lemma 5.4, we write 𝜇 = (𝑚, 𝛿), and 𝜈 = 𝛿∕𝜇, so that𝑚 = 𝜇𝑑 for some 𝑑 ∈ ℕ
with (𝑑, 𝜈) = 1 and 𝑛 = 𝜈𝑣 for some 𝑣 ∈ ℕ. This time we also write 𝜇′ = (𝑟, 𝛿) and 𝜈′ = 𝛿∕𝜇′ so
that 𝑟 = 𝜇′𝑠 for some 𝑠 ∈ ℕwith (𝑠, 𝜈′) = 1. Since 𝛿 ∣ 𝑞𝑟, wemust have 𝜈′ ∣ 𝑞 and thuswe canwrite
𝑞 = 𝜈′𝑐 for some 𝑐 ∈ ℕ. Now 𝑞𝑟∕𝛿 = 𝑐𝑠 and𝑚𝑛∕𝛿 = 𝑑𝑣 and so (𝑐𝑠, 𝑑𝑣) = 1. With this notation we
are, instead of 𝐸𝐼𝐼 in (44), led to

𝐸𝐼 ∶= 𝑋
∑
0<𝛿⩽𝐻

∑
0<|𝑘|⩽𝐻∕𝛿 𝑐𝑘,𝛿

∑
𝛿=𝜇𝜈

∑
𝛿=𝜇′𝜈′

∑
𝑠∼𝑅∕𝜇′

(𝑠,𝜈′)=1

𝛾𝜇′𝑠

𝑠

∑
𝑐

g2
(
𝜈′𝑐

𝑄

)
𝑐

⋅
∑
𝑑∼𝑀∕𝜇
(𝑑,𝑐𝑠𝜈)=1

𝛼𝜇𝑑

𝜇𝑑

∑
𝑣

(𝑣,𝑐𝑠)=1

g1
(
𝜈𝑣

𝑁

)
𝜈𝑣

∑
0<|𝓁|⩽ 𝑀𝑁𝑄𝑅

𝛿𝑋1−𝜀∕20

ĝ3

(
𝓁𝑋
𝛿𝑑𝑣𝑐𝑠

)
𝑒

(
𝑘𝓁𝑑𝑣
𝑐𝑠

) (48)

for certain bounded coefficients 𝑐𝑘,𝛿.
We write 𝑛 = 𝑘𝓁 and

ĝ3

(
𝓁𝑋
𝛿𝑑𝑣𝑐𝑠

)
=
𝑐𝑣

𝑋 ∫
∞

−∞
g3
(
𝜉
𝑐𝑣

𝑋

)
𝑒

(
𝜉

𝓁
𝛿𝑠𝑑

)
𝑑𝜉,

and define

𝑏𝛿,𝜇,𝜇′,𝜉(𝑑, 𝑛, 𝑠) ∶= 𝟏(𝑠,𝛿∕𝜇′)𝟏(𝑑,𝛿∕𝜇)=1𝑀
𝛼𝜇𝑑

𝜇𝑑
⋅ 𝑅
𝛾𝜇′𝑠

𝜇′𝑠
⋅
1

𝑋𝜀∕60

∑
𝑘𝓁=𝑛

0<|𝑘|⩽𝐻∕𝛿
0<|𝓁|⩽ 𝑀𝑁𝑄𝑅

𝛿𝑋1−𝜀∕20

𝑒

(
𝜉

𝓁
𝛿𝑑𝑠

)

and

g𝜈,𝜈′,𝜉(𝑥1, 𝑥2) ∶= g2(𝑥1)g1(𝑥2)g3

(
𝜉
𝑥1𝑥2
𝑋

𝑁𝑄

𝜈𝜈′

)
.

Then

𝐸𝐼 ≪
𝑋1+𝜀∕60

𝑀𝑁𝑄𝑅

∑
0<𝛿⩽𝐻

𝛿
∑
𝛿=𝜇𝜈

∑
𝛿=𝜇′𝜈′

max
𝜉≍𝑋𝜈𝜈

′

𝑁𝑄|||||
∑
𝑑∼𝑀∕𝜇
𝑠∼𝑅∕𝜇′

(𝑑,𝑠)=1

∑
0<|𝑛|⩽ 𝐻𝑀𝑁𝑄𝑅

𝛿2𝑋1−𝜀∕20

𝑏𝛿,𝜇,𝜇′,𝜉(𝑑, 𝑛, 𝑠)
∑
𝑐,𝑣

(𝑑𝑣,𝑐𝑠)=1

g𝜈,𝜈′,𝜉

(
𝑐

𝑄∕𝜈′
,
𝑣

𝑁∕𝜈

)
𝑒

(
𝑛𝑑𝑣

𝑐𝑠

)|||||,
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Note that in the support of the sum 𝑏𝛿,𝜇,𝜇′,𝜉(𝑑, 𝑛, 𝑠) ≪ 1 and g𝜈,𝜈′,𝜉(𝑥1, 𝑥2) is smooth and compactly
supported, and satisfies (34).
Now, for each 𝛿, 𝜇, 𝜇′, we apply Lemma 4.5 with 𝐶 = 𝑄∕𝜈′, 𝐷 = 𝑁∕𝜈,𝑁 =

𝐻𝑀𝑁𝑄𝑅∕(𝛿2𝑋1−𝜀∕20), 𝑅 = 𝑀∕𝜇 = 𝑀𝜈∕𝛿 and 𝑆 = 𝑅∕𝜇′ = 𝜈′𝑅∕𝛿, obtaining the bound

𝐸𝐼 ≪
𝐻1∕2𝑋1∕2+𝜀∕20

(𝑁𝑄)1∕2

∑
0<𝛿⩽𝐻

1

𝛿

∑
𝜈,𝜈′∣𝛿

𝜈1∕2𝜈′1∕2
[
𝑄𝑅

𝛿

(
𝜈𝜈′𝑀𝑅

𝛿2
+
𝐻𝑀𝑁𝑄𝑅

𝛿2𝑋1−𝜀∕20

)(
𝑄

𝜈′
+
𝑀𝑁

𝛿

)

+
𝑄2𝑁𝑅

𝜈′𝜈𝛿

√(
𝜈𝜈′𝑀𝑅

𝛿2
+
𝐻𝑀𝑁𝑄𝑅

𝛿2𝑋1−𝜀∕20

)
𝜈𝑀

𝛿
+
𝑁2

𝜈2
𝐻𝑀𝑁𝑄𝑅

𝛿2𝑋1−𝜀∕20
𝜈𝑀

𝜈′𝑅

⎤⎥⎥⎦
1∕2

.

The sums over 𝜈, 𝜈′ and 𝛿 contribute 𝑂(𝑋𝜀∕100) so that

𝐸𝐼 ≪
𝐻1∕2𝑋1∕2+𝜀

(𝑁𝑄)1∕2

[
𝑄𝑅

(
𝑀𝑅 +

𝐻𝑀𝑁𝑄𝑅

𝑋

)
(𝑄 +𝑀𝑁)

+𝑄2𝑁𝑅

√(
𝑀𝑅 +

𝐻𝑀𝑁𝑄𝑅

𝑋

)
𝑀 +

𝐻𝑀2𝑁3𝑄

𝑋

⎤⎥⎥⎦
1∕2

.

By assumption, 𝑄 +𝑀𝑁 ⩽ 2𝑀𝑁 and the claim follows. □

6 MEAN SQUARES OF 𝑬±(𝒙, 𝒚, 𝒛)

The aim of this section is to prove (27). We write 𝑎−
𝑑
= 𝛼−

𝑑
with 𝛼𝑑 as in (15) and

𝑎+
𝑑
=
∑
𝑎∈
∑
𝑑=𝑝𝑒

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

)
𝛼+𝑒,𝑎.

with , 𝜎(𝑥), and 𝛼+𝑒,𝑎 as in (20), (17) and (25). Notice that 𝑎±
𝑑
are supported on 𝑑 ⩽ 𝐷𝐸 =

𝑋5∕9+1∕1000. With these definitions,

𝐸±(𝑥, 𝑦, 𝑧) =
∑

𝑑⩽𝐷𝐸,𝑚∈ℕ
𝑥−ℎ log𝑋<𝑑𝑚⩽𝑥

𝑎±
𝑑
− ℎ log𝑋

∑
𝑑⩽𝐷𝐸

𝑎±
𝑑

𝑑
.

Let g ∶ ℝ → [0, 1] be a smooth function supported on [1∕4, 2] such that g(𝑥) = 1 for𝑥 ∈ [1∕2, 1]
and (1) holds. Then Proposition 5.1 gives

∫
𝑋

𝑋∕2
|𝐸±(𝑥, 𝑦, 𝑧)|2 ≪ |𝑆±

1
| + |𝑆±

2
| + |𝑆±

3
| + ℎ3(log𝑋)6

with 𝑆±
1
, 𝑆±
2
, 𝑆±
3
as in Proposition 5.1 with 𝑎𝑑 = 𝑎

±
𝑑
and𝐻 = ℎ log𝑋. In the next three subsections

we show that 𝑆±
𝑗
≪ ℎ𝑋 for 𝑗 = 1, 2, 3.
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6.1 Showing that 𝑺±
𝟏
≪ 𝒉𝑿

Noticing that 𝛾𝑑,ℎ log𝑋 ≪ 𝑑ℎ log𝑋, it suffices to show that

∑
𝑑⩽𝐷𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝐸

𝑚≡0 (mod 𝑑)

𝛼−𝑚
𝑚

⎞⎟⎟⎟⎠
2

≪
1

log𝑋
(49)

and

∑
𝑑⩽𝐷𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

) ∑
𝑚⩽𝐷𝑎𝐸

𝑚𝑝≡0 (mod 𝑑)

𝛼+𝑚,𝑎

𝑚𝑝

⎞⎟⎟⎟⎠
2

≪
1

log𝑋
. (50)

Splitting the sum over 𝑝 in (50) according to whether 𝑝 ∣ 𝑑 or not and applying the inequality
(𝑥 + 𝑦)2 ⩽ 2𝑥2 + 2𝑦2, we see that the left-hand side of (50) is

≪
∑
𝑑⩽𝐷𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑎∈
∑
𝑝∣𝑑

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

) ∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑∕𝑝)

𝛼+𝑚,𝑎

𝑚𝑝

⎞⎟⎟⎟⎠
2

+
∑
𝑑⩽𝐷𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑎∈
∑
𝑝∤𝑑

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

) ∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑)

𝛼+𝑚,𝑎

𝑚𝑝

⎞⎟⎟⎟⎠
2

=∶ 𝑆+
1,1
+ 𝑆+

1,2
,

say.
Let us first consider 𝑆+

1,1
. Applying the Cauchy–Schwarz inequality, we obtain

𝑆+
1,1
≪
∑
𝑑⩽𝐷𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑎∈
∑
𝑝∣𝑑

𝜎

(
𝑝√
2
𝑎

)⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑∕𝑝)

𝛼+𝑚,𝑎

𝑚𝑝

⎞⎟⎟⎟⎠
2

⋅
∑
𝑎∈𝐼

∑
𝑝∣𝑑

𝜎

(
𝑝√
2
𝑎

)⎞⎟⎟⎟⎠.
Recalling the support of 𝜎 we see that

∑
𝑎∈𝐼

∑
𝑝∣𝑑

𝜎

(
𝑝√
2
𝑎

)
≪
∑
𝑝∣𝑑

𝑧∕4⩽𝑝⩽2𝑦

1 ≪ 1 (51)

and

∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)
1

𝑝
≪
∑

𝑧∕4⩽𝑝⩽2𝑦

1

𝑝
≪ 1. (52)
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Using (51) and rearranging, we see that

𝑆+
1,1
≪
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)
1

𝑝2

∑
𝑑⩽𝐷𝐸
𝑝∣𝑑

𝑑

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑∕𝑝)

𝛼+𝑚,𝑎

𝑚

⎞⎟⎟⎟⎠
2

.

Substituting 𝑑 = 𝑝𝑑′ and applying (52), we obtain

𝑆+
1,1
≪
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)
1

𝑝

∑
𝑑′⩽𝐷𝑎𝐸

𝑑′

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑′)

𝛼+𝑚,𝑎

𝑚

⎞⎟⎟⎟⎠
2

≪ max
𝑎∈
∑
𝑑′⩽𝐷𝑎𝐸

𝑑′

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑′)

𝛼+𝑚,𝑎

𝑚

⎞⎟⎟⎟⎠
2

.

(53)

Let us now turn to 𝑆+
1,2
. Applying the Cauchy–Schwarz inequality, we see that

𝑆+
1,2
≪
∑
𝑑⩽𝐷𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑎∈
∑
𝑝∤𝑑

𝜎

(
𝑝√
2
𝑎

)
1

𝑝

∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑)

𝛼+𝑚,𝑎

𝑚

⎞⎟⎟⎟⎠
2

≪
∑
𝑑⩽𝐷𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)
1

𝑝

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑)

𝛼+𝑚,𝑎

𝑚

⎞⎟⎟⎟⎠
2

⋅
∑
𝑎∈𝐼

∑
𝑝

𝜎

(
𝑝√
2
𝑎

)
1

𝑝

⎞⎟⎟⎟⎠.
Using (52), rearranging and using (52) again, we see that

𝑆+
1,2
≪
∑
𝑎∈
∑
𝑝

𝜎

(
𝑝√
2
𝑎

)
1

𝑝

∑
𝑑⩽𝐷𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑)

𝛼+𝑚,𝑎

𝑚

⎞⎟⎟⎟⎠
2

≪ max
𝑎∈
∑
𝑑⩽𝐷𝑎𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑)

𝛼+𝑚,𝑎

𝑚

⎞⎟⎟⎟⎠
2

.

Combining this with (53) we see that (50) reduces to showing that

max
𝑎∈
∑
𝑑⩽𝐷𝑎𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑)

𝛼+𝑚,𝑎

𝑚

⎞⎟⎟⎟⎠
2

≪
1

log𝑋
, (54)
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a claim very similar to (49). A similar more general claim will be encountered also in [16].†
Let us consider (54). Note first that the definition of 𝛼+𝑚,𝑎 in (25) implies that, for any 𝑎 ∈ ,

∑
𝑑⩽𝐷𝑎𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑)

𝛼+𝑚,𝑎

𝑚

⎞⎟⎟⎟⎠
2

=
∑
𝑑⩽𝐷𝑎𝐸

𝑑

⎛⎜⎜⎜⎝
∑
𝑚⩽𝐷𝑎𝐸

𝑚≡0 (mod 𝑑)

𝟏𝑚∣𝑃(𝑧)𝜆
+
(𝑚,𝑃(𝑤,𝑧)),𝑎

𝜌+
(𝑚,𝑃(𝑤))

𝑚

⎞⎟⎟⎟⎠
2

=
∑
𝑑1⩽𝐸
𝑑1∣𝑃(𝑤)

𝑑1

⎛⎜⎜⎜⎜⎝
∑

𝑚1⩽𝐸,𝑚1∣𝑃(𝑤)
𝑚1≡0 (mod 𝑑1)

𝜌+𝑚1
𝑚1

⎞⎟⎟⎟⎟⎠

2 ∑
𝑑2⩽𝐷𝑎
𝑑2∣𝑃(𝑤,𝑧)

𝑑2

⎛⎜⎜⎜⎜⎝
∑

𝑚2⩽𝐷𝑎,𝑚2∣𝑃(𝑤,𝑧)
𝑚2≡0 (mod 𝑑2)

𝜆+𝑚2,𝑎

𝑚2

⎞⎟⎟⎟⎟⎠

2

.

Here the sum over 𝑑2 is

≪
∑
𝑑2⩽𝐷𝑎
𝑑2∣𝑃(𝑤,𝑧)

𝑑2

⎛⎜⎜⎜⎜⎝
1

𝑑2

∑
𝑚2⩽𝐷𝑎∕𝑑2
𝑚2∣𝑃(𝑤,𝑧)

1

𝑚2

⎞⎟⎟⎟⎟⎠

2

≪

⎛⎜⎜⎜⎝
∑
𝑟⩽𝐷𝑎
𝑟∣𝑃(𝑤,𝑧)

1

𝑟

⎞⎟⎟⎟⎠
3

≪
∏
𝑤⩽𝑝<𝑧

(
1 +
1

𝑝

)3
≪ 1.

We can argue similarly with (49), and thus, noting that the support of 𝜌±𝑚 is contained in [1, 𝐸],
it suffices to show that

∑
𝑑∣𝑃(𝑤)

𝑑

⎛⎜⎜⎜⎝
∑
𝑚∣𝑃(𝑤)

𝑚≡0 (mod 𝑑)

𝜌±𝑚
𝑚

⎞⎟⎟⎟⎠
2

≪
1

log𝑋
. (55)

A similar claim was shown in [9] and also in [7, Lemma 6.18] though there is a slight mistake in
the latter proof. For completeness, we provide a detailed proof here.
The starting point for proving (55) is the following lemma.

Lemma 6.1. Let 𝑤 ⩾ 1, let 𝜆𝑑 be complex numbers, and define 𝜃𝑛 ∶=
∑
𝑑∣𝑛 𝜆𝑑 . Write

𝑊 ∶=
∑
𝑑∣𝑃(𝑤)

𝑑

⎛⎜⎜⎜⎝
∑
𝑚∣𝑃(𝑤)

𝑚≡0 (mod 𝑑)

𝜆𝑚
𝑚

⎞⎟⎟⎟⎠
2

.

† In the first arXiv version of [16] we used different sieve weights and utilized an incorrect version of Lemma 6.1 below
(see Remark 6.2 below), so one should look at a more recent version (which is not yet on arXiv)
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Then

𝑊 ≪
∏
𝑝<𝑤

(
1 −
1

𝑝

) ∑
𝑏∣𝑃(𝑤)

𝑏

𝜑(𝑏)2

∑
𝑒1,𝑒2∣𝑃(𝑤)
(𝑒1,𝑒2)=1
(𝑒1𝑒2,𝑏)=1

|𝜃𝑏𝑒1𝜃𝑏𝑒2 |
𝑒1𝑒2𝜑(𝑒1𝑒2)

. (56)

Remark 6.2. In [7, Proof of Lemma 6.18] it is claimed that

𝑊 =
∏
𝑝<𝑤

(
1 −
1

𝑝
+
1

𝑝2

) ∑
𝑏∣𝑃(𝑤)

𝜃2
𝑏

𝑏
.

However, there is a mistake in the proof on the second line of the second display of [7, p. 76],
where the condition (𝑏, 𝑘) = 1 ismissing. Taking this condition into account leads to non-diagonal
contribution as in our lemma though in applications the non-diagonal contribution is easy to
handle. Our proof actually shows the exact formula

𝑊 =
∏
𝑝<𝑤

(
1 −
1

𝑝
+
1

𝑝2

) ∑
𝑏∣𝑃(𝑤)

𝑏

𝜑(𝑏)2

∏
𝑝∣𝑏

(
1 −

2𝑝 − 1

𝑝3 − 𝑝2 + 𝑝

)

⋅
∑

𝑒1,𝑒2∣𝑃(𝑤)
(𝑒1,𝑒2)=1
(𝑒1𝑒2,𝑏)=1

𝜃𝑏𝑒1𝜃𝑏𝑒2(−1)
𝜔(𝑒1𝑒2)

𝑒1𝑒2𝜑(𝑒1𝑒2)

∏
𝑝∣𝑒1𝑒2

(
1 −

1

𝑝2 − 𝑝 + 1

)
.

(57)

Proof of Lemma 6.1. We follow the argument in [7, Proof of Lemma 6.18], correcting the issue
mentioned in Remark 6.2. Notice that, by Möbius inversion, 𝜆𝑚 =

∑
𝑚=𝑎𝑏 𝜇(𝑎)𝜃𝑏. Hence, for 𝑑 ∣

𝑃(𝑤),

∑
𝑚∣𝑃(𝑤)

𝑚≡0 (mod 𝑑)

𝜆𝑚
𝑚
=
∑
𝑎𝑏∣𝑃(𝑤)
𝑑∣𝑎𝑏

𝜇(𝑎)𝜃𝑏
𝑎𝑏

=
∑
𝑏∣𝑃(𝑤)

𝜃𝑏
𝑏

∑
𝑎∣𝑃(𝑤)
(𝑎,𝑏)=1
𝑑
(𝑏,𝑑)
∣𝑎

𝜇(𝑎)

𝑎

=
∑
𝑏∣𝑃(𝑤)

𝜃𝑏
𝑏

𝜇(𝑑∕(𝑏, 𝑑))

𝑑∕(𝑏, 𝑑)

∑
𝑎∣𝑃(𝑤)

(𝑎,𝑏𝑑∕(𝑏,𝑑))=1

𝜇(𝑎)

𝑎

=
∑
𝑏∣𝑃(𝑤)

𝜃𝑏
𝑏

𝜇(𝑑∕(𝑏, 𝑑))

𝑑∕(𝑏, 𝑑)

∏
𝑝<𝑤

(
1 −
1

𝑝

) ∏
𝑝∣ 𝑏𝑑
(𝑏,𝑑)

(
1 −
1

𝑝

)−1

=
∏
𝑝<𝑤

(
1 −
1

𝑝

) ∑
𝑏∣𝑃(𝑤)

𝜃𝑏
𝑏

𝜇(𝑑)𝜇((𝑏, 𝑑))

𝑑∕(𝑏, 𝑑)

𝑏𝑑∕(𝑏, 𝑑)

𝜑(𝑏𝑑∕(𝑏, 𝑑))

=
𝜇(𝑑)

𝜑(𝑑)

∏
𝑝<𝑤

(
1 −
1

𝑝

) ∑
𝑏∣𝑃(𝑤)

𝜃𝑏𝜇((𝑏, 𝑑))
𝜑((𝑏, 𝑑))

𝜑(𝑏)
.
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Consequently,

𝑊 =
∏
𝑝<𝑤

(
1 −
1

𝑝

)2 ∑
𝑏1,𝑏2∣𝑃(𝑤)

𝜃𝑏1𝜃𝑏2
𝜑(𝑏1)𝜑(𝑏2)

∑
𝑑∣𝑃(𝑤)

𝑑
𝜇((𝑏1, 𝑑))𝜇((𝑏2, 𝑑))𝜑((𝑏1, 𝑑))𝜑((𝑏2, 𝑑))

𝜑(𝑑)2
.

Writing 𝑏𝑗 = 𝑏𝑒𝑗 with 𝑏 = (𝑏1, 𝑏2), we get

𝑊 =
∏
𝑝<𝑤

(
1 −
1

𝑝

)2 ∑
𝑏,𝑒1,𝑒2∣𝑃(𝑤)

(𝑒1,𝑒2)=(𝑏,𝑒1𝑒2)=1

𝜃𝑏𝑒1𝜃𝑏𝑒2
𝜑(𝑏𝑒1)𝜑(𝑏𝑒2)

∑
𝑑∣𝑃(𝑤)

𝑑
𝜇((𝑒1𝑒2, 𝑑))𝜑((𝑏𝑒1, 𝑑))𝜑((𝑏𝑒2, 𝑑))

𝜑(𝑑)2
.

The summand in the 𝑑-sum is multiplicative, so, looking at the Euler product factors, the 𝑑-sum
equals

∏
𝑝<𝑤
𝑝∤𝑏𝑒1𝑒2

(
1 +

𝑝

(𝑝 − 1)2

)∏
𝑝∣𝑏

(1 + 𝑝)
∏
𝑝∣𝑒1𝑒2

(
1 −

𝑝

𝑝 − 1

)

=
∏
𝑝<𝑤

(
1 +

𝑝

(𝑝 − 1)2

)∏
𝑝∣𝑏

(1 + 𝑝)

(
1 +

𝑝

(𝑝 − 1)2

)−1 ∏
𝑝∣𝑒1𝑒2

(
−1

𝑝 − 1

)(
1 +

𝑝

(𝑝 − 1)2

)−1

= (−1)𝜔(𝑒1𝑒2)
∏
𝑝<𝑤

(
1 +

𝑝

(𝑝 − 1)2

)∏
𝑝∣𝑏

(
(𝑝 + 1)(𝑝 − 1)2

𝑝2 − 𝑝 + 1

) ∏
𝑝∣𝑒1𝑒2

(
𝑝 − 1

𝑝2 − 𝑝 + 1

)
.

Here

(𝑝 + 1)(𝑝 − 1)2

𝑝2 − 𝑝 + 1
= 𝑝
𝑝3 − 𝑝2 − 𝑝 + 1

𝑝3 − 𝑝2 + 𝑝
= 𝑝

(
1 −

2𝑝 − 1

𝑝3 − 𝑝2 + 𝑝

)
and

𝑝 − 1

𝑝2 − 𝑝 + 1
=
1

𝑝
⋅
𝑝2 − 𝑝

𝑝2 − 𝑝 + 1
=
1

𝑝
⋅
(
1 −

1

𝑝2 − 𝑝 + 1

)
,

so we get

𝑊 =
∏
𝑝<𝑤

(
1 −
1

𝑝

)2(
1 +

𝑝

(𝑝 − 1)2

) ∑
𝑏∣𝑃(𝑤)

𝑏

𝜑(𝑏)2

∏
𝑝∣𝑏

(
1 −

2𝑝 − 1

𝑝3 − 𝑝2 + 𝑝

)

⋅
∑

𝑒1,𝑒2∣𝑃(𝑤)
(𝑒1,𝑒2)=(𝑏,𝑒1𝑒2)=1

𝜃𝑏𝑒1𝜃𝑏𝑒2(−1)
𝜔(𝑒1𝑒2)

𝑒1𝑒2𝜑(𝑒1𝑒2)

∏
𝑝∣𝑒1𝑒2

(
1 −

1

𝑝2 − 𝑝 + 1

)
.

Here(
1 −
1

𝑝

)2(
1 +

𝑝

(𝑝 − 1)2

)
=
(𝑝 − 1)2

𝑝2

(
1 +

𝑝

(𝑝 − 1)2

)
=
(𝑝 − 1)2

𝑝2
+
1

𝑝
= 1 −

1

𝑝
+
1

𝑝2
,

so (57) follows which implies also (56). □
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Let us now return to showing (55). For 𝑟 ⩾ 0, write

𝑉𝑟(𝑛, 𝑤) ∶=
∑

𝑛=𝑝1⋯𝑝𝑟𝑑
𝑝𝑟<𝑝𝑟−1<…<𝑝1<𝑤

𝑝∣𝑑⇒𝑝⩾𝑝𝑟

𝑝1𝑝2⋯𝑝𝑟𝑝
𝛽
𝑟 ⩾𝐸

𝑝1⋯𝑝ℎ𝑝
𝛽

ℎ
<𝐸 for all odd ℎ < 𝑟

1

By the definition of 𝜌±𝑒 , we have (see, e.g. [13, (6.29–6.30) with g(𝑝) = 𝟏𝑝∣(𝑛,𝑃(𝑤))]), for any 𝑛 ∈ ℕ,

𝜃+𝑛 ∶=
∑
𝑒∣𝑛

𝜌+𝑒 =
∑

𝑒∣(𝑛,𝑃(𝑤))

𝜌+𝑒 = 𝟏(𝑛,𝑃(𝑤))=1 +
∑
𝑟 odd
𝑉𝑟(𝑛, 𝑤),

𝜃−𝑛 ∶=
∑
𝑒∣𝑛

𝜌−𝑒 =
∑

𝑒∣(𝑛,𝑃(𝑤))

𝜌−𝑒 = 𝟏(𝑛,𝑃(𝑤))=1 −
∑
𝑟 even

𝑉𝑟(𝑛, 𝑤).

Recall that log 𝐸
log𝑤

= 1

1000𝛿
⩾ 𝛽 = 30 when 𝛿 is sufficiently small. One can easily show that, for

every 𝑟, in the sum defining 𝑉𝑟(𝑛, 𝑤) one has

𝑝𝑟 ⩾ 𝑤𝑟 ∶= 𝑤

(
𝛽−1

𝛽

)𝑟
(58)

(see, e.g. [13, Section 6.3]). In the support of 𝑉𝑟(𝑛, 𝑤)we have 𝜔(𝑛) ⩾ 𝑟 so that 2𝜔(𝑛)−𝑟 ⩾ 1. Hence,
writing 𝑘 = 𝑝1⋯𝑝𝑟, we have

𝑉𝑟(𝑛, 𝑤) ⩽ 2
𝜔(𝑛)−𝑟𝟏(𝑛,𝑃(𝑤𝑟))=1

∑
𝑛=𝑘𝑑

𝑝∣𝑛⇒𝑝⩾𝑤𝑟

1 ⩽ 2−𝑟𝟏(𝑛,𝑃(𝑤𝑟))=1𝑑(𝑛)
2.

Consequently

||𝜃+𝑛 || = ||||||
∑
𝑒∣𝑛

𝜌±𝑒

|||||| ⩽
∑
𝑟⩾0

2−𝑟𝟏(𝑛,𝑃(𝑤𝑟))=1𝑑(𝑛)
2 =∶ 𝜃′𝑛, (59)

say. Clearly |𝜃±
𝑏𝑒𝑗
| ⩽ |𝜃′

𝑏𝑒𝑗
|≪ 𝑒𝜀

𝑗
𝜃′
𝑏
. Plugging this into Lemma 6.1 and noticing that the sums over

𝑒1 and 𝑒2 are bounded, we obtain

∑
𝑑∣𝑃(𝑤)

𝑑

⎛⎜⎜⎜⎝
∑
𝑚∣𝑃(𝑤)

𝑚≡0 (mod 𝑑)

𝜌±𝑚
𝑚

⎞⎟⎟⎟⎠
2

≪
∏
𝑝<𝑤

(
1 −
1

𝑝

) ∑
𝑏∣𝑃(𝑤)

𝑏

𝜑(𝑏)2
𝜃′2
𝑏
≪

1

log𝑋

∑
𝑏∣𝑃(𝑤)

𝑏

𝜑(𝑏)2
𝜃′2
𝑏
. (60)

By the definition of 𝜃′
𝑏
and the Cauchy–Schwarz inequality,

𝜃′2
𝑏
≪
∑
𝑟⩾0

2−𝑟 ⋅
∑
𝑟⩾0

2−𝑟𝟏(𝑏,𝑃(𝑤𝑟))=1𝑑(𝑏)
4 ≪
∑
𝑟⩾0

2−𝑟𝟏(𝑏,𝑃(𝑤𝑟))=1𝑑(𝑏)
4.



ALMOST PRIMES IN ALMOST ALL VERY SHORT INTERVALS 31

Hence∑
𝑏∣𝑃(𝑤)

𝑏

𝜑(𝑏)2
𝜃′2
𝑏
≪
∑
𝑟⩾0

2−𝑟
∑
𝑏∣𝑃(𝑤)

𝑏

𝜑(𝑏)2
𝟏(𝑏,𝑃(𝑤𝑟))=1𝑑(𝑏)

4 ≪
∑
𝑟⩾0

2−𝑟
∏

𝑤𝑟⩽𝑝<𝑤

(
1 +

16𝑝

(𝑝 − 1)2

)

≪
∑
𝑟⩾0

2−𝑟
(
log𝑋

log𝑤𝑟

)16
≪
∑
𝑟⩾0

2−𝑟
(
𝛽

𝛽 − 1

)16𝑟
≪ 1

since we chose 𝛽 = 30 and (30∕29)16 < 2. Now (55) follows from combining this with (60).

6.2 Showing that 𝑺±
𝟐
≪ 𝒉𝑿

It suffices to establish that, for some small 𝜀 > 0 and any bounded 𝑐𝑘,

∑
0<|𝑘|⩽ℎ log𝑋 𝑐𝑘

∑
𝑑1,𝑑2⩽𝐷𝐸
(𝑑1,𝑑2)∣𝑘

𝛼−
𝑑1
𝛼−
𝑑2

⎛⎜⎜⎜⎝
∑
𝑚1,𝑚2

𝑑1𝑚1=𝑑2𝑚2+𝑘

g
(
𝑑1𝑚1
𝑋

)
−

ĝ(0)𝑋
[𝑑1, 𝑑2]

⎞⎟⎟⎟⎠≪ 𝑋
1−𝜀∕10 (61)

and

∑
0<|𝑘|⩽ℎ log𝑋 𝑐𝑘

∑
𝑎1,𝑎2∈

∑
𝑝1,𝑝2

𝜎

(
𝑝1√
2
𝑎1

)
𝜎

(
𝑝2√
2
𝑎2

)(
1 −
log 𝑝1
log 𝑦

)(
1 −
log 𝑝2
log 𝑦

)

∑
𝑑𝑗⩽𝐷𝑎𝑗 𝐸

(𝑝1𝑑1,𝑝2𝑑2)∣𝑘

𝛼+
𝑑1,𝑎1
𝛼+
𝑑2,𝑎2

⎛⎜⎜⎜⎝
∑
𝑚1,𝑚2

𝑑1𝑝1𝑚1=𝑑2𝑝2𝑚2+𝑘

g
(
𝑑1𝑝1𝑚1
𝑋

)
−

ĝ(0)𝑋
[𝑑1𝑝1, 𝑑2𝑝2]

⎞⎟⎟⎟⎠≪ 𝑋
1−𝜀∕10.

(62)

These will follow from Lemmas 5.3 and 5.5.
Let us first consider (62) which is more involved. It suffices to show that, for any 𝑃1, 𝑃2 ∈

(𝑧∕4, 2𝑦], any 𝐷𝑖 ⩽ 𝐷𝐸∕𝑃𝑖 , and any bounded 𝛼𝑑, 𝛽𝑑, one has∑
0<|𝑘|⩽ℎ log𝑋 𝑐𝑘

∑
𝑛1,𝑛2

Λ(𝑛1)Λ(𝑛2)ℎ1

(
𝑛1
𝑃1

)
ℎ2

(
𝑛2
𝑃2

) ∑
𝑑1∼𝐷1
𝑑2∼𝐷2

(𝑑1𝑛1,𝑑2𝑛2)∣𝑘

𝛼𝑑1𝛽𝑑2

⎛⎜⎜⎜⎝
∑
𝑚1,𝑚2

𝑑1𝑚1𝑛1=𝑑2𝑚2𝑛2+𝑘

g
(
𝑑1𝑛1𝑚1
𝑋

)
−

ĝ(0)𝑋
[𝑑1𝑛1, 𝑑2𝑛2]

⎞⎟⎟⎟⎠≪ 𝑋
1−𝜀∕5,

(63)

where

ℎ𝑗(𝑥) ∶= 𝜎(𝑥)

(
1 −
log(𝑃𝑗𝑥)

log 𝑦

)
1

log(𝑃𝑗𝑥)



32 MATOMÄKI

are smooth, supported on [1, 2] and satisfy

𝑑𝑘

𝑑𝑥𝑘
ℎ𝑗(𝑥) ≪𝑘 1 for every 𝑘 ⩾ 0. (64)

In (63) we can write the condition 𝑑1𝑚1𝑛1 = 𝑑2𝑚2𝑛2 + 𝑘 as 𝑑1𝑚1𝑛1 ≡ 𝑘 (mod 𝑑2𝑛2). Notice also
that

𝐷𝑗𝑃𝑗 ⩽ 𝐷𝐸 ⩽ 𝑋
14∕25. (65)

We split into three cases according to the sizes of 𝑃𝑖 .
Case 1 (𝑃1 ⩽ 𝑋21∕50): In this case we shall apply Lemma 5.3 with

𝑁 = min{𝐷1, 𝑃1}, 𝑀 = max{𝐷1, 𝑃1}, and 𝑄 ≍ 𝐷2𝑃2.

We need to check that these choices satisfy (40). By (65) we have max{𝑀𝑁,𝑄} ≪ 𝑋14∕25, and
by assumption 𝑃1 ⩽ 𝑋21∕50. Hence it suffices to show that 𝐷1 ⩽ 𝑋21∕50. But since 𝑃1 ⩾ 𝑧∕4 =
𝑋5∕36∕4, we always have

𝐷1 ⩽ 𝐷𝐸∕𝑃1 ⩽ 4𝑋
5∕9+1∕1000−5∕36 ⩽ 𝑋21∕50.

Hence (63) follows from Lemma 5.3; the choices of 𝛼𝑚, 𝛽𝑛 are obvious and we can take

𝛾𝑞 =
1

𝑋𝜀∕100

∑
𝑞=𝑑2𝑛2

Λ(𝑛2)ℎ2

(
𝑛2
𝑃2

)
𝛽𝑑2 .

Case 2 (𝑃2 ⩽ 𝑋21∕50): Noting that

g
(
𝑑1𝑛1𝑚1
𝑋

)
= g
(
𝑑2𝑛2𝑚2
𝑋

)
+ 𝑂

(
ℎ log𝑋

𝑋

)
(66)

and that the summation condition 𝑑1𝑚1𝑛1 = 𝑑2𝑚2𝑛2 + 𝑘 can be written also as 𝑑2𝑚2𝑛2 ≡ −𝑘
(mod 𝑑1𝑛1), we obtain the claim similarly as in case 𝑃1 ⩽ 𝑋21∕50, applying Lemma 5.3 with

𝑁 = min{𝐷2, 𝑃2}, 𝑀 = max{𝐷2, 𝑃2}, 𝑎𝑛𝑑 𝑄 ≍ 𝐷1𝑃1.

Case 3 (𝑃1, 𝑃2 > 𝑋21∕50): Now 𝑃1, 𝑃2 ∈ (𝑋21∕50, 2𝑦] and 𝐷𝑖 ⩽ 𝐷𝐸∕𝑃𝑖 . In this case we apply
Vaughan’s identity (Lemma 4.2) to 𝑛1 and 𝑛2. Then it suffices to show that, with
𝑃𝑗, 𝐷𝑗, 𝛼𝑑, 𝛽𝑑, ℎ𝑗(𝑥) as in (63), we have, for any bounded 𝑐𝑘,

∑
0<|𝑘|⩽ℎ log𝑋 𝑐𝑘

∑
𝑢1,𝑣1
𝑢2,𝑣2

𝑎1(𝑢1)𝑏1(𝑣1)𝑎2(𝑢2)𝑏2(𝑣2)ℎ1

(
𝑢1𝑣1
𝑃1

)
ℎ2

(
𝑢2𝑣2
𝑃2

) ∑
𝑑1∼𝐷1
𝑑2∼𝐷2

(𝑑1𝑢1𝑣1,𝑑2𝑢2𝑣2)∣𝑘

𝛼𝑑1𝛽𝑑2

( ∑
𝑚1,𝑚2

𝑑1𝑚1𝑢1𝑣1=𝑑2𝑚2𝑢2𝑣2+𝑘

g
(
𝑑1𝑢1𝑣1𝑚1
𝑋

)
−

ĝ(0)𝑋
[𝑑1𝑢1𝑣1, 𝑑2𝑢2𝑣2]

)
≪ 𝑋1−𝜀∕4

(67)
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whenever 𝑎𝑗(𝑢𝑗), 𝑏𝑗(𝑣𝑗) for 𝑗 = 1, 2, are bounded and such that

∙ 𝑎𝑗(𝑢𝑗) are supported on (𝑈𝑗, 2𝑈𝑗] ⊆ (1∕2, 2𝑃
1∕2

𝑗
] and 𝑏𝑗(𝑣𝑗) are supported on (𝑉𝑗, 2𝑉𝑗] ⊆

(𝑃
1∕2

𝑗
∕2, 4𝑃1]. Moreover 𝑈𝑗𝑉𝑗 ∈ (𝑃𝑗∕4, 2𝑃𝑗]

∙ For each 𝑗 ∈ {1, 2} with 𝑉𝑗 ⩾ 4𝑋2∕3 one has 𝑏𝑗(𝑛) = 𝜎(𝑛∕𝑉𝑗) where 𝜎(𝑥) is as in (17).

Notice that by (65)

𝐷𝑗𝑈𝑗𝑉𝑗 ≪ 𝐷𝑗𝑃𝑗 ≪ 𝐷𝐸 ≪ 𝑋
14∕25. (68)

We split further into three cases according to the sizes of 𝑉𝑗 .
Case 3.1 (𝑃1, 𝑃2 > 𝑋21∕50 but 𝑉1 ⩽ 𝑋21∕50): In this case we shall apply Lemma 5.3 with

𝑁 ≍ min{𝐷1𝑈1, 𝑉1}, 𝑀 ≍ max{𝐷1𝑈1, 𝑉1}, 𝑎𝑛𝑑 𝑄 ≍ 𝐷2𝑈2𝑉2.

We need to check that these choices satisfy (40). By (68) we have max{𝑀𝑁,𝑄} ≪ 𝑋14∕25, and by
assumption𝑉1 ⩽ 𝑋21∕50. Hence it suffices to show that𝐷1𝑈1 ≪ 𝑋21∕50. But since 𝑃1 > 𝑋21∕50 and
𝑉1 ⩾ 𝑃

1∕2
1
∕2, we have by (68)

𝐷1 ⋅𝑈1 ⩽ 𝐷𝐸∕𝑉1 ⩽ 2𝐷𝐸∕𝑃
1∕2
1
≪ 𝑋21∕50.

Hence (67) follows from Lemma 5.3; for instance,

𝛾𝑞 =
1

𝑋𝜀∕100

∑
𝑞=𝑑2𝑢2𝑣2
𝑑2∼𝐷2

𝑎2(𝑢2)𝑏2(𝑣2)ℎ2

(
𝑢2𝑣2
𝑃2

)
𝛽𝑑2 .

Case 3.2 (𝑃1, 𝑃2 > 𝑋21∕50 but 𝑉2 ⩽ 𝑋21∕50): Like Case 2 followed similarly to Case 1, this case
follows similarly to Case 3.1, using a variant of (66) and applying Lemma 5.3 with

𝑁 = min{𝐷2𝑈2, 𝑉2}, 𝑀 = max{𝐷2𝑈2, 𝑉2}, and 𝑄 = 𝐷1𝑈1𝑉1.

Case 3.3 (𝑉1, 𝑉2 > 𝑋21∕50): In this case we have 𝑏𝑗(𝑣𝑗) = 𝜎(𝑣𝑗∕𝑉𝑗) for 𝑗 = 1, 2 and we shall apply
Lemma 5.5. Before we can do this, we need to separate the variables 𝑢𝑗 and 𝑣𝑗 . Using the inverse
Fourier transform we write

ℎ𝑗

(
𝑢𝑗𝑣𝑗

𝑃𝑗

)
= ∫

∞

−∞
ℎ̂𝑗(𝜉𝑗)𝑒

(
𝑢𝑗𝑣𝑗

𝑃𝑗
𝜉𝑗

)
𝑑𝜉𝑗 =

1

𝑣𝑗 ∫
∞

−∞
ℎ̂𝑗

(
𝜉𝑗

𝑣𝑗

)
𝑒

(
𝑢𝑗

𝑃𝑗
𝜉𝑗

)
𝑑𝜉𝑗.

Writing, for 𝑗 = 1, 2, 𝑎𝑗,𝜉𝑗 (𝑢𝑗) ∶= 𝑎𝑗(𝑢𝑗)𝑒(
𝑢𝑗

𝑃𝑗
𝜉𝑗) and

g𝑗,𝜉(𝑥) ∶=
𝜎(𝑥)

𝑥
ℎ̂𝑗

(
𝜉

𝑥𝑉𝑗

)(
1 +
|𝜉|
𝑉𝑗

)2
,



34 MATOMÄKI

the claim (67) reduces to the claim

∫ ∫
∑

0<|𝑘|⩽ℎ log𝑋 𝑐𝑘
∑
𝑢1,𝑣1
𝑢2,𝑣2

𝑎1,𝜉1(𝑢1)𝑎2,𝜉2(𝑢2)g1,𝜉1

(
𝑣1
𝑉1

)
g2,𝜉2

(
𝑣2
𝑉2

) ∑
𝑑1∼𝐷1
𝑑2∼𝐷2

(𝑑1𝑢1𝑣1,𝑑2𝑢2𝑣2)∣𝑘

𝛼𝑑1𝛽𝑑2

( ∑
𝑚1,𝑚2

𝑑1𝑚1𝑢1𝑣1=𝑑2𝑚2𝑢2𝑣2+𝑘

g
(
𝑑1𝑢1𝑣1𝑚1
𝑋

)
−

ĝ(0)𝑋
[𝑑1𝑢1𝑣1, 𝑑2𝑢2𝑣2]

)
𝑑𝜉1𝑑𝜉2

𝑉1𝑉2

(
1 +
|𝜉1|
𝑉1

)2(
1 +
|𝜉2|
𝑉2

)2 ≪ 𝑋1−𝜀∕3
with parameters as in (67). This follows once we have shown that, for any 𝜉1, 𝜉2, one has∑

0<|𝑘|⩽ℎ log𝑋 𝑐𝑘
∑
𝑢1,𝑣1
𝑢2,𝑣2

𝑎1,𝜉1(𝑢1)𝑎2,𝜉2(𝑢2)g1,𝜉1

(
𝑣1
𝑉1

)
g2,𝜉2

(
𝑣2
𝑉2

) ∑
𝑑1∼𝐷1
𝑑2∼𝐷2

(𝑑1𝑢1𝑣1,𝑑2𝑢2𝑣2)∣𝑘

𝛼𝑑1𝛽𝑑2

( ∑
𝑚1,𝑚2

𝑑1𝑚1𝑢1𝑣1=𝑑2𝑚2𝑢2𝑣2+𝑘

g
(
𝑑1𝑢1𝑣1𝑚1
𝑋

)
−

ĝ(0)𝑋
[𝑑1𝑢1𝑣1, 𝑑2𝑢2𝑣2]

)
≪ 𝑋1−𝜀∕3.

Using (19) and noting that derivatives of ℎ̂𝑗 satisfy a variant of (2) thanks to (64), one can show
that (1) holds for g = g𝑗,𝜉𝑗 for 𝑗 = 1, 2.
Now we shall apply Lemma 5.5 with

𝑀 = 𝐷1𝑈1, 𝑁 = 𝑉1, 𝑄 = 𝑉2, 𝑅 = 𝐷2𝑈2.

We need to check that these choices satisfy (45).
By (68) we have max{𝑀𝑁,𝑄𝑅} ≪ 𝑋14∕25 ≪ 𝑋31∕50 and thus it suffices to check that 𝐷𝑗𝑈𝑗 ⩽

𝑋6∕25. But (68) also implies that

𝐷𝑗𝑈𝑗 ≪ 𝐷𝐸∕𝑉𝑗 ≪ 𝑋
14∕25−21∕50 = 𝑋7∕50,

and hence the claim follows from Lemma 5.5.
Hence we have established (62). Let us now turn to the claim (61). Recall the definition of 𝛼−

𝑑
from (15). Using the well-factorability of the linear sieve weights (see [7, Section 12.7]) we can
find 𝑘 = 𝑂(1) and bounded coefficients 𝑎±

𝑖
(𝑢) supported in [1, 𝑋21∕50], and 𝑏±

𝑖
(𝑣) supported on

[1, 𝐷∕𝑋21∕50−𝜀] = [1, 𝑋22∕153+𝜀] such that, for every 𝑑,

𝜆±
𝑑
=

𝑘∑
𝑖=1

∑
𝑑=𝑢𝑣

𝑎±
𝑖
(𝑢)𝑏±

𝑖
(𝑣)

Using this and dyadic splitting, we see that (61) follows once we have shown that, for any bounded
coefficients 𝑎(𝑢), 𝑏(𝑣) and any 𝑈 ⩽ 𝑋21∕50, 𝑉 ⩽ 𝑋22∕153+𝜀 and 𝐷′ ⩽ 𝐷𝐸 and 𝐸′ ⩽ 𝐸, we have

∑
0<|𝑘|⩽ℎ log𝑋

|||||
∑
𝑢∼𝑈
𝑣∼𝑉
𝑒∼𝐸′

𝑎(𝑢)𝑏(𝑣)𝜌±𝑒

∑
𝑑2∼𝐷

′

(𝑢𝑣𝑒,𝑑2)∣𝑘

𝛼−
𝑑2

( ∑
𝑚1

𝑢𝑣𝑒𝑚1≡𝑘 (mod 𝑑2)

g
(𝑢𝑣𝑒𝑚1
𝑋

)
− ĝ(0) 𝑋

[𝑢𝑣𝑒, 𝑑2]

)|||||≪ 𝑋1−𝜀∕4.
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But this follows from Lemma 5.3 with

𝑁 = min{𝑉𝐸′, 𝑈}, 𝑀 = max{𝑉𝐸′, 𝑈}, and 𝑄 = 𝐷′.

6.3 Showing that 𝑺±
𝟑
≪ 𝒉𝑿

Finally we need to show that, for 𝑌 ∈ {2𝑋,𝑋10}, we have

∑
𝑛⩽𝑌

(∑
𝑑∣𝑛

𝛼−
𝑑

)2
≪

𝑌

log𝑋
(69)

and

∑
𝑛⩽𝑌

⎛⎜⎜⎜⎝
∑
𝑎∈
∑
𝑝∣𝑛

𝜎

(
𝑝√
2
𝑎

)(
1 −
log 𝑝

log 𝑦

) ∑
𝑑∣𝑃(𝑧)
𝑝𝑑∣𝑛

𝛼+
𝑑,𝑎

⎞⎟⎟⎟⎠
2

≪
𝑌

log𝑋
. (70)

Here ∑
𝑑∣𝑃(𝑧)
𝑝𝑑∣𝑛

𝛼+
𝑑,𝑎
=
∑

𝑑∣𝑃(𝑤,𝑧)
𝑝𝑑∣𝑛

𝜆+
𝑑,𝑎

∑
𝑒∣(𝑛,𝑃(𝑤))

𝜌+𝑒 ≪
∑

𝑒∣(𝑛,𝑃(𝑤))

𝜌+𝑒 .

Using this and recalling (21) we see that the left-hand side of (70) is

≪
∑
𝑛⩽𝑌

⎛⎜⎜⎜⎝
∑

𝑧∕4⩽𝑝⩽2𝑦
𝑝∣𝑛

1

⎞⎟⎟⎟⎠
2( ∑
𝑒∣(𝑛,𝑃(𝑤))

𝜌+𝑒

)2
≪
∑
𝑛⩽𝑌

( ∑
𝑒∣(𝑛,𝑃(𝑤))

𝜌+𝑒

)2
.

Hence (70) reduces to showing

∑
𝑛⩽𝑌

( ∑
𝑒∣(𝑛,𝑃(𝑤))

𝜌+𝑒

)2
≪

𝑌

log𝑋
(71)

for 𝑌 ∈ {2𝑋,𝑋10}. Similarly ||||||
∑
𝑑∣𝑛

𝛼−
𝑑

||||||≪
||||||
∑

𝑒∣(𝑛,𝑃(𝑤))

𝜌+𝑒

|||||| +
||||||
∑

𝑒∣(𝑛,𝑃(𝑤))

𝜌−𝑒

||||||
and thus (69) follows once we have shown that

∑
𝑛⩽𝑌

( ∑
𝑒∣(𝑛,𝑃(𝑤))

𝜌±𝑒

)2
≪

𝑌

log𝑋

for 𝑌 ∈ {2𝑋,𝑋10}.
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Let us concentrate on showing (71) for 𝑌 = 2𝑋 as other claims follow in the same way.
Recall (59) and the definition of the parameter𝑤𝑟 from (58). Using (59) and applying the Cauchy–
Schwarz inequality and the Shiu bound (Lemma 4.1)

∑
𝑛⩽2𝑋

( ∑
𝑒∣(𝑛,𝑃(𝑤))

𝜌+𝑒

)2
≪

(∑
𝑟⩾0

2−𝑟

)
⋅

(∑
𝑟⩾0

2−𝑟
∑
𝑛⩽2𝑋

𝟏(𝑛,𝑃(𝑤𝑟))=1𝑑(𝑛)
4

)

≪
𝑋

log𝑋

∑
𝑟⩾0

2−𝑟
(
𝛽

𝛽 − 1

)16𝑟
≪

𝑋

log𝑋

as claimed since 𝛽 = 30 and ( 30
29
)16 < 2.
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