
Journal Pre-proof

Semantics of multiway dataflow constraint systems

Magne Haveraaen and Jaakko Järvi

PII: S2352-2208(20)30119-X

DOI: https://doi.org/10.1016/j.jlamp.2020.100634

Reference: JLAMP 100634

To appear in: Journal of Logical and Algebraic Methods in Programming

Received date: 27 March 2019

Revised date: 29 November 2020

Accepted date: 30 November 2020

Please cite this article as: M. Haveraaen and J. Järvi, Semantics of multiway dataflow constraint systems, Journal of Logical and Algebraic
Methods in Programming, 100634, doi: https://doi.org/10.1016/j.jlamp.2020.100634.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2021 Published by Elsevier.

https://doi.org/10.1016/j.jlamp.2020.100634
https://doi.org/10.1016/j.jlamp.2020.100634

Semantics of Multiway Dataflow Constraint Systems

Magne Haveraaena, Jaakko Järvib

aUniversity of Bergen, Norway
bUniversity of Turku, Finland

Abstract

Multiway dataflow constraint systems (MDCS) is a programming model where state-
ments are not executed in a predetermined order. Rather, individual methods are se-
lected from specific method sets and then executed to achieve a desired global state.
The selection is done by a planner, which typically bases the choice of methods on the
history of updates to the global state. MDCS is well suited for describing user inter-
face logic where choosing what code to execute depends in complicated ways on the
history of user interactions and on data availability. User interfaces are the domain of
examples in this paper.

Much of the research into MDCS has been on planning algorithms and their effi-
ciency. Here we investigate a semantic setting for MDCS, introducing dataflow con-
straints as modules with explicit goals and related method sets. MDCS is defined in a
similar manner, with an explicit goal and a set of supporting dataflow constraints. This
enables verification and testing of methods and dataflow constraints against the goals.
The exposition is based on abstract syntax for an idealised programming language with
global variables. On top of this we define a modular reuse mechanism for dataflow con-
straints based on Goguen-Burstall institution theory. We show how this setup enables
reuse in user interfaces; traditionally code that defines user interface logic is almost
invariably non-reusable.

Keywords: dataflow constraint systems, institutions, reuse, graphical user interfaces,
module system, verification and testing

1. Introduction

A dataflow constraint describes a relation amongst variables and means to sat-
isfy that relation. The latter is a set of functions, constraint satisfaction methods, that
compute values for some of the relation’s variables, using others as input. A collec-
tion of dataflow constraints to be satisfied simultaneously is a (dataflow) constraint
system. There are many variations of dataflow constraints and constraint solving algo-
rithms [1, 2, 3, 4]. The one we focus on here is multiway dataflow constraint systems
(MDCS), where information can flow in different directions between a set of variables.

Email addresses: magne.haveraaen@ii.uib.no (Magne Haveraaen), jaakko.jarvi@utu.fi
(Jaakko Järvi)

Preprint submitted to Journal of Logic and Algebraic Methods in Programming December 2, 2020

Our prior work on dataflow constraint solving include mechanisms for specializing fast
solver programs when the constraint system is known statically [5] and a study of the
properties of composing dataflows [6].

Dataflow constraints can increase the abstraction level of event-based program-
ming: when programming with dataflow constraints, the programmer declares a de-
pendency between variables but leaves the details of maintaining that dependency, what
computations and assignments need to be performed and when, to the constraint sys-
tem. The basic mode of operation is that whenever the value of a variable in a constraint
system is modified (triggered by an event from outside of the system), the constraint
solver computes a new variable valuation that satisfies all constraints in the system.

Applications of dataflow constraint systems include frameworks for graphical user
interface (GUI) programming, where constraint systems are used for tasks such as
layout and enforcing dependencies amongst user-modifiable values [7, 8, 9] (several
contemporary JavaScript GUI libraries, such as Angular, Knockout, and Backbone,
support simple forms of dataflow constraints); tools for collaborative work [10]; and
spreadsheet applications. Dataflow constraint systems have also been integrated to
general purpose host languages to be applied for varied programming tasks [11, 12].

This paper investigates the semantical underpinnings of constraint systems. Our
goal is to provide a formal framework for reasoning about constraint systems and their
compositions. The main contributions of this paper are based on a perspective on
constraint systems as a programming model:

• A simple programming language with an abstract syntax normal form corre-
sponding to multiple assignment.

• Integrated specifications allowing verification and testing.

• A module system for reuse of components based on variable substitution.

• Additional module combinators corresponding to the logical connectives &, |
and⇒ (conjunction, disjunction and implication) with most distributivity prop-
erties intact.

• Rules for flattening module expressions.

Our semantics assumes an underlying programming language for code that computes
variable valuations that satisfy individual constraints, but is completely independent of
the choice of built-in types and primitive operations of that language.

The paper introduces quite a few definitions. On the one hand they define the se-
mantics of constraint systems, which we apply in examples drawn from the domain of
GUIs. On the other hand they build towards fitting constraint systems into the insti-
tution [13] notion. Institutions are a theoretical framework for understanding model-
based logic, but they can also be used to explore metalevel design principles for pro-
gramming languages, such as modular reuse mechanisms. Our semantic foundation is
based on algebraic specification theory; see the book [14] for a comprehensive intro-
duction. The specification language CASL [15], designed around the institution notion,
and tool frameworks like Hets [16] show the flexibility that such a design offers. The
history of algebraic specifications for computer science goes back to the 1970s, with

2

Figure 1: An example GUI implemented using a constraint system.

the ADJ group [17, 18] and what was to become the Larch group [19, 20] as some
influential examples. The two books [21, 22] gave an important introduction to the
field as of the late 1980s. The flexibility of algebraic specifications for reuse has been
inspirational for our approach to MDCS semantics. Especially the role that institutions
can play in reuse and modularisation has motivated our work.

The organization of the paper is as follows. As motivation, Section 2 describes
how constraint systems appear in GUIs. It also introduces a simple constraint system
used in examples later the paper. Section 3 defines the syntax and semantics of a mul-
tiple assignment programming language. Section 4 explores dataflow constraints and
composition operators, the building blocks for multiway dataflow constraint systems.
Section 5 relates the formalism to practical programming, applying the formalism to
modeling constraint systems arising in GUIs. Section 6 gathers all the definitions and
shows how dataflow constraints form an institution. Section 7 defines constraint sys-
tems with modular reuse. Section 8 summarises our findings.

2. Motivation: Constraint systems in GUIs

We have found that complex user interface behaviors that are typically programmed
in the “event handling logic”, separately for each user interface, can be expressed as
reusable algorithms when the state of a user interface is managed as a constraint system.
Such behaviors include propagating values, enabling and disabling widgets, recording
user interaction as scripts, visualizing and controlling the dataflow, and undo [23, 24,
25].

As an example, consider the small GUI in Figure 1. This GUI for resizing an image
is a simplified version of dialogs found in many image manipulation applications. An
image’s initial width and height are determined at the launch of the dialog. The user can
specify a new width and height relative to the initial values or directly as the number
of pixels. Further, the user can request that the GUI preserves the initial aspect ratio.

The variables are dependent on each other: changing the value of one triggers
changes in others so that the GUI returns to a consistent state. These dependencies
and the set of consistent states are expressed by the constraint system in Figure 2. The
variables wi, wr, and wa are bound, respectively, to the initial, relative, and absolute
width fields and hi, hr, and ha to the corresponding height fields. Figure 2a shows the
three constraints in the system: c1 is for enforcing the relation wa = wi ∗wr, c2 the
relation ha = hi ∗hr, and c3 the relation wr = hr. The “Keep aspect ratio” checkbox has

3

wi wa

wr

c1
hiha

hr

c2

c3

(a)

wi wa

wr

m1

m2 hiha

hr

m3

m4

m5

m6

(b)

Figure 2: The constraint system arising from the GUI of Figure 1. Figure a depicts the relations (c1, c2,
and c3) amongst the variables in the system. Figure b shows the relations split into functional dependencies.
A dashed ellipsis marks the set of methods that together implement a constraint’s relation; for example,
applying either of the methods m3 or m4 satisfies c2.

no corresponding variable in the constraint system. Its value determines whether the c3
constraint is active or not.

Figure 2b shows the three constraints’ decomposed into constraint satisfaction meth-
ods; executing a method satisfies the relation of its constraint. Solving a multiway
dataflow constraint system boils down to selecting one method from each constraint
such that they can be executed in an order that does not invalidate already enforced
constraints, and then executing the selected methods in such an order.

3. Syntax and Semantics of a Multiple Assignment Language

Here we define a programming model for multiway dataflow constraint systems as
an abstract programming language, i.e., with abstract syntax and semantics relative to a
base API. This follows the ideology suggested by the ADJ group [18] of not looking at
the concrete syntax but focusing on the initial algebra of the syntax. In our case we can
use the multiple assignment as the normal form for the syntax. The language builds on
a base API (interface) that abstracts all primitive types and functions of the language,
includes all standard library types and functions, and encompasses any domain specific
extension needed by a user. In this way we achieve several exposition simplifications,
yet a precise definition of the programming language.

• We avoid a lengthy exposition of grammar rules for the concrete syntax.

• We avoid deciding what types and operations are part of the language or library.

• We do not have to describe how to declare and implement new types and func-
tions at the user level, since we can assume all such definitions are embodied in
the base API.

Dealing with any of these issues becomes an orthogonal extensions to the exposition
of the abstract programming language.

As can be seen in the introductory example, constraints of a constraint system are
connected by matching variable names. Thus, mechanisms for a module system based
on variable matching are central to our presentation. These pieces are connected in
Section 6.

In this section we first define standard notions of interfaces (signatures), expres-
sions, and predicate expressions. Then we define a small programming language built

4

on multiple assignment statements. This programming language is given a simple set
theoretic semantics for an arbitrary model of the base interface.

In this exposition we need to reconcile established terminology and notation of
algebraic specifications, programming languages, and constraint systems. We decided
to use a terminology close to programming languages. Thus we use interface I where
algebraic specifications use signature Σ, we separate expressions EI (which algebraic
specifications call terms) and statements SI since both of these are terms in language
theory, call an individual statement a method m ∈ SV (which also rings nicely with
multiple assignment statement) to be compatible with constraint system terminology
and avoid confusion with substitutions s, and we replace the term algebra A with the
term model µ to avoid confusion with assignment sets Aµ,V . We also use the unfamiliar
adjective staid to introduce specific requirements on interfaces and models. The staid
properties serve two purposes: to allow a uniform use of reasoning tools for expressions
and predicates for dataflow constraint systems, and to provide an equivalence relation
on methods (statements) which have multiple assignments as representatives—another
benefit of the initial algebra approach to syntax.

Syntactic substitutions define mappings on variables, expressions and statements.
We explore substitution as a means of adapting variable names for modular reuse, and
as a means of formalising both multiple assignment and statement composition. In
Section 6 we use substitutions to build a module system based on variable alignment
in the institution setting.

3.1. Interfaces and Expressions

Type correct expressions are constructed from typed function declarations and a set
of typed variables, where the types and functions are declared by an interface.

Definition 3.1. An interface I declares a set of types Typ(I) and a set of functions
Fun(I). A function f ∈ Fun(I) has an argument list arg(f) = (t1, . . . , tk) ∈ Typ(I)∗,
k ≥ 0, and a result type res(f) = t ∈ Typ(I).

The notation X∗ denotes all sequences of elements from the set X . As a shorthand,
a function declaration can be written f : t1, . . . , tk→ t. w

Definition 3.2. A staid interface I is an interface with a type Predicate ∈ Typ(I) and
functions

== : t, t→ Predicate for all t ∈ Typ(I) (equality),
(? :) : Predicate, t, t→ t for all t ∈ Typ(I) (choice),

TRUE ,FALSE :→ Predicate (truth values),
! : Predicate→ Predicate (negation), and

& , | , => : Predicate,Predicate→ Predicate (conjunction, disjunction,
implication).

A function with a result type Predicate is called a predicate.

Definition 3.3. A collection of variables V for an interface I declares a set of variable
names Nam(V) and a function typV : Nam(V)→ Typ(I).

5

As a shorthand, we write v∈V rather than v∈Nam(V), and we drop the subscript V
on typV when it is unambiguous. The same goes for other set operations on variables,
assuming that the typing functions are compatible. For instance, the subset relation
X ⊆V holds when Nam(X)⊆ Nam(V) and typX (x) = typV (x) for every x ∈ Nam(X).
Let /0 denote the empty collection of variables, i.e., Nam(/0) = {}.

Definition 3.4. The expressions of type t ∈ Typ(I) on an interface I with variables V
is a set EI,V,t freely generated by

• for v ∈ Nam(V) with typ(v) = t, then v ∈ EI,V,t , and

• for f : t1, . . . , tk → t ∈ Fun(I), e1 ∈ EI,V,t1 , . . . , ek ∈ EI,V,tk , then f (e1, . . . ,ek) ∈
EI,V,t .

In expressions we use the function name as a shorthand for the function declaration,
tacitly assuming that all ambiguities are handled as needed. Let the set of all type
correct expressions be EI,V = ∪t∈Typ(I)EI,V,t . The expressions EI, /0 are called variable-
free. For an expression e ∈ EI,V , we let var(e)⊆V be the set of variables that appear in
e, and we extend the typing function from variables to typ : EI,V →Typ(I) by typ(e) = t
for e ∈ EI,V,t .

Aligning methods on global variables is an important aspect of multiway dataflow
constraint systems. We therefore introduce substitution as a mechanism to change
variables in expressions.

Definition 3.5. Let I be an interface and X and Y be variables for I.

• A substitution (on variables) s : X → EI,Y is a function from Nam(X) to EI,Y
such that typ(x) = typ(s(x)) for all x ∈ Nam(X).

• If s(x) ∈ Y for all x ∈ X ′ ⊆ X then s is a renaming limited to X ′. It is simply a
renaming when it is a renaming for all of X .

There is no requirement that X and Y are disjoint. We do not impose any injectivity or
surjectivity requirements on a renaming.

Given a distinct set of variables X = {x1, . . . ,xn}, we can define a substitution s :
X → EI,Y by the list [x1 7→ e1, . . . ,xn 7→ en], for e1, . . . ,en ∈ EI,Y , meaning s(x1) =
e1, . . . , s(xn) = en.

A substitution on variables s : X → EI,Y can be extended to a substitution on ex-
pressions, i.e., to a function s : EI,X → EI,Y defined by

s(e) =

{
s(e) for e ∈ X ,
f (s(e1), . . . ,s(ek)) for e = f (e1, . . . ,ek).

(1)

Note that variable substitution aligns with expression substitution for variables, s(x) =
s(x) for all x ∈ X . We therefore normally overload the notation using s for both.

Definition 3.6. Let X , Y and Z be variables for an interface I.
The composition of a substitution r : X → EI,Y and s : Y → EI,Z is a substitution

(s◦ r) : X → EI,Z defined by

(s◦ r)(x) = s(r(x)). (2)

6

Substitution composition is associative since function composition is associative.
Define idV : V → EI,V by idV (v) = v for all variables v ∈ V , then idV is neutral w.r.t.
composition. That is, for s : X → EI,Y then idY ◦ s = s and s◦ idX = s. The composition
of two renamings is a renaming, the composition of injective renamings is injective,
the composition of surjective renamings is surjective, and the composition of bijective
renamings is bijective.

Predicate expressions should follow normal semantic conventions.

Definition 3.7. Let I be a staid interface with variables x,y,z,x1, . . . ,x′1, . . . ∈ V , the
types of which are clear from the context.

In a staid model for I the following properties hold

TRUE 6= FALSE, (3)
(x == x) = TRUE, (4)

(x == y) = TRUE ⇔ (y == x) = TRUE, (5)
(x == y) = FALSE ⇔ (y == x) = FALSE, (6)(

x == y & y == z) = TRUE ⇒ (x == z
)
= TRUE, (7)(

x1 == x′1 & . . . & xk == x′k
)
= TRUE ⇒

(
f (x1, . . . ,xk) == f (x′1, . . . ,x

′
k)
)

= TRUE
for all f : t1, . . . , tn→ t ∈ Fun(I), (8)

TRUE ?x : y = x, (9)
FALSE ?x : y = y, (10)

TRUE & TRUE = TRUE, (11)
TRUE & FALSE = FALSE, (12)
FALSE & TRUE = FALSE, (13)

FALSE & FALSE = FALSE, (14)
TRUE | TRUE = TRUE, (15)

TRUE | FALSE = TRUE, (16)
FALSE | TRUE = TRUE, (17)

FALSE | FALSE = FALSE, (18)
TRUE => TRUE = TRUE, (19)

TRUE => FALSE = FALSE, (20)
FALSE => TRUE = TRUE, (21)

FALSE => FALSE = TRUE, (22)
! TRUE = FALSE, (23)

! FALSE = TRUE. (24)

The first line states that the two constants TRUE,FALSE are different, the next 4
lines establish that == is an equivalence relation (in the model), while Equation 8 adds
the congruence property. The next two lines define the effect of the choice function.
The rest are truth tables for the boolean connectives. From this we can, for a two-
valued logic, derive the associative and commutative properties for & and | , their

7

distributivity, p => q = ! p | q, involutive properties for ! , de Morgan’s laws, p?e1 :
e2 = ! p?e2 : e1, etc. From Equations (4-8) it follows that == is a congruence for I.
We also have that, interpreting e1 == c2 as a shorthand for (e1 == c2) = TRUE,

• when e1 == e2 then s(e1) == s(e2) for expressions e1,e2 ∈ EI,X and substitution
s : X → EI,Y , and

• when e1 == e′1, . . . ,en == e′n, for n a natural number, then [x1 7→ e1, . . . ,xn 7→
en](e) = [x1 7→ e′1, . . . ,xn 7→ e′n](e) for expressions e1,e′1, . . . ,en,e′n ∈ EI,Y and
e ∈ EI,X and distinct variables x1, . . . ,xn ∈ X .

This approach is very similar to the approach taken in Larch and is supported by the
Larch prover [19, 20]. Note that =, ⇒, ⇔ are at the proof system level, thus putting
restrictions on staid models. The “proof table” setup gives the normal semantics of
predicates when generated in TRUE,FALSE, while admitting multivalued logics with-
out any limiting constraints.

3.2. Multiple Assignment Statements
The basic building block for algorithms in our abstract programming language are

sequences of multiple assignments and choice statements. We term such sequences
methods, and treat them as our algorithmic units.

Definition 3.8. Let I be a staid interface and V variables for I.
The statements (or the methods) SI,V for interface I with variables V are freely

generated by

• (multiple assignment) x1, . . . ,xn := e1, . . . ,en where xi ∈ V , ei ∈ EI,V , all xi are
distinct, and Typ(xi) = Typ(ei) for all i where 0 < i≤n,

• (skip) skip,

• (sequence) m1;m2 where m1,m2 ∈ SI,V are statements, and

• (choice) if p thenm1 elsem2 end where p ∈ EI,V,Predicate and m1,m2 ∈ SI,V are
statements.

Note the similarity between multiple assignment statements and substitutions. We
will use this to translate between the two notions.

Definition 3.9. Let m = (x1, . . . ,xn := e1, . . . ,en) be a multiple assignment statement
and s = [x1 7→ e1, . . . ,xn 7→ en] be a substitution for a staid interface I with distinct
variables x1, . . . ,xn ∈V and expressions e1, . . . ,en ∈ EI,V .

Define m |� = s (met-to-sub) which takes a multiple assignment statement to its
corresponding substitution, and s−� = m (sub-to-met) which takes a substitution to its
corresponding multiple assignment statement.

The two operations are inverses, i.e., m = (m |�)−� and s = (s−�) |�.
We consider an assignment v := v to be vacuous, and that we can add/remove vac-

uous assignments in any multiple assignment statement, i.e., x1, . . . ,xn := e1, . . . ,en =
x1, . . . ,xn,v := e1, . . . ,en,v for v 6∈ {x1, . . . ,xn}. The following links vacuous assign-
ments with modifications of substitutions.

8

Definition 3.10. Let I be an interface, V,X ,Y be variables for I and s : X → EI,Y be a
substitution.

• The V -extended substitution dseV : (X ∪V)→ EI,Y∪V is the substitution

dseV (v) =

{
s(v) v ∈ X
v otherwise.

• Define m |�V = dm |�eV as a shorthand to extend the substitution corresponding to
a multiple assignment m with extra variables.

• The V -stripped substitution bscV : X ′ → EI,Y ′ , where the variables X ′ = X ∩V
and Y ′ = ∪x∈X ′var(s(x))⊆ Y , is the substitution bscV (x) = s(x) for all x ∈ X ′.

• The trimmed substitution bsc= bscV ′ , where V ′ = {x ∈ X | s(x) 6= x}.

• Define sb−�c = bs−�c as a shorthand for trimming the multiple assignment state-
ment corresponding to a substitution s.

Fact 3.11. Trimming a substitution s removes all identity mappings from the substitu-
tion. Thus bidV c is the empty substitution, bsc= bbscc, and bsc= bdseV c. If X ∩Y = /0

then dseV ◦dseV = dseV and bsc= s.

In accordance with statement semantic conventions, we want the following proper-
ties for methods.

Definition 3.12. Let I be an interface, x1, . . . ,x′1, . . .∈V be variables for I, e1, . . . ,e′1, . . .∈
EI,V be expressions, and p ∈ EI,V,Predicate be a predicate expression.

In a staid statement semantics the following properties hold:

• Any permutation of assignments x1, . . . ,xn := e1, . . . ,en has the same semantics.

• Adding or removing a vacuous assignment from a multiple assignment statement
has the same semantics as the original multiple assignment.

• skip has the same semantics as the vacuous assignment ε := ε, where ε is the
empty list of variables.

• if p thenx1, . . . ,xn := e1, . . . ,en elsex1, . . . ,xn := e′1, . . . ,e
′
n end has the same se-

mantics as x1, . . . ,xn := p?e1 : e′1, . . . , p?en : e′n.

• Let

m =
(
x1, . . . ,xn := e1, . . . ,en

)
,

m′ =
(
x′1, . . . ,x

′
n := e′1, . . . ,e

′
n′
)

be multiple assignment statements. Then m;m′ has the same semantics as

x′1, . . . ,x
′
n′ , . . . ,x j, . . . := m |�V (e′1), . . . ,m

|�V (e′n′), . . . ,m
|�V (x j), . . .

where x j ∈ {x1, . . . ,xn}\{x′1, . . . ,x′n′}.

9

Note that a multiple assignment statement for variables X ⊆V can be expanded to
a multiple assignment statement on all variables of V by adding vacuous assignments.
This simplifies reasoning on composition of multiple assignment statements.

The staid semantics properties define a quotient on method syntax, with multiple
assignment statements as (non-canonical) representatives for each equivalence class.

Proposition 3.13. In staid semantics any statement is equivalent to a single multiple
assignment statement.

Proof. We take the claim as an induction hypothesis. By staid semantics, the skip
statement is a multiple assignment. By the hypothesis, the statements in each branch of
a choice statement can be coalesced into a single multiple assignment. By staid seman-
tics, a choice statement with a multiple assignment in each branch can be replaced by
a single multiple assignment statement. By staid semantics, a sequence of assignments
can be replaced by a single assignment statement.

Proposition 3.14 (Contravariant composition rules for methods/substitution). Let m
and m′ be two multiple assignment statements, then in staid semantics (m;m′) |�V =

m |�V ◦m′ |�V .

Proof. Let the substitution s = m |�V and s′ = [. . . ,x′j 7→ e′j, . . .] = m′ |�V . The compo-
sition m;m′ corresponds to the substitution [. . . ,x′j 7→ s(e′j), . . .], which is the same as
[. . . ,x′j 7→ s(s′(x′j)), . . .] = s◦ s′.

Proposition 3.15. For staid semantics the statement composition is associative with
skip as the neutral statement.

Proof. The composition of three multiple assignment statements m,m′,m′′ can be stud-
ied as the composition of the corresponding substitutions,

(
(m;m′);m′′

) |�V
= (m |�V ◦

m′ |�V)◦m′′ |�V = m |�V ◦ (m′ |�V ◦m′′ |�V) =
(
m;(m′;m′′)

) |�V .

With the initial algebra approach to syntax and staid semantics, we can now use
a single multiple assignment statement as the normal form for any sequence of state-
ments. We will typically choose either a trimmed assignment method (m |�)b−�c or an
assignment method extended to all the variables (m |�V)−�, though other representatives
can be used when needed.

We have omitted loops from our language since method execution will be con-
trolled by an outside planner or iterator. If iteration is needed within a method, we
assume the library provides the needed facilities.

We can further extend substitution to act on multiple assignment statements, i.e.,
arbitrary methods presented in their normal form.

Definition 3.16. Let V,W be variables for an interface I, m ∈ SI,V be a multiple assign-
ment statement m = (x1, . . . ,xn := e1, . . . ,en) for x1, . . . ,xn ∈ V and e1, . . . ,en ∈ EI,V ,
and the substitution s : V → EI,W be an injective renaming for X = {x1, . . . ,xn} ⊆V .

The application of s to m yields a multiple assignment statement s(m) ∈ SI,W de-
fined as s(x1), . . . ,s(xn) := s(e1), . . . ,s(en).

10

Here the left hand side variables that are replaced by proper expressions have to be
removed from the multiple assignment after substitution. The right hand side expres-
sions are changed according to the normal application of a substitution on expressions.

3.3. Semantics
Our semantic notion is that of heterogeneous or many-sorted algebras [14]. We

interpret types as denoting sets and functions as denoting total set theoretic functions.
This gives flexibility in choosing both the interface and a model for the interface, but
such that the predicate type and a few predicate operations must have a staid interpre-
tation. This flexibility allows us to work with any domain-specific API and associated
semantics when solving practical problems. We just “plug in” the appropriate interface
and algebra to become compatible with the selected problem domain. The syntactic
and semantic framework has been defined with this in mind.

Definition 3.17. The model µ : I → Set of an interface I defines a set µ(t) for every
t ∈ Typ(I) and a total function µ(f) : µ(t1)×·· ·× µ(tk)→ µ(t) for every function f :
t1, . . . , tk→ t ∈ Fun(I).

Definition 3.18. A standard model µ for a staid interface I is a model for I where

µ(Predicate) = {tt,ff}, (25)
µ(TRUE) = tt, (26)

µ(FALSE) = ff, (27)

µ(==)(x,y) =

{
tt when x = y,
ff when x 6= y, (28)

µ(? :)(p,y,z) =

{
y when p = tt,
z when p = ff, (29)

µ(&)(p,q) =

{
tt when p = q = tt,
ff when p = ff or q = ff, (30)

µ(|)(p,q) =

{
tt when p = tt or q = tt,
ff when p = q = ff, (31)

µ(=>)(p,q) =

{
tt when p = ff or q = tt,
ff when p = tt and q = ff, (32)

µ(!)(p) =

{
tt when p = ff,
ff when p = tt, (33)

and tt and ff are distinct values.

Any model isomorphic to the standard model above is also considered a standard
model for a staid interface.

In algebraic semantics variables are placeholders for values. A variable can be
allocated a value of the appropriate type.

Definition 3.19. An allocation a : V → µ of values to variables V for an interface I
with model µ defines a value a(v) ∈ µ(typ(v)) for all v ∈ Nam(V).

Define Aµ,V = {a : V → µ} to be the set of all allocations of values from µ to
variables V .

11

Definition 3.20. Let µ be a model for the interface I and a ∈ Aµ,V be an allocation to
variables V for I.

The evaluation [[]]µ,a,t : EI,V,t → µ(t) of expressions of type t ∈ Typ(I) with alloca-
tion a is defined by

[[e]]µ,a,t =

 a(e) for e ∈V,
µ(f)([[e1]]µ,a,t1 , . . . , [[ek]]µ,a,tk) for e = f (e1, . . . ,ek) and

f : t1, . . . , tk→ t.
(34)

We often omit the type information from [[e]]µ,a,t , writing just [[e]]µ,a, since we always
have that t = typ(e). Variable-free expressions EI, /0 represent all values of µ that we can
denote. A model µ may contain undenotable values. For instance, relatively few of the
mathematical real numbers are denotable.

Proposition 3.21. For a staid interface the standard semantic model is staid.

Proof. Follows easily from the definition of staid expressions and the semantic prop-
erties above.

We can now study semantics for substitutions. First define the allocation sµ,b :
X → µ by sµ,b(x) = [[s(x)]]µ,b where X ,Y are variables for interface I, s : X → EI,Y is a
substitution, and b : Y → µ is an allocation.

Definition 3.22. Let µ : I→ Set be a model and X ,Y be variables for an interface I.
The semantics of a substitution s : X → EI,Y is a contravariant mapping of alloca-

tions [[s]]µ, : Aµ,Y → Aµ,X defined by [[s]]µ, (b) = sµ,b.

Proposition 3.23. Let I be an interface, X and Y be variables for I, µ : I→ Set be a
model for I, s : X → EI,Y be a substitution, and b : Y → µ be an allocation.

For any expression e ∈ EI,X we have that [[s(e)]]µ,b = [[e]]µ,sµ,b .

Proof. Here sµ,b ∈ Aµ,X is an allocation that gives all variables in e a value. The value
for variable x is sµ,b(x) = [[s(x)]]µ,b, where s(x) is the subexpression replacing x in e.
Hence, for all variables x ∈ X , evaluating the subexpression s(x) inside s(e) for alloca-
tion b yields the same value as using sµ,b(x) directly in e.

The standard semantics for imperative languages requires the use of a global store
indexed by locations [26]. The variables of the program denote locations, and the con-
tent of the variable is stored at the location. This allows the modelling of pointers, of
data structures requiring more than one location, such as C style arrays, and other ef-
fects of a language design that allows aliasing. Even though our notion of methods are
imperative in the sense that we assign values to variables in the multiple assignment
statements, we do not require a global store in our setting. The reason is that we can
model the association of variables to values by allocations as defined above. Rather
than using a global store, we define the semantics of methods as allocation transform-
ers.

Definition 3.24. Let µ : I → Set be a standard model for the staid interface I with
variables V .

12

The semantics of a statement m ∈ SI,V is a transformation of allocations [[m]]µ, :
Aµ,V → Aµ,V where for allocation a ∈ Aµ,V and each method (see 3.8)

[[x1, . . . ,xn := e1, . . . ,en]]µ,a(v) =


[[e1]]µ,a when v = x1,
...
[[en]]µ,a when v = xn,
a(v) otherwise,

(35)

[[skip]]µ,a(v) = a(v), (36)
[[m1;m2]]µ,a(v) = [[m2]]µ,[[m1]]µ,a(v), (37)

[[if p thenm1 elsem2 end]]µ,a(v) =

{
[[m1]]µ,a(v) when [[p]]µ,a = [[TRUE]]µ,
[[m2]]µ,a(v) when [[p]]µ,a = [[FALSE]]µ. (38)

Fact 3.25. The semantics of statement sequencing is the covariant composition of the
component allocation transformations, [[m1;m2]]µ, = [[m2]]µ, ◦ [[m1]]µ, .

Due to the semantics of substitutions being contravariant to the substitutions, and
the substitutions being contravariant to the methods, we end up with the semantics of a
method and its associated substitution to be the same.

Proposition 3.26. Let m∈ SI,V be a method and s : X→ EI,Y be a substitution for staid
interface I with a standard semantics µ and variables X ,Y ⊆ V . Then the following
holds:

[[m]]µ, = [[m |�]]µ, : Aµ,V → Aµ,V

[[dseV]]µ, = [[s−�]]µ, : Aµ,V → Aµ,V

Proof. For the first claim, note that for any v ∈V and any a ∈ AI,V , we have that

[[m]]µ,a(v) = [[m |�V]]µ,a(v) = (dm |�V e)µ,a(v).

Similarly for the second claim, we have that

[[s−�]]µ,a(v) = [[dseV (v)]]µ,a = (dseV)µ,a(v).

Proposition 3.27. Let µ : I → Set be a standard model for the staid interface I with
variables V .

Then the semantics for methods m ∈ SI,V is staid.

Proof. The proof is by cases from the definition of staid statement semantics 3.12.

• Since all variables are distinct, the defined multiple assignment of new values to
variables is independent of ordering of assignments within the statement.

• A missing variable assignment or a vacuous assignment both represent the iden-
tity allocation mapping, [[ε := ε]]µ,a = a = [[x1, . . . ,xn := x1, . . . ,xn]]µ,a for all a ∈
Aµ,V .

13

• The skip statement and the vacuous assignment both represent the identity allo-
cation mapping, [[skip]]µ,a = a = [[ε := ε]]µ,a for all allocations a ∈ Aµ,V .

• [[if p thenx1, . . . ,xn := e1, . . . ,en elsex1, . . . ,xn := e′1, . . . ,e
′
n end]]µ,a(v) is equal to

[[x1, . . . ,xn := p?e1 : e′1, . . . , p?en : e′n]]µ,a(v) for all variables v ∈ V and for all
allocations a ∈ Aµ,V .

• The semantics of sequences m;m′ of multiple assignments m,m′ ∈ SI,V , where
m′ = (. . . ,x′i, . . . := . . . ,e′i, . . .), is

[[m;m′]]µ,a(v) = [[m′]]µ,[[m]]µ,a(v)

=


. . .
[[e′i]]µ,[[m]]µ,a when v = x′i,
. . .
[[m]]µ,a(v) otherwise

=


. . .
[[e′i]]µ,(m |�V)µ,a

when v = x′i,
. . .

(m |�V)µ,a(v) otherwise

=


. . .

[[m |�V (e′i)]]µ,a when v = x′i,
. . .

m |�V (v) otherwise

= [[. . . ,x′i, . . . ,x j, . . . := . . . ,(m |�V)(e′i), . . . ,m
|�V (x j) . . .]]µ,a,

for all variables v ∈V and for all allocations a ∈ Aµ,V .

3.4. Axioms and Propositions for Models

If a predicate expression is true for all allocations in a model, it is a “property” of
the model. A property is an “axiom” if we think of it as a requirement on which models
we will accept. It is a “proposition” of the model if it happens to hold in a chosen
model. In principle we can prove the “propositions” from the “axioms” of a model.
Technically “axioms” and “propositions” are the same, the only difference being the
authors’ perspective. We will use the term axiom except when we specifically want to
emphasise that the property should be proved for a model. Axioms demand properties
of models, without deciding exactly which model we are considering. The properties
we defined for staid semantics of staid interfaces are axioms on the models.

Definition 3.28. Let I be an interface and V a collection of variables for I.
An axiom is a predicate expression p ∈ EI,V,Predicate.
A model µ for I satisfies an axiom p ∈ EI,V,Predicate, written µ |=I,V p, iff [[p]]µ,a =

[[TRUE]]µ for all allocations a ∈ Aµ,V .

14

For short we say that p holds for µ when meaning µ |=I,V p.
This definition gives us boolean expression logic as our specification formalism.

Boolean expressions are part of our staid interface notation, and are common as ex-
pressions in programming languages. Such axioms can be tested by running them as
normal code and providing test cases as input data for the predicate’s variables (alloca-
tions in our exposition above) [27]. Algebraic specification theory identifies a sequence
of increasingly more powerful logics leading up to predicate logic: equational logic,
conditional equational logic, boolean expression (propositional) logic, first order pred-
icate logic [14]. In this sequence, boolean expression logic is the most powerful logic
that can easily be tested in a programming language setting.

Example 3.29. For an interface I with predicate ≤ : t, t → Predicate, the following
axioms on variables {x,y,z} of type t define a total order on the type t: x≤x (reflexive),
x≤y & y≤x⇒ x == y (antisymmetric), x≤y & y≤z⇒ x≤z (transitive), and x≤y | y≤x
(connected).

Here we used the shorthand of providing a set of axioms P⊆EI,V,Predicate rather than
explicitly writing one big axiom & p∈P p (recall that in the standard model & is asso-
ciative and commutative):

(
µ |=I,V P

)
=
(
∀(p ∈ P)(µ |=I,V p)

)
=
(
µ |=I,V (& p∈P p)

)
.

Axioms can be used to verify properties of software if they convey enough infor-
mation about the model. Axioms are resistant to variable substitution.

Proposition 3.30. Let X ,Y be variables for I, s : X → EI,Y a substitution, and µ a
model for I. If an axiom p ∈ EI,X ,Predicate holds in µ, then s(p) ∈ EI,Y,Predicate holds in µ.

Proof. That p ∈ EI,X ,Predicate holds in µ means that p holds for every allocation a : X→
µ. Let b : Y → µ be some allocation. Then, for all e ∈ EI,Y we have that [[s(e)]]µ,b =
[[e]]µ,sµ,b . Hence, s(p) holds for b, since p holds for any allocation. Since the choice of
b : Y → µ was arbitrary, s(p) will hold in µ whenever p holds in µ.

Example 3.31. Here we show how to specify semiring (sometimes called rig) using
the notions we have introduced for axioms. The interface can be written as

type T;

function mult (a:T, b:T) : T;

function one () : T;

function plus (a:T, b:T) : T;

function zero () : T;

with axioms stating that:

• mult is a monoid with one as unit:
mult (mult (a,b),c) == mult (a, mult (b,c)) and mult (a, one ()) == a

and mult (one (),a) == a.

• plus is a commutative monoid with zero as unit: plus (plus (a,b),c)==

plus (a, plus (b,c)) and plus (a, zero ())== a and plus (zero (),a)== a

and plus (a,b) == plus (b,a).

15

• mult distributes over plus :

mult (a, plus (b,c)) == plus (mult (a,b), mult (a,c)) and

mult (plus (b,c),a) == plus (mult (b,a), mult (c,a)).

• mult by zero annihilates: mult (a, zero ()) == zero () and
mult (zero (),a) == zero ().

A semiring is commutative if mult is commutative: mult (a,b) == mult (b,a).
The standard example of a commutative semiring is the natural numbers: multiplication
for mult with 1 for one and addition for plus with 0 for zero .

A semiring is idempotent if plus is idempotent: plus (a,a) == a. Examples

of commutative idempotent semirings are the tropical semirings: addition for mult

with 0 for one and minimum (or maximum) for plus with ∞ (respectively −∞) for
zero .

Idempotent commutative semirings show up also when we investigate dataflow
constraint properties in Section 4.2

4. Dataflow Constraints

From now on we update our terminology to match the literature on multiway
dataflow constraint systems. All interfaces will be staid with only standard semantic
models (two valued logic).

The constraints CI,V = EI,V,Predicate are the predicate expressions for interface I with
variables V . A constraint c ∈ CI,V holds for an allocation a ∈ Aµ,V when [[c]]µ,a =
[[TRUE]]µ. A method is a multiple assignment statement m ∈ SI,V , or dually, a substi-
tution m |�V : V → EI,V which is contravariant to the statement. Further, the semantics
of a method m is a covariant mapping of allocations, while the semantics of the corre-
sponding substitution m |�V is a contravariant mapping of allocations, i.e., for a method
sequence m1;m2 we get that [[m1;m2]]µ, = [[m |�V

1 ◦m |�V
2]]µ, : AI,V → AI,V .

We call X = out(m) the outputs and Y = inp(m) the inputs of m ∈ SI,V for m |� :
X → EI,Y and variables X ,Y ⊆ V . The variables common to X and Y , upd(m) =
inp(m)∩ out(m), are called the updates of m. The method is minimal, if its corre-
sponding substitution is trimmed. We implicitly refer to the minimal method when
talking about its inputs and outputs.

Definition 4.1. Let c∈CI,V be a constraint on variables V for the interface I, µ a model
for I, and m a method with inputs X and outputs Y , for variables X ,Y ⊆V . The method
m satisfies the constraint c in µ, written m |=I,µ,V c, iff [[c]]µ,[[m]]µ,a holds for any allocation
a ∈ Aµ,V .

Thus constraint c holds for m in µ. Note that holding means that m establishes c in
one step.

The definition is equivalent to [[m |�V (c)]]µ,a holding for any allocation a ∈ Aµ,V , i.e.,
µ |=I,V m |�V (c), basically elevating the constraint satisfaction to a “proposition” that

16

should hold in the model. There is a rich literature and many tools, see for instance
[20, 16], for proving propositions from known properties (axioms) of the model.

Such a property can also be tested by choosing allocations (values) for the vari-
ables. Testing helps increase confidence in the correctness of the code m related to the
constraint c. Randomly selecting allocations is often an efficient approach to thorough
testing [28]. In some circumstances a careful selection of test cases amounts to proving
a proposition [29].

Definition 4.2. Let µ be a model for an interface I. A (multiway) dataflow constraint
is a tuple d = 〈V,c,M〉 where

• V are variables for I,

• c ∈CI,V is a constraint, and

• M ⊆ SI,V is a set of methods m on V .

A dataflow constraint is sound if all the methods m ∈ M satisfy c in a model µ, i.e.,
m |=I,µ,V c.

Let var, con and met be the projections for dataflow constraints that return the
variables V , the constraint c and the methods M, respectively. We denote by DI,V the
set of all dataflow constraints with variables V for interface I. The sound dataflow
constraints on a model µ for I are denoted by DI,V,µ ⊆ DI,V .

Example 4.3. Assume the declarations and axioms for ≤ from example 3.29. A
dataflow constraint that maintains the relationship x≤ y between two variables x and y
is:

R = 〈{x : t,y : t},x≤ y,{x := y,y := x, ifx≤y then skipelsex,y := y,xend}〉.

The first two methods satisfy c because x≤x (reflexive), while the third satisfies c be-
cause x≤y | y≤x (connected).

We mentioned above that the set of input and output variables of a method do
not have to be mutually exclusive. The values that a method computes to its output
variables can depend on the previous values of those variables. We do not assume that
such methods are idempotent. The following example demonstrates this.

Example 4.4. Assume a base API with integer operations and the integers as seman-
tics. Define the dataflow constraint

〈{ f1 : int, f2 : int},TRUE,{ f1, f2 := f2, f1 + f2}〉.

Executing the constraint’s sole method repeatedly, from initial values f1 = 0, f2 = 1,
leads to the variable f1 to go through the Fibonacci numbers.

17

4.1. Dataflow Constraint Combinators

Dataflow constraint combinators allow us to combine dataflow constraints in the
same way as we combine constraints: there are dataflow constraints for TRUE,FALSE,
disjunction, sequencing, conjunction and implication. The combinators take into ac-
count combining sets of variables, combining the constraints and combining the meth-
ods of the involved dataflow constraints. The definitions below are not canonical, and
other variations are possible. The combinators are defined to achieve many of the ex-
pected properties of logical combinators while being syntactically recognisable. For
instance:

• When defining the disjunction of two dataflow constraints d1,d2, we take the
disjunction of the two constraints con(d1) | con(d2) and union of the two method
sets met(d1)∪met(d2). We could have included also two-sided sequencing of
the two method sets {(m1;m2),(m2;m1) |m1 ∈met(d1),m2 ∈met(d2)}, but then
we would not achieve associativity of the disjunction combinator. If we decide
to use one-sided sequencing {(m1;m2) | m1 ∈met(d1),m2 ∈met(d2)} we loose
commutativity.

• For sequencing of two dataflow constraints d1,d2 we take the conjunction of
the two constraints con(d1) & con(d2) and the sequence of the two method sets
met(d1);met(d2) = {(m1;m2) | m1 ∈ met(d1),m2 ∈ met(d2)} when the output
variable of m2 does not modify con(d1). We could have relaxed this to also al-
low m1; ifm |�2 (con(d1)) thenm2 else errorend, since we have no alternative for
the else part. Now at runtime the planner could backtrack when reaching an
error, but then the runtime efficiency guarantees of planners will change. Or
we could prove that the condition m |�2 (con(d1)) will hold in the selected model,
and include the unconditional m1;m2 in met(d1 d2), but this requires a power-
ful proof system as part of a software tool for the sequence combinator, giving
unpredictable compile times for dataflow constraint combinators.

• We could introduce additional syntactic constraints on methods, e.g., that output
and input variable sets always have to be disjoint. This will have the beneficial
effect of making method sequencing idempotent m;m = m, but would disallow
sequencing two methods x := y+5;y := x+4 since x,y := y+5,y+9 is illegal.

That said, studying planners and their syntactic requirements may allow us to come up
with more specialised variants of the dataflow constraint combinators with interesting
and useful properties.

The following two dataflow constraints play an important role in establishing useful
algebraic properties of constraint system combinators.

Definition 4.5. The dataflow constraint F = 〈 /0,FALSE, /0〉. The dataflow constraint
T = 〈 /0,TRUE,{ε := ε}〉.

We can now combine dataflow constraints and also adapt them to different use
contexts.

18

Proposition 4.6 (Trimming method sets). Let d = 〈V,c,M〉 be a sound dataflow con-
straint for model µ for interface I, and M′ ⊆ SI,V .

Then d′ = 〈V,c,M \M′〉 is also a sound dataflow constraint for model µ.

Proof. It is clear that d′ is dataflow constraint with fewer methods than d, but each
method in d′ is also in d, so d′ is also sound.

Theorem 4.7 (Substitution). Let µ be a model for an interface I, d = 〈V,c,M〉 a sound
dataflow constraint for µ, and s : V → EI,W a substitution where V,W are variables for
I. Define s(d) = 〈W,s(c),M′〉 where

M′= {s(m) | for those m ∈M where s is an injective renaming when limited to out(m).}

Then s(d) is a sound dataflow constraint for µ.

Proof. There are two cases to consider: (1) variables v that are being assigned to in m,
. . . ,v, . . . := . . . ,e, . . . and (2) variables x that are not being assigned to. Both v and x are
possibly appearing on the right hand side of m and possibly used in c. The substitution
will map variables v to variables v′= s(v), and map x to expressions s(x) and expression
e to expression s(e). So in s(c) we will have v′ in place of v and e′ in place of x, and
s(m) will have the form . . . ,v′, . . . := . . . ,s(e), We know that m |�V (c), where v has
been replaced by e, holds in µ, and thus s(m |�V (c)), where v has been replaced by s(e)
and x has been replaced by s(x), holds in µ. In s(m) |�V (s(c)), v has been replaced by v′

that is replaced by s(e) and x has been replaced by s(x). Hence s(m) |�V (s(c)) holds in
µ, as claimed.

The substitution theorem allows us to reuse existing dataflow constraints in new
contexts. Here we remove methods rather than place conditions on s. If s is very well
behaved, i.e., it only renames the output variables of the methods in M, then none of
the methods will be removed.

Proposition 4.8 (Disjunction). Let µ be a model for an interface I with variables V , and
d1 = 〈V1,c1,M1〉 and d2 = 〈V2,c2,M2〉 be dataflow constraints, such that V1,V2 ⊆ V .
Define d1|d2 = 〈V1∪V2,c1|c2,M1∪M2〉.

If both d1 and d2 are sound in µ, then d1|d2 is a sound dataflow constraint in µ.

Proof. The requirement for soundness is that any method establishes the constraint in
one execution. This is clearly the case since the methods of d1 establish c1 and hence
c1|c2, and similarly for the methods of d2.

Proposition 4.9 (Sequencing). Let µ be a model for an interface I with variables V ,
and d1 = 〈V1,c1,M1〉 and d2 = 〈V2,c2,M2〉 dataflow constraints, such that V1,V2 ⊆V .
Define d1;d2 = 〈V1 ∪V2,c1&c2,M′〉 where M′ is the set of methods m1;m2 such that
out(m2)∩var(c1) = /0, for all m1 ∈M1 and m2 ∈M2.

If both d1 and d2 are sound in µ, then d1;d2 is a sound dataflow constraint in µ.

Note that we only allow methods in M′ where the second method does not modify
the satisfaction of the first constraint.

19

Proof. The methods of m1;m2 ∈M′ are such that m1 first establishes c1, then m2 estab-
lishes c2 without modifying any values that are involved in c1. Thus m1;m2 establishes
c1&c2 as required.

Proposition 4.10 (Conjunction). Let µ be a model for an interface I with variables V ,
and d1 = 〈V1,c1,M1〉 and d2 = 〈V2,c2,M2〉 dataflow constraints, such that V1,V2 ⊆V .
Define d1&d2 = (d1;d2)|(d2;d1).

If both d1 and d2 are sound in µ, then d1&d2 is a sound dataflow constraint in µ.

Proof. The methods from d1;d2 establish c1&c2, and the methods from d2;d1 establish
c2&c1. The union of these methods thus establish the disjunction of the constraint, as
required.

Because (c1&c2)|(c2&c1) = c1&c2, the conjunctive combinator establishes the
same constraint as the sequence combinator. It just provides a larger set of methods,
since it combines the methods of m1 ∈M1 and m2 ∈M2 in both sequences m1;m2 and
m2;m1. The former sequence only includes method combinations where out(m2)∩
var(c1) = /0 and the latter only combinations where out(m1)∩var(c2) = /0.

Proposition 4.11 (Implication). Let µ be a model for an interface I with variables V ,
and d1 = 〈V1,c1,M1〉 and d2 = 〈V2,c2,M2〉 dataflow constraints, such that V1,V2 ⊆V .
Define (d1⇒ d2) = 〈V1∪V2,c1⇒ c2,M1∪ (M1;M2)∪M′〉 where M1;M2 = {m1;m2 |
m1 ∈M1,m2 ∈M2} and M′ = {ifc1 thenm2 else skipend | m2 ∈M2}.

If both d1 and d2 are sound in µ, then d1⇒ d2 is a sound dataflow constraint in µ.

Proof. First note that if c2 holds then c1 ⇒ c2 holds, irrespective of the value of c1.
Thus all methods of M2 make the implication hold. Second note that all methods of
M1 makes c1 hold, so they need to be followed by some method from M2 to make
c2 and thus the implication hold. Thus all methods of M1;M2 make the implication
hold. Third note that if c1 holds a method from M2 must be executed, while if c1 does
not hold, there is no need to update any variables. Thus all methods of M′ make the
implication hold.

If we had a way of making ! c1 hold, say a dataflow constraint d3 = 〈V1, ! c1,M′′〉,
then we could add M′′ to the set of methods that makes c1 ⇒ c2 hold since they in-
validate the premise c1. We are unable in general to automatically take a method that
establishes c and create a method that establishes ! c, and thus will not provide a nega-
tion combinator for dataflow constraints.

We now have matching combinators for all the positive logical connectives.

Example 4.12. From the dataflow constraint R in example 4.3 we can construct a
dataflow constraint on three variables. Let s = [x 7→ y,y 7→ z] be a substitution. Ap-
plying the substitution to R gives us the dataflow constraint s(R) = 〈{y : t,z : t},y ≤
z,{y := z,z := y,y,z := y≤z?y : z,y≤z?z : y}〉 after normalising the method to the

20

multiple assignment format.

R;s(R) = 〈{x : t,y : t,z : t},x≤ y & y≤ z,

{(x,z := y,y),(y,z := x,x),

(x,y,z := x≤y?x : y,x≤y?y : x,y)}〉,
s(R);R = 〈{x : t,y : t,z : t},y≤ z & x≤ y,

{(x,y := z,z),(x,z := y,y),

(x,y,z := y,y≤z?y : z,y≤z?z : y)}〉
s(R)&R = 〈{x : t,y : t,z : t},y≤ z & x≤ y,

{(x,y := z,z),(x,z := y,y),(y,z := x,x),

(x,y,z := x≤y?x : y,x≤y?y : x,y),

(x,y,z := y,y≤z?y : z,y≤z?z : y)}〉.

Example 4.13. Here we show an example with a conjunction between two constraints
that are inconsistent. Assume we have a type t with arithmetic and comparison opera-
tions.

d1 = 〈{x : t,y : t},x≤ y,

{(x := y),(y := x),(x := y−1),(ifx > y thenx,y := y,xelse skipend)}〉,
d2 = 〈{x : t,y : t},x > y,{(y := x−1),(ifx≤ y thenx,y := y,x−1else skipend)}〉

Let the global system have the variables x,y. The conjunction of these constraints
yields

d1&d2 = 〈{x : t,y : t},x≤y&x > y,{}〉.

Given normal integer semantics for t there is obviously no way of satisfying the com-
bined constraint. The set of methods also reduce to the empty set since all output
variables of the methods are used in the constraint. Thus soundness has been preserved
by the conjunction.

Example 4.14. This is a variation of the above example, but here we use a substitution
to achieve a consistent constraint when combining the two dataflow constraints. As-
sume we have the same type t and the same two dataflow constraints as above. Let the
global system have the variables a,b : t and let s= [x 7→ a,y 7→ b] and s′= [x 7→ b,y 7→ a]
be substitutions into the global variables a,b : t. The conjunction of the two constraints
with their respective substitutions yields

s(d1)&s′(d2) = 〈{a : t,b : t},a≤b&b > a,{}〉.

Again we get an empty set of methods which ensures preservation of soundness. In
this case, with standard integer semantics for t, we can actually satisfy the combined
constraint, though our syntactic combinator rules cannot take this into account.

21

However, if we apply the the implication combinator, we get a more interesting
result.

s(d1)⇒ s′(d2)

= 〈{a : t,b : t},a≤b⇒ b > a,{
(a := b−1),(ifb≤ a thenb,a := a,b−1else skipend),
(a := b;a := b−1),
(b := a;a := b−1),
(a := b−1;a := b−1),
(ifa > b thena,b := b,aelse skipend;a := b−1),
(a := b; ifb≤ a thenb,a := a,b−1else skipend),
(b := a; ifb≤ a thenb,a := a,b−1else skipend),
(a := b−1; ifb≤ a thenb,a := a,b−1else skipend),
(ifa > b thena,b := b,aelse skipend;

ifb≤ a thenb,a := a,b−1else skipend),
(ifa≤b thena := b−1else skipend),
(ifa≤b thenifb≤ a thenb,a := a,b−1else skipendelse skipend).}〉.

Here we have three groups of methods: those from s′(d2), those from s(d1);s′(d2), and
finally the methods from s′(d2) checked by the premise a≤b from s(d1). With axioms
giving properties of the model and proof support tools, we might analyse what is going
on in more detail and simplify the resulting dataflow constraint system.

For some specific constraints for an interface I and variables V , such as the con-
straint c = (x1 == e1 & . . . & xn == en) ∈CI,V , where e1, . . . ,en ∈ EI,Y and X ,Y ⊆V
for X = {x1, . . . ,xn}, it is possible to generate a method m = (x1, . . . ,xn := e1, . . .en).
This is, however, a one-way dataflow method from variables Y to variables X that does
not give methods for dataflows into Y . Given specifications for I, e.g., that the ex-
pressions e1, . . . ,en are affine, it is possible to generate more methods. Exploring such
possibilities builds on specifications with support tools. Though an interesting research
direction, it is beyond the scope of this paper.

4.2. Dataflow Constraint Combinator Properties
Here we look into properties of dataflow constraints, starting with how substitu-

tions interact with dataflow constraints. Recall (definition 3.6) that substitutions form
a monoid with substitution composition ◦ as the binary associative operation and the
identity substitution as the neutral element.

Proposition 4.15 (Substitution is a monoid action on dataflow constraints). Let I be an
interface, V variables for I, s1,s2,s : V → EI,V be substitutions, where bsc is the empty
substitution, and d ∈ DI,V a dataflow constraint. Then the following monoid action
properties hold for substitutions applied to dataflow constraints.

• The identity substitution s is neutral on dataflow constraints, i.e., s(d) = d.

22

• Substitution composes on dataflow constraints, i.e., (s2 ◦ s1)(d) = s2(s1(d)).

The monoid action preserves soundness for d.

Proof. Follows by the definition of the identity substitution and of composition. Since
substitution preserves soundness, the monoid action also preserves soundness.

Proposition 4.16 (Substitution distributes over dataflow constraint combinators). Let
V,W be variables for I, s : V → EI,W be a substitution and d1,d2 ∈ DI,V be dataflow
constraints. Then the following distribution properties of substitution over dataflow
constraint combinators hold.

• s(d1|d2) = s(d1)|s(d2)

• s(d1;d2) = s(d1);s(d2)

• s(d1&d2) = s(d1)&s(d2)

• s(d1⇒ d2) = s(d1)⇒ s(d2).

The distribution properties also preserve soundness.

Proof. Let V1,V2 ⊆V be variables, d1 = 〈V1,c1,M1〉 and d2 = 〈V2,c2,M2〉 be dataflow
constraints. Let W1 = var(s(V1)) and W2 = var(s(V2)). For all the combinators � ∈ {|
, ; ,&,⇒}, variables var(s(var(d1�d2))) = var(s(V1∪V2)) =W1∪W2 = var(s(V1))∪
var(s(V2)) = var(s(d1))∪var(s(d2)) = var(s(d1)�s(d2)). For all the combinators�∈
{|,&,⇒}, constraints con(s(d1 � d2)) = s(con(d1 � d2)) = s(con(d1)� con(d2)) =
s(con(d1))� s(con(d2)). For all combinators, the methods met(d1� d2) do not con-
flict with the variables in the leftmost constraint, and after substitution, methods with
assignment conflicts are also removed. On the other side, methods with assignment
conflicts have been removed from met(s(d1)) and met(s(d2)), and combining these
further remove those methods that conflict with each other or with the leftmost con-
straint (after substitution).

Both the combinators and substitution preserve soundness individually, and hence
in combination.

Proposition 4.17 (Disjunction combinator forms an idempotent commutative monoid).
Let d1, d2 and d3 be dataflow constraints in DI,V . Then the following idempotent com-
mutative monoid properties hold in standard semantics.

• F |d1 = d1

• d1|F = d1

• (d1|d2)|d3 = d1|(d2|d3)

• d1|d2 = d2|d1

• d1|d1 = d1

These properties also preserve soundness.

23

Proof. Seen by expanding the components of the combined dataflow constraints on
both sides of the equality. Note that the individual operations preserve soundness on
both sides of the equality.

Proposition 4.18 (Sequencing combinator forms a monoid with annihilation). Let d1,
d2 and d3 be dataflow constraints in DI,V . Then the following monoid properties with
annihilation hold in standard semantics.

• T ;d1 = d1

• d1;T = d1

• (d1;d2);d3 = d1;(d2;d3)

• F ;d1 = F

• d1;F = F

The monoid properties also preserve soundness.

Proof. Seen by expanding the components of the combined dataflow constraints on
both sides of the equality. Note that the individual operations preserve soundness on
both sides of the equality.

Proposition 4.19 (Conjunction combinator forms a commutative monoid with annihi-
lation). Let d1, d2 and d3 be dataflow constraints in DI,V . Then the following commu-
tative monoid with annihilation properties hold in standard semantics.

• T &d1 = d1

• d1&T = d1

• (d1&d2)&d3 = d1&(d2&d3)

• d1&d2 = d2&d1

• F&d1 = F

• d1&F = F

The monoid properties also preserve soundness.

Proof. Seen by expanding the components of the combined dataflow constraints on
both sides of the equality. Note that the individual operations preserve soundness on
both sides of the equality.

Proposition 4.20 (Distributivity of sequencing and conjunction combinators over dis-
junction combinator). Let d1, d2 and d3 be dataflow constraints in DI,V . Then the
following distributivity properties hold.

• (d1|d2);d3 = (d1;d3)|(d2;d3)

• d1;(d2|d3) = (d1;d2)|(d1;d3)

24

• (d1|d2)&d3 = (d1&d3)|(d2&d3)

The distributivity properties also preserve soundness.

Proof. Seen by expanding the components of the combined dataflow constraints on
both sides of the equality. Note that the individual operations preserve soundness on
both sides of the equality.

This establishes similar combinator laws for dataflow constraints as we have for
logical combinators. The major exception is the distributivity of conjunction over dis-
junction (d1&d2)|d3 = (d1|d3)&(d2|d3), which does not hold.

The following two facts relate dataflow combinators to the semiring concept 3.31.

Fact 4.21 (The sequencing combinator gives an idempotent semiring). The dataflow
combinators define an idempotent semiring by sequencing for mult with T for one

and disjunction for plus with F for zero .

Fact 4.22 (The conjunction combinator gives an idempotent commutative semiring).
The dataflow combinators define an idempotent commutative semiring by conjunction
for mult with T for one and disjunction for plus with F for zero .

On a case by case basis we may come up with more combinators than those above.
For instance, assume two dataflow constraints d1 = 〈V1,c,P1〉 and d2 = 〈V2,c,P2〉 that
have the same constraint c and their combination d = 〈V1 ∪V2,c,M′〉, where M′ =
met((d1&d2)|d1|d2). The combined dataflow constraint has a larger set of methods for
solving the same problem, given by the constraint c.

5. UI Examples

Prior to fitting our constraint systems semantics to the institution settings, the topic
of the next section, we relate the constructions thus far to practical programming. We
have achieved the following: for an interface I with model µ we can flexibly combine
independently developed dataflow constraints d1 = 〈V1,c1,M1〉, . . . , dn = 〈Vn,cn,Mn〉.

First we need a common set of variables V and for each di a substitution si : Vi→
EI,V . This aligns all constraints on the same set of variables, possibly with local trans-
formations on each constraint system’s methods and local constraints. If each trans-
formation is sufficiently well behaved, i.e., they are mostly renamings on each di’s
output variables, the resulting constraint system will have enough methods to satisfy
the desired constraints efficiently.

We demonstrate with the familiar image scaling GUI example how substitution and
composing (with conjunction) of dataflow constraints enable reuse when constructing
constraint systems.

Example 5.1. In our example GUI for scaling an image, the user can specify the width
of the image either as the number of pixels wa or as a scaling factor wr to be applied to
the initial width wi of the image; and similarly for the corresponding height variables
hi,ha, and hr. The two dataflow constraints, one between wa, wi, and wr, and the

25

other between ha, hi, and hr, can be constructed by substitution from the same dataflow
constraint

G = 〈{vi : int,va : int,vr : float},bvivrc== va,{(va := bvivrc),(vr := va/vi)}〉.

We assume normal semantics for the types and operations and that vi 6= 0. The substi-
tutions sw = [vi 7→wi,va 7→wa,vr 7→wr] and sh = [vi 7→ hi,va 7→ ha,vr 7→ hr] maps G to
the global variables wi,wa,wr,hi,ha,hr as desired. The conjunction of these dataflow
constraints is a dataflow constraint whose constraint defines when an image scaling
GUI is in a consistent state and whose methods provide the means to bring the GUI
into such a state:

sw(G) & sh(G) = 〈{wi : int,wa : int,wr : float,hi : int,ha : int,hr : float},
bwiwrc== wa & bhihrc== ha,

{(wa,ha := bwiwrc,bhihrc),
(wa,hr := bwiwrc,ha/hi),

(wr,ha := wa/wi,bhihrc),
(wr,hr := wa/wi,ha/hi)}〉.

Here we see that the first method (wa,ha := bwiwrc,bhihrc) follows automatically from
the constraint bwiwrc== wa & bhihrc== ha. Since the constraint is affine, we could
conceivably use a computer algebra tool to also generate the remaining methods.

Assume now a GUI otherwise the same, except for requiring that the width and
height are scaled by the same factor r. Thus, the global variables are wi,wa,hi,ha,r.
A suitable dataflow constraint for this GUI is attained by using slightly different sub-
stitutions. Let rw = [vi 7→ wi,va 7→ wa,vr 7→ r] and rh = [vi 7→ hi,va 7→ ha,vr 7→ r].
Then

rw(G) & rh(G) = 〈{wi : int,wa : int,hi : int,ha : int,r : float},
bwirc== wa & bhirc== ha,

{(wa,ha := bwirc,bhirc),(wa,r := bwi(ha/hi)c,ha/hi),

(ha,r := bhi(wa/wi)c,wa/wi)}〉.

The same system could also be obtained with the substitution rr = [wr 7→ r,hr 7→ r] as
drae{wi,wa,hi,ha}(sw(G) & sh(G)).

We now give a second example on modeling and implementing a GUI as a dataflow
constraint. The focus is on dynamic composition of GUI fragments and reasoning
about global properties that should hold in such compositions.

Example 5.2. See Figure 3 for a GUI for scheduling a conference day, where the
day starts at time S and ends at time E, and each agenda item i has a start time si,
duration di, and end time ei. An agenda item must satisfy ei == si + di; we assume
the base API defines + for adding a duration to time (and similarly − for subtracting),
and also overloads + for summing two durations. A dataflow constraint for an agenda
item would have at least a method that computes e from s and d, but depending on

26

the desired GUI functionality, possibly also one that computes s from e and d. In this
example we choose the latter, and the dataflow constraint for agenda items is

D1 = 〈{s : date,d : duration,e : date},e == s+d,{e := s+d,s := e−d}〉.

Each consecutive pair of agenda items must satisfy, ei == si+1. Again, based on the
desired functionality, whether earlier agenda items should be adjusted after changes on
later ones, the dataflow constraint that connects two adjacent agenda items may have
one or two methods. We again choose the design where data can flow to both directions:

D2 = 〈{eprev,snext},eprev == snext,{snext := eprev,sprev := enext}〉.

Finally, the first (index 0) and last (index n) agenda items must satisfy s0 == S and
en == E. Suitable substitutions on C2 gives dataflow constraints that can model these
dependencies.

Assuming the program variables S and E, as well as si, di, and ei for i = 0, . . . ,n,
are bound to GUI widgets appropriately, we get a well-behaved GUI by constructing
the following new dataflow constraints via substitution:

KS = [eprev 7→ S,snext 7→ s0](D2),

KE = [eprev 7→ en,snext 7→ E](D2),

Ai = [s 7→ si,d 7→ di,e 7→ ei](D1), for all i = 0, . . . ,n,
Ri = [eprev 7→ ei,snext 7→ si+1](D2), for all i = 0, . . . ,n−1.

Further, our semantics of dataflow constraints allows for easy reasoning about in-
variants that the conjunction of the constraints maintain. For example, a correct GUI
always satisfies S+d0 + · · ·+dn == E. Each conjunction L == Ai&Ri gives the con-
straint ei == si +di & si+1 == ei, which simplifies to si+1 == si +di. Easy inductive
argument shows that in the conjunction L0& · · ·&Ln−1, sn == s0 +∑i=0,...,n−1 di holds.
The invariant then follows directly from the conjunction KS&(L0& · · ·&Ln−1)&An&KE .

The above example is rather simple, but it highlights how fragments of GUI logic
compose, and how the programmer can be assured that the composition is well-behaved.
We implemented the example using our constraint system based GUI library Hot-
Drink [24]; Figure 3 shows a snapshot. Users can add, remove, and reorder agenda
items at will, but as these operations are defined in terms of the above substitutions, we
can be certain that the invariant is respected.

6. Institution based Module System

An institution [13] is a framework for relating syntax, specifications and models. It
can be interpreted as a framework for modular reuse of specification and code. We use
this interpretation to formalise a module framework for constraint systems. The restric-
tions the institution concept places ensures that such a module system will be very well
behaved, yet have significantly more powerful reuse mechanisms, namely signature

27

Figure 3: A GUI implemented as a dynamic composition of fragments of GUI logic represented with
dataflow constraints.

morphisms, than standard module systems. In addition, the institution framework al-
lows the use of institution-independent tools, such as the institution-independent speci-
fication structuring mechanisms [30] and syntactic theory functors for reuse and grow-
ing institutions piecemeal [31]. Institution theory is very general, phrased in terms of
categories, functors and a satisfaction relation. We will give a short overview of the
needed concepts.

Many authors have investigated relationships between institutions, e.g., reuse based
on theoroidal comorphisms (formerly called maps of institutions) [32, 33]. Most of this
work is tied to logical frameworks, in line with Goguen and Burstall’s original motiva-
tion for institutions to provide a framework for studying logical model-theory [13]. It
is beyond the scope of this paper to cover these topics.

Multiway dataflow constraint systems are built by coordinating individual dataflow
constraints on a set of global variables. A modular reuse system needs to place the indi-
vidual dataflow constraints appropriately in the global systems. Central is the mapping
of local variables from each dataflow constraint to the global setting.

In the next subsection we define the notions of categories and functors that we need.
All the needed building blocks have already been presented. Then we define the notion
of institution, and instantiate that as a modular framework for constraints and dataflow
constraints.

6.1. Categories for constraint systems
As a reminder, a category consists of objects and morphisms. Morphisms connect

two objects: the source and the target. Every object A has an identity morphism idA :
A→ A. Every two morphisms f : A→ B and g : B→C can be composed to a morphism
f ;g : A→C. The identity morphism is the identity for composition, i.e., for f : A→ B,
we have that idA; f = f and f ; idB = f . Composition is associative, i.e., for f : A→ B,
g : B→C and h :C→D, (f ;g);h= f ;(g;h). The canonical example of categories is Set
that has sets as objects, total functions between sets as morphisms, identity functions
on sets as identity morphisms, and function composition as composition of morphisms.

Definition 6.1. For an interface I, model µ and variables V for I, let Aµ,V be the set of
allocations from V to µ. The category AllI,V,µ is defined by

• objects: the powerset of Aµ,V , i.e., every subset A⊆ Aµ,V is an object,

28

• morphisms: a single morphism idA : A→ A for every A⊆ Aµ,V ,

• identity morphism: the single morphism idA : A→ A has to be the identity mor-
phism for the object A⊆ Aµ,V ,

• composition: for every morphism idA : A→ A, the composition idA; idA = idA
(the only possible choice).

Definition 6.2. For an interface I, the category SubvarI is defined by

• objects: an object for every collection of variables V ,

• morphisms from object V to V ′: all substitutions s : V → EI,V ′ from V to expres-
sions on V ′,

• identity morphism on V : the identity substitution on variables V , and

• composition: composition of substitutions.

Here we see that a morphism does not have to be a function between two objects.
The substitutions take us from variables to expressions, but have an associative com-
position operation with the identity substitution as the neutral element, as required for
a category.

We may construct categories with different objects but from the same morphisms
as above.

Definition 6.3. For an interface I, the category ConI is defined by

• objects: an object is the set of all constraints CI,V for every collection of variables
V ,

• morphisms from object CI,V to CI,V ′ : all substitutions s : V → EI,V ′ interpreted as
substitutions on constraints,

• identity morphism on CI,V : the identity substitution on variables V , and

• composition: composition of substitutions.

Given an element c∈CI,V , the substitution maps it to an element s(c)∈CI,V ′ . In this
case we have that the morphisms actually are functions from constraints to constraints,
with function composition as morphism composition. Thus ConI is a subcategory of
Set, written as ConI ⊆ Set.

Definition 6.4. For an interface I, the category DFCI is defined by

• objects: an object is the set of all dataflow constraints DI,V for every collection
of variables V ,

• morphisms from object DI,V to DI,V ′ : all substitutions s : V → EI,V ′ interpreted
as substitutions on dataflow constraints,

• identity morphism on DI,V : the identity substitution on variables V , and

29

• composition: composition of substitutions.

Here we also map sets to sets using the substitution function, thus DFCI ⊆ Set.
Another twist on making categories is the dual (or opposite) category. A dual cat-

egory has the same objects and morphisms as the original category, but the morphisms
have swapped source and target nodes (so the direction of composition also changes).
Recall that methods behave dually to substitutions, with composition in the opposite
order. Thus reversing the arrows of the above categories is replacing every substitution
s by its dual method s−�, and we achieve dual categories. In general, dual categories can
be constructed even if the reversed morphism does not have a reasonable interpretation.
We can always restore the original category by taking the dual of the dual category; in
the example case this is by going back from methods to substitutions.

6.2. Functors

A functor is a mapping between categories. Given two categories C and D, a func-
tor F : C→ D maps objects to objects and morphisms to morphisms, preserving iden-
tity morphisms and composition: for every object A in C, F(idA) = idF(A), and for
every morphism f : A→ B and g : B→C in C, F(f ;g) = F(f);F(g).

For example, we have a functor conI : SubvarI → ConI , given by conI(V) =CI,V ,
which maps a collection of variables to the constraints on those variables, and conI(s :
V →V ′) = s : CI,V →CI,V ′ , which maps the substitution on variables to the substitution
on the constraints. Likewise we have a functor dfcI : SubvarI → DFCI which takes
variables V for I to dataflow constraints DI,V , and maps substitutions in SubvarI to
substitutions in DFCI . Interestingly, we also have functor conI : DFCI → ConI which
extracts the constraint con(d) from every dataflow constraint d ∈ DI,V . Such a functor
is called forgetful, since it forgets some of the structure of the source when mapping to
the target.

We can define a functor alls : AllI,V ′,µ→ AllI,V,µ for a substitution s : V → EI,V ′ on
variables. For an allocation of variables a′ ∈ Aµ,V ′ , we can define an allocation a∈ Aµ,V
by a(v) = [[s(v))]]µ,a′ for every v ∈V .

• For an object A′ in AllI,V ′,µ, i.e., A′⊆Aµ,V ′ , define the set of allocations alls(A′) =
{a ∈ Aµ,V | a(v) = [[s(v))]]µ,a′ for every v ∈V , a′ ∈ A′}, i.e., alls(A′) is an object
of AllI,V,µ.

• An identity mapping idA′ is mapped to the identity mapping idalls(A′) by alls(idA′),
and

• composition in AllI,V ′,µ is mapped to composition in AllI,V,µ by alls, basically
since there is no other choice.

Now functors compose by the composition of mapping objects to objects and mor-
phisms to morphisms, and the combined mapping obeys the functor requirements. This
also admits an identity functor, mapping a category to itself, by mapping each object
and each morphism to itself. It is now possible to define a category where the objects
are the categories and the morphisms are the functors. This category is referred to as
CAT.

30

Definition 6.5. For an interface I with model µ, define the category AllI,µ by

• objects: the categories AllI,V,µ for every collection of variables for I,

• morphisms from object AllI,V ′,µ to AllI,V,µ: the functors alls : AllI,V ′,µ→ AllI,V,µ
for every substitution s : V → EI,V ′ ,

• identity morphism on AllI,V ′,µ: the identity functor on AllI,V ′,µ,

• composition: the composition of functors alls′ : AllI,V ′′,µ → AllI,V ′,µ with alls :
AllI,V ′,µ→ AllI,V,µ is the functor alls;s′ : AllI,V ′′,µ→ AllI,V,µ.

We see that AllI,µ ⊆ CAT.
The astute reader will notice that we can define a functor all : Subvarop

I → AllI,µ.
It goes from the dual of the category of variables and substitutions to the category of
categories of allocations. A functor from the dual category is called a contravariant
functor to draw attention to this fact.

6.3. Institutions for constraints

Definition 6.6. An institution I N ST consists of

• a category Sig of signatures,

• a functor spec : Sig→ Set of specifications

• a contravariant functor mod : Sigop→ CAT of models,

• a satisfaction relation |= which for every object A of Sig defines a relation |=A⊆
mod(A)× spec(A),

such that the satisfaction condition holds: for every morphism f : A→ A′ in Sig,

µ′ |=A′
(
spec(f : A→ A′)

)
(c)⇐⇒

(
mod(f op : A′→ A)

)
(µ′) |=A c,

where µ′ is an object of mod(A′) (model), and c ∈ spec(A) (specification).

We can now put together our categories and functors and define the institution of
constraints. To ease reading of quantified formulas, we use · as a separator between the
declaration of the quantified set X and the predicate p, thus we consider ∀x ∈ X · p as
being clearer than ∀x : X p or ∀(x : X)p especially when x : X is a large expression.

Definition 6.7. The institution CON S I,µ of constraints and allocations for an interface
I with model µ consists of

• the category SubvarI of variables and substitutions,

• the functor conI : SubvarI → ConI of constraints and substitutions,

• the contravariant functor allI,µ : Subvarop
I → AllI,µ of allocations from variables

to µ,

31

• the V -indexed satisfaction relations |=I,µ,V⊆ allI,µ(V)× conI(V) for variables V
as an object of SubvarI , given by

A |=I,µ,V c⇐⇒∀(a : V → µ) ∈ A · [[c]]µ,a

for all allocations a : V → µ in object A of AllI,V,µ = allI,µ(V) and constraint
c ∈CI,V where CI,V = conI(V).

Theorem 6.8. The claim that CON S I,µ is an institution holds.

Proof. The category ConI ⊆ Set and the category AllI,µ ⊆CAT, ensuring the functors
have correct codomains. For a substitution s : V → EI,V ′ , we must show that for every
object A′ ∈AllI,V ′,µ = allI,µ(V ′), i.e., A′⊆AI,V ′ , and every constraint c∈CI,V = conI(V)

A′ |=I,µ,V ′
(
conI(s : V → EI,V ′)

)
(c) ⇐⇒

(
allI,µ(s−� : EI,V ′ →V)

)
(A′) |=I,µ,V c,

which simplifies to (by expanding the definitions)

A′ |=I,µ,V ′
(
conI(s : V → EI,V ′)

)
(c) ⇐⇒ ∀(a′ : V ′→ µ′) ∈ A′ · [[s(c)]]µ,a′ ,(

allI,µ(s−� : EI,V ′ →V)
)
(A′) |=I,µ,V c ⇐⇒ ∀(a : V → µ) ∈ {[[s]]µ,a′ | a′ ∈ A′} · [[c]]µ,a

respectively. Thus, we must have

∀(a′ : V ′→ µ′) ∈ A′ · [[s(c)]]µ,a′ ⇐⇒ ∀(a : V → µ) ∈ {[[s]]µ,a′ | a′ ∈ A′} · [[c]]µ,a,
∀(a′ : V ′→ µ′) ∈ A′ · [[s(c)]]µ,a′ ⇐⇒ ∀(a′ : V ′→ µ′) ∈ A′ · [[c]]µ,[[s]]µ,a′ ,

but since [[s(c)]]µ,a′ = [[c]]µ,[[s]]µ,a′ the claim holds.

Definition 6.9. The institution DF C I,µ of dataflow constraints and allocations for an
interface I with model µ consists of

• the category SubvarI of variables and substitutions,

• the functor dfcI : SubvarI → DFCI of dataflow constraints and substitutions,

• the contravariant functor allI,µ : Subvarop
I → AllI,µ of allocations from variables

to µ,

• the V -indexed satisfaction relations |=I,µ,V⊆ allI,µ(V)× dfcI(V) for variables V
as an object of SubvarI , given by

A |=I,µ,V d⇐⇒∀(a : V → µ) ∈ A,m ∈met(d) · [[con(d)]]µ,[[m]]µ,a

for all allocations a : V → µ in object A of AllI,V,µ = allI,µ(V) and constraint
d ∈ DI,V where DI,V = dfcI(V).

Theorem 6.10. The claim that DF C I,µ is an institution holds.

Proof. The proof follows the same outline as for CON S I,µ since we have the same
properties for dataflow constraints as we have for constraints.

If in a model µ for I, a dataflow constraint d ∈DI,V holds for Aµ,V , i.e., Aµ,V |=I,µ,V d
then it is sound.

32

7. Constraint Systems

A multiway dataflow constraint system, constraint system for short, is a collection
of dataflow constraints and a goal. The purpose is to let a planner work with the local
methods for each dataflow constraint in order to achieve the global goal.

Definition 7.1. Let I be an interface.
A constraint system is a triple 〈V,c,D〉 where V are variables for I, c ∈ CI,V is a

constraint called the constraint system’s goal, and D is a set of dataflow constraints
where for each d ∈ D the variables var(d)⊆V .

The meaning of a constraint system [[〈V,c,D〉]] = &d∈Dd, the dataflow constraint
being the conjunction of all dataflow constraints in D.

The global variables V for a constraint system coordinate all its parts. Each of
the dataflow constraints handle a local set of variables, related to the global set by an
inclusion. The meaning of the constraint system is a syntactic translation to a dataflow
constraint. The semantics of the latter give a semantics for the former.

A planner selects methods from met(∪d∈Dd) repeatedly in order to achieve the
goal c. To facilitate planning, a planner algorithm imposes its own wellformedness
requirements on the contained dataflow constraints. One requirement might be that if
two dataflow constraints d,d′ ∈D have the same set of variables var(d) = var(d′) then
d = d′, and that for every d ∈ D whenever two methods m,m′ ∈met(d) have the same
set of output variables out(m) = out(m′) then m = m′. The so called method restric-
tion [34, p. 56] requires even that there are no two methods m,m′ ∈ met(d) such that
out(m) ⊆ out(m′). Assuming method restriction, there are planners with polynomial
worst-case time complexity [35]. These syntactically detectable restrictions ensures
planner will always terminate, even if the sets of methods contain other errors or are
not compatible with their stated constraint. In fact most work on planners omit explicit
constraints and just focus on the set of methods met(∪d∈Dd), thus ignoring the ability
to verify the constraint system against an explicitly stated goal.

Definition 7.2. Let I be an interface and µ a model for I.
A constraint system 〈V,c,D〉 is sound in µ when

1. each d ∈ D is sound in µ, and
2. con(&d∈Dd) |=I,V,µ c.

For a sound constraint system the participating dataflow constraints each contribute
towards the goal. A sound constraint system 〈V,c,D〉 is comprehensive in µ when for all
allocations a ∈ Aµ,V there exists a method m ∈met(&d∈Dd) such that [[c]]µ,[[m]]µ,a holds.
Ideally a planner’s wellformedness requirements should imply that the constraint sys-
tem is comprehensive. If the constraint system is not comprehensive, the planner may
be unable to select any method from met(∪d∈Dd) to achieve progress. This may hap-
pen if the dataflow constraint combinators end up with an empty set of methods. Also
in this situation the planner will terminate, but without meeting its goal. We will not
discuss this further here.

We present three reuse mechanisms for constraint systems: substitution for adapt-
ing to a different set of global variables, and conjunction and disjunction for combining
constraint systems. We also have two specific constraint systems.

33

Definition 7.3. The constraint system true CST= 〈 /0,TRUE,{T}〉 based on the dataflow
constraint T .

The constraint system false CSF = 〈 /0,FALSE,{}〉.

These two constraint systems are both sound and comprehensive for any staid in-
terface since the set of variables is empty.

Definition 7.4. Let I be an interface and V , W be variables for I.
Reuse of a constraint system C = 〈V,c,D〉 by a substitution s : V →EI,W is the triple

s(C) = 〈W,s(c),s(D)〉.

It is easy to see that the reuse of a constraint system by a substitution yields a
constraint system.

Proposition 7.5. Let I be an interface and µ a model for I and s : V → EI,W is a
substitution.

Substitution on constraint systems preserve meaning, i.e., [[s(C)]] = s([[C]]).
If the constraint system C = 〈V,c,D〉 is sound for µ, then s(C) is also sound for µ.

Proof. Meaning is preserved since [[s(C)]] = [[〈W,s(c),s(D)〉]] =&d∈s(D)d = s(&d∈Dd)=
s([[〈V,c,D〉]]) = s([[C]]).

Preservation of soundness follows from the satisfaction condition for the institu-
tions DF C I,µ and CON S I,µ. The former takes sound dataflow constraints to sound
dataflow constraints using the substitution. The latter matches the conjunction of con-
straints from the dataflow constraint with the goal before and after the substitution, i.e.,
s(con(&d∈Dd)) |=I,V,µ s(c) since C is sound.

It then follows that substitutions are a monoid action for the reuse of constraint
systems. The monoid action also preserves soundness of the constraint systems. Com-
pleteness may be destroyed by this reuse, since, depending on the specific substitution,
some methods in d ∈ D may have disappeared.

Definition 7.6. [Conjunction of constraint systems] Let I be an interface.
The conjunction of two constraint systems C1 = 〈V,c1,D1〉 and C2 = 〈V,c2,D2〉 is

the triple C1&C2 = 〈V,c1&c2,D1&D2〉 where D1&D2 = {d1&d2 | d1 ∈ D1,d2 ∈ D2}.

It is easy to see that the conjunction of two constraint systems yields a constraint
system: the conjunction of two dataflow constraints is a dataflow constraint, and the
conjunction of two constraints is a constraint. The two constraint systems C1 and C2 are
on the same set of variables V . If this is not the case, then each of them can be aligned
by substitution from any local set of variables V1 and V2, respectively, to a global set of
variables V before the conjunction.

Proposition 7.7. Let I be an interface and µ a model for I, and C1 = 〈V,c1,D1〉 and
C2 = 〈V,c2,D2〉 be constraint systems.

Conjunction on constraint systems preserve meaning, i.e., [[C1&C2]] = [[C1]]&[[C2]].
If the two constraint systems C1 and C2 are sound for µ, then C1&C2 is also sound

for µ.

34

Proof. Meaning is preserved since (&d1∈D1d1)&(&d2∈D2d2)=&d∈{d1&d2|d1∈D1,d2∈D2}d
= D1&D2.

The conjunction of sound dataflow constraints on compatible variables is a sound
dataflow constraint, and since each of the individual constraint systems is sound with
respect to its individual goal, the conjunction of the goals is implied by con(&d∈D1&D2d).

It now follows that conjunction of constraint systems is associative and commuta-
tive, with CST as unit and CSF as zero. Completeness may be lost due to the interaction
between methods when combining them.

Definition 7.8. [Disjunction of constraint systems] Let I be an interface.
The disjunction of two constraint systems C1 = 〈V,c1,D1〉 and C2 = 〈V,c2,D2〉 is

C1 |C2 = 〈V,c1|c2,D〉, where D =
(
(&d∈D1\D2d) | (&d∈D2\D1d)

)
&(&d∈D1∩D2d).

It is easy to see that the disjunction of two constraint systems yields a constraint
system since all combinators yield the appropriate results. The two constraint systems
C1 and C2 may be aligned to the same set of global variables V if necessary for the
disjunction.

Proposition 7.9. Let I be an interface and µ a model for I, and C1 = 〈V,c1,D1〉 and
C2 = 〈V,c2,D2〉 be constraint systems.

Disjunction on constraint systems preserve meaning, i.e., [[C1 |C2]] = [[C1]] | [[C2]].
If the two constraint systems C1 and C2 are sound for µ, then C1 |C2 is also sound

for µ.

Proof. Preservation of meaning follows by expanding the definition of the disjunction,
and then using distributivity of conjunction over disjunction for dataflow constraints.
The meaning for the disjunction of dataflow constraints D maintains soundness from
each of the components. Then we need to show that con(|d∈D d) |=I,V,µ c1|c2. Since

&d∈Dd =
(
(&d∈D1\D2d) | (&d∈D2\D1d)

)
&(&d∈D1∩D2d) =(

(&d∈D1\D2d)&(&d∈D1∩D2d)
)
|
(
(&d∈D2\D1d)&(&d∈D1∩D2d)

)
,

the claim follows since

con((&d∈D1\D2d)&(&d∈D1∩D2d)) |=I,V,µ c1and

con((&d∈D2\D1d)&(&d∈D1∩D2d)) |=I,V,µ c2

by the assumption.

It now follows that disjunction of constraint systems is associative and commu-
tative with CSF as the unit, because

(
(&d∈D1\{}d) | (&d∈{}\D1d)

)
&(&d∈D1∩{}d) =(

(&d∈D1 d))
)
&(&d∈ /0) = D1. We cannot get idempotency of disjunction since the con-

junction combinator on the dataflow constraints is not idempotent. Completeness may
be lost due to the interaction between methods when combining them.

35

Example 7.10. This is a constraint system version of example 5.1. When building the
constraint system we first define the global set of variables and the goal,

V = {wi : int,wa : int,wr : float,hi : int,ha : int,hr : float},
c = bwiwrc= wa & bhihrc= ha,

then we find the relevant dataflow constraints and their mapping to the global set of
variables, i.e., the dataflow constraint G and the substitutions sw and sh as in the exam-
ple. The resulting constraint system is

〈V,c,{sw(G),sh(G)}〉.

If we want to coordinate the aspect ratios for the width and the height, we can construct
the constraint system 〈{wi : int,wa : int,r : float,hi : int,ha : int}, bwirc=wa & bhirc=
ha,{rw(G),rh(G)}〉.

8. Summary and conclusion

In investigating multiway dataflow constraint systems as a programming language,
we designed a module system with variable substitution (including renaming and name
matching) as the basic reuse mechanism with conjunction and disjunction as combi-
nators. We showed how to integrate a specification language with the programming
language. In the presented system, neither the specification nor the programming lan-
guage needs to be nailed down: what are the languages’ built-in types and operations
is defined by a base API, a fixed but arbitrary signature.

We fitted the formal model of dataflow constraints into the institution framework,
using variables and substitutions as the signature category. This gave us both a solid
footing for designing the module system, and a clear guidance for using global vari-
ables as the coordinating “signature” with substitution as a powerful reuse mechanism.

The specification and programming languages both operate in the same seman-
tical domain, here on simple sets and set theoretic functions for the base signature.
This semantic compatibility allows proving and testing the relationship between code
(the constraint satisfaction methods of data flow constraints) and specifications (pred-
icate expressions that define when dataflow constraints are satisfied). The presented
approach thus establishes a firm validation approach for dataflow constraint systems.

The presented work is largely motivated by the widely recognised problem of pro-
gramming user interfaces: the inability to reuse code that defines the behavior of user
interfaces. We propose multiway dataflow constraint systems as the foundation for pro-
gramming GUIs, in lieu of event handling programming. The examples in this paper
show that the presented semantics can model concrete multiway dataflow constraint
systems that arise in practical graphical user interfaces, and guide in their design and
implementation.

References

[1] I. E. Sutherland, Sketchpad: a man-machine graphical communication system, in:
Proceedings of the May 21-23, 1963, spring joint computer conference, AFIPS

36

’63 (Spring), ACM, New York, NY, USA, 1963, pp. 329–346 (1963). doi:10.

1145/1461551.1461591.

[2] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency, A. Faulring, B. D.
Kyle, A. Mickish, A. Klimovitski, P. Doane, The Amulet environment: New mod-
els for effective user interface software development, IEEE Transactions on Soft-
ware Engineering 23 (6) (1997) 347–365 (1997). doi:10.1109/32.601073.

[3] B. Myers, D. Giuse, R. Dannenberg, B. Zanden, D. Kosbie, E. Pervin, A. Mick-
ish, P. Marchal, Garnet: Comprehensive support for graphical, highly interactive
user interfaces, Computer 23 (11) (1990) 71–85 (Nov. 1990). doi:10.1109/2.
60882.

[4] B. Vander Zanden, An incremental algorithm for satisfying hierarchies of mul-
tiway dataflow constraints, ACM Transactions on Programming Languages and
Systems 18 (1) (1996) 30–72 (Jan. 1996). doi:10.1145/225540.225543.

[5] J. Järvi, G. Foust, M. Haveraaen, Specializing planners for hierarchical multi-way
dataflow constraint systems, in: Proceedings of the 2014 International Conference
on Generative Programming: Concepts and Experiences, GPCE 2014, ACM,
New York, NY, USA, 2014, pp. 1–10 (2014). doi:10.1145/2658761.2658762.

[6] J. Järvi, M. Haveraaen, J. Freeman, M. Marcus, Expressing multi-way data-flow
constraint systems as a commutative monoid makes many of their properties ob-
vious, in: Proceedings of the 8th ACM SIGPLAN workshop on Generic pro-
gramming, WGP ’12, ACM, New York, NY, USA, 2012, pp. 25–32 (2012).
doi:10.1145/2364394.2364399.

[7] M. Sannella, Skyblue: A multi-way local propagation constraint solver for user
interface construction, in: Proceedings of the 7th Annual ACM Symposium on
User Interface Software and Technology, UIST ’94, ACM, New York, NY, USA,
1994, pp. 137–146 (1994). doi:10.1145/192426.192485.

[8] T. P. McCartney, User interface applications of a multi-way constraint solver,
Tech. Rep. WUCS-95-22, Washington University of Saint Louis, MO, Computer
Science (Oct. 1995).

[9] S. Oney, B. Myers, J. Brandt, ConstraintJS: programming interactive behav-
iors for the web by integrating constraints and states, in: Proceedings of the
25th annual ACM symposium on User Interface Software and Technology, UIST
’12, ACM, New York, NY, USA, 2012, pp. 229–238 (2012). doi:10.1145/

2380116.2380146.

[10] K. Lin, D. Chen, G. Dromey, C. Sun, Maintaining constraints expressed as formu-
las in collaborative systems, in: 2007 International Conference on Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom 2007),
2007, pp. 318–327 (2007). doi:10.1109/COLCOM.2007.4553850.

37

https://doi.org/10.1145/1461551.1461591
https://doi.org/10.1145/1461551.1461591
https://doi.org/10.1109/32.601073
https://doi.org/10.1109/2.60882
https://doi.org/10.1109/2.60882
https://doi.org/10.1145/225540.225543
https://doi.org/10.1145/2658761.2658762
https://doi.org/10.1145/2364394.2364399
https://doi.org/10.1145/192426.192485
https://doi.org/10.1145/2380116.2380146
https://doi.org/10.1145/2380116.2380146
https://doi.org/10.1109/COLCOM.2007.4553850

[11] C. Demetrescu, I. Finocchi, A. Ribichini, Reactive imperative programming with
dataflow constraints, in: Proceedings of the 2011 ACM international conference
on Object oriented programming systems languages and applications, OOPSLA
’11, ACM, New York, NY, USA, 2011, pp. 407–426 (2011). doi:10.1145/

2048066.2048100.

[12] T. Felgentreff, A. Borning, R. Hirschfeld, Specifying and solving constraints on
object behavior, Journal of Object Technology 13 (4) (2014) 1:1–38 (Sep. 2014).
doi:10.5381/jot.2014.13.4.a1.

[13] J. A. Goguen, R. M. Burstall, Institutions: abstract model theory for specification
and programming, Journal of the ACM 39 (1) (1992) 95–146 (1992). doi:10.

1145/147508.147524.

[14] D. Sannella, A. Tarlecki, Foundations of Algebraic Specification and Formal Soft-
ware Development, Monographs in Theoretical Computer Science. An EATCS
Series, Springer, 2012 (2012). doi:10.1007/978-3-642-17336-3.

[15] P. D. Mosses, CASL Reference Manual, The Complete Documentation of the
Common Algebraic Specification Language, Vol. 2960 of Lecture Notes in Com-
puter Science, Springer, 2004 (2004). doi:10.1007/b96103.

[16] T. Mossakowski, C. Maeder, K. Lüttich, The heterogeneous tool set, Hets,
in: O. Grumberg, M. Huth (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems, 13th International Conference, TACAS 2007, Held
as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2007 Braga, Portugal, Proceedings, Vol. 4424 of Lecture Notes
in Computer Science, Springer, 2007, pp. 519–522 (2007). doi:10.1007/

978-3-540-71209-1_40.

[17] J. A. Goguen, Memories of ADJ, in: G. Rozenberg, A. Salomaa (Eds.), Current
Trends in Theoretical Computer Science - Essays and Tutorials, Vol. 40 of World
Scientific Series in Computer Science, World Scientific, 1993, pp. 76–81 (1993).
doi:10.1142/9789812794499_0004.

[18] J. Goguen, J. Thatcher, E. Wagner, An initial algebra approach to the specifi-
cation, correctness and implementation of abstract data types, in: R. Yeh (Ed.),
Current Trends in Programming Methodology, Vol. 4, Prentice Hall, 1978, pp.
80–149 (1978).

[19] J. V. Guttag, J. J. Horning, The algebraic specification of abstract data types, Acta
Informatica 10 (1978) 27–52 (1978). doi:10.1007/BF00260922.

[20] J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, J. M.
Wing, Larch: Languages and Tools for Formal Specification, Texts and
Monographs in Computer Science, Springer, 1993 (1993). doi:10.1007/

978-1-4612-2704-5.

38

https://doi.org/10.1145/2048066.2048100
https://doi.org/10.1145/2048066.2048100
https://doi.org/10.5381/jot.2014.13.4.a1
https://doi.org/10.1145/147508.147524
https://doi.org/10.1145/147508.147524
https://doi.org/10.1007/978-3-642-17336-3
https://doi.org/10.1007/b96103
https://doi.org/10.1007/978-3-540-71209-1_40
https://doi.org/10.1007/978-3-540-71209-1_40
https://doi.org/10.1142/9789812794499_0004
https://doi.org/10.1007/BF00260922
https://doi.org/10.1007/978-1-4612-2704-5
https://doi.org/10.1007/978-1-4612-2704-5

[21] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1: Equations und Ini-
tial Semantics, Vol. 6 of EATCS Monographs on Theoretical Computer Science,
Springer, 1985 (1985). doi:10.1007/978-3-642-69962-7.

[22] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 2, Vol. 21 of EATCS
Monographs on Theoretical Computer Science, Springer, 1990 (1990). doi:

10.1007/978-3-642-61284-8.

[23] J. Järvi, M. Marcus, S. Parent, J. Freeman, J. N. Smith, Algorithms for user in-
terfaces, in: GPCE’09: Proc. of 8th International Conference on Generative Pro-
gramming and Component Engineering, ACM, New York, NY, USA, 2009, pp.
147–156 (2009). doi:10.1145/1621607.1621630.

[24] G. Foust, J. Järvi, S. Parent, Generating reactive programs for graphical user
interfaces from multi-way dataflow constraint systems, in: Proceedings of the
2015 International Conference on Generative Programming: Concepts and Ex-
periences, GPCE 2015, ACM, New York, NY, USA, 2015, pp. 121–130 (2015).
doi:10.1145/2814204.2814207.

[25] J. Freeman, J. Järvi, W. Kim, M. Marcus, S. Parent, Helping programmers help
users, in: GPCE’11: Proc. of 10th International Conference on Generative pro-
gramming and Component Engineering, ACM, New York, NY, USA, 2011, pp.
177–184 (2011). doi:10.1145/2047862.2047892.

[26] L. Allison, Programming denotational semantics II, The Computer Journal 28 (5)
(1985) 480–486 (1985). doi:10.1093/comjnl/28.5.480.

[27] A. H. Bagge, V. David, M. Haveraaen, Testing with axioms in C++ 2011, Journal
of Object Technology 10 (2011) 10:1–32 (2011). doi:10.5381/jot.2011.10.
1.a10.

[28] R. Hamlet, Random testing, in: J. Marciniak (Ed.), Encyclopedia of Software
Engineering, Wiley, 1994, pp. 970–978 (1994). doi:10.1002/0471028959.

sof268.

[29] J.-P. Bernardy, P. Jansson, K. Claessen, Testing polymorphic properties, in:
A. Gordon (Ed.), Programming Languages and Systems: Proceedings of the
19th European Symposium on Programming (ESOP 2010), Vol. 6012 of Lec-
ture Notes in Computer Science, Springer, 2010, pp. 125–144 (2010). doi:

10.1007/978-3-642-11957-6_8.

[30] D. Sannella, A. Tarlecki, Specifications in an arbitrary institution, Information
and Computation 76 (2) (1988) 165–210 (1988). doi:https://doi.org/10.

1016/0890-5401(88)90008-9.

[31] M. Haveraaen, M. Roggenbach, Specifying with syntactic theory functors, Jour-
nal of Logical and Algebraic Methods in Programming 113 (2020) 100543
(2020). doi:10.1016/j.jlamp.2020.100543.

39

https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/978-3-642-61284-8
https://doi.org/10.1007/978-3-642-61284-8
https://doi.org/10.1145/1621607.1621630
https://doi.org/10.1145/2814204.2814207
https://doi.org/10.1145/2047862.2047892
https://doi.org/10.1093/comjnl/28.5.480
https://doi.org/10.5381/jot.2011.10.1.a10
https://doi.org/10.5381/jot.2011.10.1.a10
https://doi.org/10.1002/0471028959.sof268
https://doi.org/10.1002/0471028959.sof268
https://doi.org/10.1007/978-3-642-11957-6_8
https://doi.org/10.1007/978-3-642-11957-6_8
https://doi.org/https://doi.org/10.1016/0890-5401(88)90008-9
https://doi.org/https://doi.org/10.1016/0890-5401(88)90008-9
https://doi.org/10.1016/j.jlamp.2020.100543

[32] J. A. Goguen, G. Rosu, Institution morphisms, Formal Aspects of Computing
13 (3-5) (2002) 274–307 (2002). doi:10.1007/s001650200013.

[33] J. Meseguer, General Logics, in: H.-D. Ebbinghaus, J. Fernández-Prida, M. Gar-
rido, D. Lascar, M. Rodrı́guez Artalejo (Eds.), Logic Colloquium ’87, North-
Holland, 1989, pp. 275–329 (1989).

[34] M. J. Sannella, Constraint satisfaction and debugging for interactive user inter-
faces, Ph.D. thesis, University of Washington, Seattle, WA, USA, UW Tech Re-
port 94-09-10 (1994).

[35] G. Trombettoni, B. Neveu, Computational complexity of multi-way, dataflow
constraint problems, in: Proceedings of the 15th International Joint Conference
on Artifical Intelligence–Volume 1, IJCAI’97, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997, pp. 358–363 (1997).

40

https://doi.org/10.1007/s001650200013

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

	Introduction
	Motivation: Constraint systems in GUIs
	Syntax and Semantics of a Multiple Assignment Language
	Interfaces and Expressions
	Multiple Assignment Statements
	Semantics
	Axioms and Propositions for Models

	Dataflow Constraints
	Dataflow Constraint Combinators
	Dataflow Constraint Combinator Properties

	UI Examples
	Institution based Module System
	Categories for constraint systems
	Functors
	Institutions for constraints

	Constraint Systems
	Summary and conclusion

