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Abstract 

Modelling the risk of abnormal pregnancy-related outcomes such as stillbirth and preterm birth have been proposed 
in the past. Commonly they utilize maternal demographic and medical history information as predictors, and they 
are based on conventional statistical modelling techniques. In this study, we utilize state-of-the-art machine learn-
ing methods in the task of predicting early stillbirth, late stillbirth and preterm birth pregnancies. The aim of this 
experimentation is to discover novel risk models that could be utilized in a clinical setting. A CDC data set of almost 
sixteen million observations was used conduct feature selection, parameter optimization and verification of proposed 
models. An additional NYC data set was used for external validation. Algorithms such as logistic regression, artificial 
neural network and gradient boosting decision tree were used to construct individual classifiers. Ensemble learning 
strategies of these classifiers were also experimented with. The best performing machine learning models achieved 
0.76 AUC for early stillbirth, 0.63 for late stillbirth and 0.64 for preterm birth while using a external NYC test data. The 
repeatable performance of our models demonstrates robustness that is required in this context. Our proposed novel 
models provide a solid foundation for risk prediction and could be further improved with the addition of biochemical 
and/or biophysical markers.
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Introduction
Stillbirth is defined as a baby born without signs of life 
after a threshold around 20–22 weeks of gestation. 
According to the WHO’s ICD-10 classifications, the ges-
tational age threshold for early stillbirth is beyond 22 
weeks and, for late stillbirth, beyond 28 weeks of gesta-
tion [31]. Stillbirth-related guidelines by the American 
College of Obstetricians and Gynecologists (ACOG) 
state that gestational age (GA) threshold for stillbirth is 
at GA week 20 [1]. Respective thresholds are also defined 
for birthweight, which are partially in disagreement due 
to high co-occurrence of fetal growth restriction in still-
birth pregnancies [4].

Global rates and trends of stillbirth have been widely 
investigated. Global stillbirth rate has been declin-
ing mainly due to progress made in so called developed 
regions while the highest rates and slowest decline is 
observed in Southern Asia and sub-Saharan Africa [4]. 
Although globally less than 2% of stillbirths happen in 
developed regions, they represent almost 50% of the 
available clinical data and statistics [4].

The main demographic factors for increased risk for 
stillbirth have been identified. Risk factors include mater-
nal age, BMI, ethnicity, low birth weight of the newborn, 
various substance abuse, low socioeconomical class and 
low level of education [4]. Worldwide, gross national 
income and general access to basic healthcare are the 
main predictors for stillbirth rate [4].

During the past 50 years the rate of stillbirth in the 
USA has slowly declined from 14.0 per 1000 births [9] to 
around 6.0/1000 according to a recent statistical report 
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by the Centers for Disease Control and Prevention (CDC) 
[19]. A similar rate (7.2/1000) was recently reported in a 
smaller state level cohort study [29]. The rate of stillbirth 
is still slowly decreasing as the level of education and 
access to pregnancy care have increased and maternal 
smoking has decreased [34]. On the other hand, average 
age and BMI of pregnant mothers are increasing which 
partially counter the positive trends [34].

Various risk models to assess risk for stillbirth have 
been proposed; prediction performances range from 
0.64 to 0.67 area under the curve (AUC) from receiver 
operating characteristic curve (ROC) with maternal 
demographics [29, 33], and 0.82 AUC when biophysical 
variables were added [11]. While these models are based 
on highly similar maternal demographic and medical 
history, they have also relied on classical linear statisti-
cal models, i.e. where the decision boundary is linear. In 
this study, we show how machine learning (ML) meth-
ods could further improve the individual risk predic-
tion beyond the traditional models. Typical statistical 
analysis of clinical risk prediction is compared with a 
ML analysis pipeline, where statistically weak variables 
are not excluded, and more complex modelling tech-
niques are used. These techniques can learn structure 
from data without being explicitly programmed to do so 
[16]. This also means that a significant amount of data 
is a crucial factor in creating robust ML models. A data 
set with almost sixteen million observations provided 
by the CDC was used in our study, containing pregnan-
cies concluded in the United States. This data was used 
for predictive modelling, analyzing variables for feature 
inclusion and experimenting with a set of machine learn-
ing algorithms to produce viable risk models. Also, the 
models were evaluated with a separate data set consisting 
of pregnancy data from three years from the New York 
City (NYC) Department of Health and Mental Hygiene.

In addition to stillbirth outcome, we also included 
preterm birth (PTB, pregnancies with delivery before 
37 weeks of gestation), another major pregnancy com-
plication, as an outcome to be evaluated with the inves-
tigated methods. The incidence of PTB in the United 
States is estimated to be 1 in 10 births, making it consid-
erably more prevalent when compared to stillbirth [25]. 
These infants have an elevated risk for multiple neona-
tal complications [25]. While risk factors for PTB have 
been identified, causality is hard to prove because PTB 
can occur to women without elevated risk results [25]. 
Because of this, proposed risk models for PTB have been 
modest to poor, resulting in AUC values of 0.51 to 0.67 
with evidence of overfitting [20].

Maximizing the prediction power derived from exist-
ing maternal characteristics data creates a solid base 
for future implementation of biomarkers and closer to 

clinically significant prediction algorithms for stillbirth 
and other pregnancy complications with complex etiol-
ogy. In addition to this, feasible risk prediction with only 
demographic variables has value when methods that 
require biomarker results cannot be utilized due to the 
availability of testing.

Methods and materials
CDC data set
Infant birth and death data sets containing pregnancies 
during the years 2013 to 2016 in the United States were 
provided by CDC, National Center of Health Statistics 
via their National Vital Statistics System [28]. The data 
sets for different years are de-identified and are publicly 
available for statistical analysis, and this research com-
plies with the data user agreement provided by the CDC. 
State participation and available variables vary from year 
to year due to the data formatting and national reporting 
policy changes. The basis of these data sets are the yearly 
reported birth and death certificates. These data sets 
were combined to form the data set for our experimenta-
tion. From a total of 15,976,537 pregnancies, 15,883,784 
were live births and 92,753 were infant deaths. This 
amounts to an overall prevalence of 0.58% for the preg-
nancies ending in infant death. Whereas 1,532,538 of live 
births were PTB deliveries, a prevalence of 9.6%.

The data set contained variables that were either not 
feasible for prediction modelling, for example time of 
birth, or functional variables such as flags for identifying 
incomplete national reporting. Initial variable selection 
based on both literature [11, 25, 29, 33] and pragmatic 
reasoning was done to reduce the number of meaning-
ful demographic, risk factor and infection predictor vari-
ables to 26. The complete variable listing is documented 
in Table 1.

NYC data set
Limited use birth data sets containing pregnancies during 
the years 2014 to 2016 in the City of New York were pro-
vided by the New York City Department of Health and 
Mental Hygiene. The data sets for different years are de-
identified and IRB approval for the data was acquired for 
research purposes. Like the CDC data sets, the basis for 
this data was collected birth and death certificates. From 
a total of 364,124 pregnancies, 363,560 were live births 
and 564 were reported as not living when the record was 
created. This amounts to an overall prevalence of 0.15% 
for the pregnancies ending in infant death. As for the live 
births, 31,600 were PTB deliveries, a prevalence of 8.7%.

The purpose of the NYC data is to further evaluate the 
predictive models created using the CDC data. External 
validation is crucial for evaluating clinical potential of 
the model, and usually results into reduced performance 
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[20]. By applying the same preprocessing and variable 
selection steps to both data sets, we were able to achieve 
comparable data variables for both CDC and NYC.

Preprocessing
The first step of preprocessing was applying inclusion 
criteria to the observations. The first one was complete-
ness, i.e. no missing variable values. This was a feasible 
approach due to the substantial size of the data set, so 
that value imputation was not needed. Included moth-
ers were either 18 or older and cases of maternal mor-
bidity were excluded. Cases with reported gestational age 
in alive babies less than 21 weeks were also excluded. It 
is safe to assume that these cases are errors in the data 
records, because the earliest alive PTB baby in the world 
at the time of writing this publication is 21 weeks and 6 
days [3]. Multiple birth pregnancies were also excluded. 
In addition to this, pregnancies that ended in fetal death 
due to external causes were excluded. This was deter-
mined by the U, V, W, X and Y identifier values listed in 
the data according to the ICD-10 [31]. Postnatal death 
cases were also excluded.

Variable encodings were altered to accommodate 
modelling with machine learning algorithms. New vari-
ables were also created. Parity status of the mother was 
deducted from the number of prior births variable. A 
new class variable was annotated to specify the outcome 
of the pregnancies more accurately. Fetal death cases 
were divided into late and early stillbirth based on their 
gestational age, using the WHO’s definition of 28 weeks 
as the cutoff point. In addition to this, early stillbirth 
cases of less than than 21 weeks were excluded because 
they are clinically defined as miscarriage cases. The 21 
weeks cutoff was averaged from the WHO’s definition 
and ACOG’s definition. Live births were divided into 
uncomplicated term pregnancies, referred to as normal, 
and PTB birth pregnancies. This was done using the 
gestational week cutoff point of 37. The final number of 
CDC data observations for the study was 11,901,611 nor-
mal pregnancies, 946,301 PTB cases, 7924 early stillbirth 
cases and 8310 late stillbirth cases. The final number of 
NYC data observations was 266,419 normal pregnancies, 
19,203 PTB cases, 139 early stillbirth cases and 110 late 
stillbirth cases.

Table 1 Feature variables

Demographics f1 Age (years) Discrete

f2 Race (white, black, American Indian or Alaskan native, Asian or 
pacific islander)

Nominal

f3 Marital status Nominal

f4 Education (8th grade or less to doctorate) Nominal

f5 Number of previous terminations Discrete

f6 Special supplemental nutrition program (WIC) Binary

f7 Smoking before pregnancy Nominal

f8 Body mass index (BMI) Continuous

f9 Height (inches) Continuous

f10 Weight (pounds) Continuous

f11 Parity Nominal

Pregnancy history f12 Pre-pregnancy diabetes Binary

f13 Gestational diabetes Binary

f14 Pre-pregnancy hypertension Binary

f15 Gestational hypertension Binary

f16 Hypertension eclampsia Binary

f17 Previous preterm births Binary

f18 Infertility treatment Binary

f19 Infertility drugs Binary

f20 Assisted reproductive technology (ART) Binary

f21 Previous cesarean sections Binary

Infections f22 Gonorrhea Binary

f23 Syphilis Binary

f24 Chlamydia Binary

f25 Hepatitis B Binary

f26 Hepatitis C Binary
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Continuous predictor variables were standardized 
by removing the mean (zero-mean normalization) and 
scaling to unit variance (unit-variance normalization). 
Nominal predictor variables were one-hot encoded in 
the modelling phase to accommodate artificial neu-
ral network models. For conducting the whole analysis, 
CDC data was partitioned into four sets; feature selection 
data, training data, validation data and test data. Feature 
selection data was used exclusively for feature variable 
analysis, training data for model training, validation data 
for regularization and early stopping while model train-
ing, and test data for final model evaluation along with 
the NYC data set. To sustain the class distribution of the 
outcome variable, class-stratified random splits of 10%, 
70%, 10% and 10% were used, respectively. This ensured 
insulated data sets for feature selection, model training 
and evaluation phases. The data partitions are described 
in Table 2, while descriptive statistics of the whole CDC 
data set are listed in Table 3.

Feature variable analysis
For the task of predictor variable selection, correlation 
analysis and univariate analysis were used to determine 
the final set of variables. In correlation analysis, all pos-
sible predictor variable pairs were examined for linear 
dependency to each other with Pearson correlation coef-
ficient. Because highly correlated predictor variables 
have the same effect on the dependent variable [8], one 
of the variables with correlation less than − 0.5 or more 
than 0.5 was excluded. This is based on the definition 
of moderate correlation [21]. This reduces redundancy 
of the data and produces more robust models. For the 
task of univariate analysis, logistic regression was used 
to assess the impact of individual predictor variables to 
the classification outcome. For all binary classification 
tasks of case classes, odds ratios, their 2.5% and 97.5% 
confidence intervals and p-values were calculated. The 
method for calculating p-values was two-tailed Z-score. 
In clinical risk model development, the analysis pipeline 

frequently only includes variables in the modelling phase 
that have statistically significant odds ratios in the uni-
variate analysis [29, 33]. While this is a proper way of 
performing analysis with logistic regression, ML models 
could find beneficial feature dependencies from data to 
support decision making that are not detected in the uni-
variate analysis [26]. Therefore, only correlation analysis 
was used to determine the final predictor set for machine 
learning models.

Risk prediction modelling
Logistic regression (LR), gradient boosting decision tree 
(GBDT) and two artificial neural network (ANN) mod-
els were used in this study. LR will serve as a baseline for 
the more complex algorithms due to its simplicity and 
robustness. L2-regularizied logistic regression with lim-
ited-memory Broyden–Fletcher–Goldfarb–Shanno

(BFGS) parameter optimization was used [22]. Toler-
ance for stopping criteria was set to 1.0e−4. Regulari-
zation strength C was set to 1.0. The optimal maximum 
number of iterations was found to be 100.

GBDT is a widely implemented machine learning algo-
rithm and has demonstrated exceptional performance 
with bioinformatics tasks [23]. The lightgbm (LGBM) ver-
sion of GBDT algorithm was chosen for our study [12]. 
It contains features which provide a substantial increase 
in execution speed without losing significant amount 
of accuracy. This was appropriate for our research with 
training data that contained over nine million observa-
tions. For modelling, after iterative experimentation the 
number of leaves was set to 48, minimal number of data 
observations in one leaf to 500, maximum depth of the 
tree model was not restricted, shrinkage rate was set to 
0.001, feature and bagging fractions were set to 1 and 
boosting algorithm was chosen to be Gradient Boosting 
Decision Tree. Maximum iterations was set to 2000, and 
early stopping after 500 iterations was used and the used 
metric for performance was AUC. Different outcomes 
have clinically significant false positive rates based on 
incidence. True positive rates in those false positive rates 
could also be used as a metric for performance, however 
initial experimentation showed that there were no signifi-
cant changes in using them over AUC.

For ANN, the first model was a Leaky ReLU-based 
deep two-layer feed-forward neural network that we have 
previously shown to perform well in the risk prediction 
task of Down’s syndrome [15]. The second was a deep 
feed-forward self-normalizing neural network based on 
the scaled exponential linear units (SELU) activation 
function, which has been demonstrated to achieve supe-
rior performance to other feed-forward neural networks 
[14]. The original publication suggests that deeper archi-
tectures yield better performance, so four hidden layers 

Table 2 Data observations

Data Normal Early stillbirth Late stillbirth PTB

Feature selec-
tion

1,178,146
(92.5%)

782
(0.06%)

809
(0.06%)

93,813
(7.36%)

Training 8,331,492
(92.5%)

5578
(0.06%)

5806
(0.06%)

662,026
(7.35%)

Validation 1,196,173
(92.5%)

796
(0.06%)

845
(0.07%)

95,033
(7.35%)

Test 1,195,800
(92.5%)

768
(0.06%)

850
(0.07%)

95,429
(7.38%)

NYC 266,419
(93.2%)

139
(0.05%)

110
(0.04%)

19,203
(6.72%)
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Table 3 Descriptive statistics of CDC data

Normal Early stillbirth Late stillbirth PTB

Age

 Mean (SD) 28.5 (5.65) 28.0 (5.99) 28.3 (6.01) 28.7 (6.02)

 Range 18.0–50.0 18.0–50.0 18.0–48.0 18.0–50.0

Race

 White 9,170,035 (77.0%) 4701 (59.3%) 5620 (67.6%) 669,375 (70.7%)

 Black 1,771,832 (14.9%) 2770 (35.0%) 2231 (26.8%) 205,091 (21.7%)

 American Indian or Alaskan Native 129,546 (1.1%) 116 (1.5%) 102 (1.2%) 11,962 (1.3%)

 Asian or Pacific Islander 830,198 (7.0%) 337 (4.3%) 357 (4.3%) 59,873 (6.3%)

Marital status

 Married 4,592,768 (38.6%) 4359 (55.0%) 3932 (47.3%) 439,202 (46.4%)

 Not married 7,308,843 (61.4%) 3565 (45.0%) 4378 (52.7%) 507,099 (53.6%)

Education

 8th grade or less 412,938 (3.5%) 281 (3.5%) 347 (4.2%) 33,244 (3.5%)

 9th through 12th grade with no diploma 1169,038 (9.8%) 1027 (13.0%) 1031 (12.4%) 118,041 (12.5%)

 High school graduate or GED completed 2,985,280 (25.1%) 2667 (33.7%) 2665 (32.1%) 267,006 (28.2%)

 Some college credit, but not a degree 2,574,183 (21.6%) 1865 (23.5%) 1828 (22.0%) 218,090 (23.0%)

 Associate degree 995,733 (8.4%) 607 (7.7%) 650 (7.8%) 78,195 (8.3%)

 Bachelor’s degree 2,393,391 (20.1%) 984 (12.4%) 1277 (15.4%) 148,341 (15.7%)

 Master’s degree 1,065,979 (9.0%) 392 (4.9%) 420 (5.1%) 64,909 (6.9%)

 Doctorate or Professional Degree 305,069 (2.6%) 101 (1.3%) 92 (1.1%) 18,475 (2.0%)

Number of previous terminations

 Mean (SD) 0.40 (0.85) 0.69 (1.20) 0.65 (1.17) 0.52 (1.03)

 Range 0.00–30.0 0.00–13.0 0.00–17.0 0.00–27.0

WIC

 No 6,950,753 (58.4%) 5108 (64.5%) 5410 (65.1%) 518,777 (54.8%)

 Yes 4,950,858 (41.6%) 2816 (35.5%) 2900 (34.9%) 427,524 (45.2%)

Smoking before pregnancy

 Nonsmoker 10,685,669 (89.8%) 6707 (84.6%) 7179 (86.4%) 817,116 (86.3%)

 1–5 309,680 (2.6%) 329 (4.2%) 300 (3.6%) 31,856 (3.4%)

 6–10 415,142 (3.5%) 438 (5.5%) 402 (4.8%) 43,269 (4.6%)

 11–20 419,861 (3.5%) 397 (5.0%) 356 (4.3%) 45,524 (4.8%)

 21–40 61,875 (0.5%) 45 (0.6%) 63 (0.8%) 7383 (0.8%)

 41 or more 9384 (0.1%) 8 (0.1%) 10 (0.1%) 1153 (0.1%)

BMI

 Mean (SD) 26.6 (6.52) 28.6 (7.70) 28.3 (7.51) 27.3 (7.16)

 Range 10.5–168 13.7–68.7 10.0–67.4 10.0–125

Height (in.)

 Mean (SD) 64.2 (2.84) 64.0 (2.83) 64.0 (2.84) 63.9 (2.87)

 Range 30.0–78.0 48.0–78.0 46.0–78.0 34.0–78.0

Weight (pounds)

 Mean (SD) 156 (40.5) 167 (47.8) 165 (46.4) 159 (44.3)

 Range 75.0–375 75.0–375 75.0–375 75.0–375

Parity

 Nulliparous 6,786,170 (57.0%) 5649 (71.3%) 5373 (64.7%) 576,415 (60.9%)

 Parous 5,115,441 (43.0%) 2275 (28.7%) 2937 (35.3%) 369,886 (39.1%)

Pre-pregnancy diabetes

 No 11,823,600 (99.3%) 7787 (98.3%) 8135 (97.9%) 922,519 (97.5%)

 Yes 78,011 (0.7%) 137 (1.7%) 175 (2.1%) 23,782 (2.5%)
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were selected for the SELU network instead of two that 
was used in our previously published ANN. The number 
of hidden nodes per layer was set to the number of input 
variables; all of them contained the SELU activation 
function. Alpha node dropout amount in these nodes 
was set to 15% [14]. LeCun normal weight initialization 

was used [14]. Adam gradient descent optimization with 
0.001 learning rate was used for updating weights [13]. 
Sigmoid activation function was utilized as the final node 
for binary classification. 10 epochs with a batch size of 
256 was tested to be optimal.

Table 3 (continued)

Normal Early stillbirth Late stillbirth PTB

Gestational diabetes

 No 11,255,544 (94.6%) 7752 (97.8%) 8019 (96.5%) 868,686 (91.8%)

 Yes 646,067 (5.4%) 172 (2.2%) 291 (3.5%) 77,615 (8.2%)

Pre-pregnancy hypertension

 No 11,737,430 (98.6%) 7662 (96.7%) 8084 (97.3%) 906,296 (95.8%)

 Yes 164,181 (1.4%) 262 (3.3%) 226 (2.7%) 40,005 (4.2%)

Gestational hypertension

 No 11,362 046 (95.5%) 7632 (96.3%) 8010 (96.4%) 817,889 (86.4%)

 Yes 539,565 (4.5%) 292 (3.7%) 300 (3.6%) 128,412 (13.6%)

Hypertension eclampsia

 No 11,883,299 (99.8%) 7895 (99.6%) 8289 (99.7%) 936,176 (98.9%)

 Yes 18,312 (0.2%) 29 (0.4%) 21 (0.3%) 10,125 (1.1%)

Previous preterm birth

 No 11,629,604 (97.7%) 7163 (90.4%) 7733 (93.1%) 854,379 (90.3%)

 Yes 272,007 (2.3%) 761 (9.6%) 577 (6.9%) 91,922 (9.7%)

Infertility treatment

 No 11,784 432 (99.0%) 7774 (98.1%) 8178 (98.4%) 932,874 (98.6%)

 Yes 117,179 (1.0%) 151 (1.9%) 133 (1.6%) 13,427 (1.4%)

Infertility drugs

 No 11,848,427 (99.6%) 7867 (99.3%) 8249 (99.3%) 939,687 (99.3%)

 Yes 53,184 (0.4%) 57 (0.7%) 61 (0.7%) 6614 (0.7%)

ART 

 No 11,847,091 (99.5%) 7844 (99.0%) 8250 (99.3%) 940,647 (99.4%)

 Yes 54,520 (0.5%) 80 (1.0%) 60 (0.7%) 5654 (0.6%)

Previous cesarean sections

 No 10,107,199 (84.9%) 6972 (88.0%) 7204 (86.7%) 777,914 (82.2%)

 Yes 1,794,412 (15.1%) 952 (12.0%) 1106 (13.3%) 168 387 (17.8%)

Gonorrhea

 No 11,873,368 (99.8%) 7893 (99.6%) 8271 (99.5%) 942,694 (99.6%)

 Yes 28,243 (0.2%) 31 (0.4%) 39 (0.5%) 3607 (0.4%)

Syphilis

 No 11,892,843 (99.9%) 7915 (99.9%) 8300 (99.9%) 945,206 (99.9%)

 Yes 8768 (0.1%) 9 (0.1%) 10 (0.1%) 1095 (0.1%)

Chlamydia

 No 11,695,524 (98.3%) 7724 (97.5%) 8142 (98.0%) 925,808 (97.8%)

 Yes 206,087 (1.7%) 200 (2.5%) 168 (2.0%) 20 493 (2.2%)

Hepatitis B

 No 11,874,921 (99.8%) 7907 (99.8%) 8298 (99.9%) 944,139 (99.8%)

 Yes 26,690 (0.2%) 17 (0.2%) 12 (0.1%) 2162 (0.2%)

Hepatitis C

 No 11,863,301 (99.7%) 7875 (99.4%) 8273 (99.6%) 939,814 (99.3%)

 Yes 38,310 (0.3%) 49 (0.6%) 37 (0.4%) 6487 (0.7%)
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For all the case classes of late stillbirth, early stillbirth 
and PTB, binary classifiers of normal pregnancy vs. case 
were constructed. Because of the class unbalance, class 
weights w were calculated from the training data set with

where s is number of samples, c is the number of different 
classes and f(y) is the frequency of classes in data labels y.

The performance of classifiers was tested with the par-
titioned test set and the NYC data set. Folded cross vali-
dation was determined to not be necessary with the data 
of this size. The metric for performance was AUC. In 
addition to this, the true positive rate (TPR) at clinically 
significant false positive rates (FPR) were estimated from 
the ROC curve.

Average and weighted average (WA) ensemble learning 
strategies over the different models of the same case class 
were experimented with, to see if models with different 
priors and assumptions would complement each other to 
form better predictions. In average ensemble, prediction 
probabilities were averaged over several models, creat-
ing a new ensembled prediction. In WA, if y is a set of 
probabilities created by different models and α is a set of 
weights, the weighted sum y is calculated with

All possible WA weight combinations were calculated 
with exhaustive grid search when the objective function 
was maximizing prediction AUC, with the constraint that 
the result vector of non-negative values add up to one, i.e. 
100%.

R (v. 3.5.1) and Python (v. 3.6.9) were used as tools for 
statistical analysis and modelling. In addition to base 
packages, R package readr (v. 1.1.1) was used for reading 
the data set text files [32], while caret (v. 6.0-82) was used 
for data partition [17]. Several Python packages were 
used, scipy (v. 1.3.1) [10] and pandas (v. 0.25.0) for data 
management, and scikit-learn (v. 0.21.2) [24] for logistic 
regression. This implementation features process-based 
parallelism, making it executable on multiple CPU cores 
in parallel. For ML modelling, tensorflow (v. 1.14.0) 
in conjunction with keras (v. 2.2.4) was used for neural 
networks [2, 5]. A gradient boosting decision tree was 
implemented using the lightgbm (v. 2.2.1) package [12]. It 
features multithreading for bagging, so that the calcula-
tion can benefit from multiple CPU cores. The code for 
preprocessing is available upon request. GPU-based cal-
culation was done using an RTX 2080 TI manufactured 
by Nvidia, while CPU-based calculation was done using 
an Intel Xeon E5-1603 processor.

(1)w = s/(c ∗ f (y))

(2)ỹ(x; a) =
∑

p
j=1αjyj(x)

Results
Correlation analysis
The correlation results in Fig. 1 show that mothers BMI 
(f8) and weight (f10) in pounds were highly correlated 
(0.94), which makes sense because in the BMI formula

weight is the numerator. Because of this, weight was 
chosen to be excluded. Infertility drugs and assisted 

(3)BMI =
weight(Lb)

height(in.)2
∗ 703,
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Fig. 2 Venn diagram of the three infertility-related feature variables 
from the whole study data
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reproductive technology (ART) use were correlated to 
infertility treatment (0.68 and 0.67). This is also to be 
expected, because they are alternative forms of infertil-
ity treatment. Figure  2 shows that observations marked 
for infertility drugs and ART are always a member of 
the set of infertility treatment. The presence of 10,660 
observations (0.08% of all study data) where treatment 
is marked but drugs or ART use are not suggests either 
the use of other undocumented infertility treatment pro-
cedures such as myomectomy surgeries [18], incomplete 
documentation in some data collection areas, poor data 
quality or a combination of the three. Because the data is 
de-identified, we can only speculate the underlying effect, 
so the three infertility-related variables were included in 
the set of features. No other significant correlations were 
found, i.e. less than − 0.5 or more than 0.5.

Univariate analysis
For predicting early stillbirth, logistic univariate analysis 
revealed that from the 26 selected predictor variables, 
18 had a statistically significant odds ratio, i.e. p < 0.05 . 
Table 4 shows that from the 17 variables, the ones with 

notable odds ratios were risk factors of pre-pregnancy 
diabetes, gestational diabetes, pre-pregnancy hyperten-
sion, hypertension eclampsia, previous preterm birth, 
infertility treatment and assisted reproductive technol-
ogy and marital status.

The results for predicting late stillbirth showed that 14 
variables had a statistically significant odds ratio. Notable 
ones were risk factors of pre-pregnancy diabetes, gesta-
tional diabetes, pre-pregnancy hypertension, gestational 
hypertension, previous preterm birth, infertility treat-
ment and assisted reproductive technology and marital 
status. For PTB prediction, only infection of Hepatitis B 
was found not statistically significant. The same variables 
have notable odds ratio when compared to predicting 
late stillbirth and early stillbirth, but in addition variables 
such as infections seem to have a bigger impact in PTB. 
The final variable sets for logistic multivariate modelling 
are highlighted in Table 4.

Table 4 Univariate results, selected variables per outcome are highlighted

Feature Early stillbirth
OR (2.5%, 97.5%)

p Late stillbirth
OR (2.5%, 97.5%)

p PTB
OR (2.5%, 97.5%)

p

Age 0.98 (0.97, 1.00) 0.01 1.00 (0.98, 1.01) 0.43 1.01 (1.00, 1.01) < 0.01
Race 1.18 (1.09, 1.26) < 0.01 1.00 (0.91, 1.08) 0.95 1.08 (1.07, 1.09) < 0.01
Marital status 0.50 (0.44, 0.58) < 0.01 0.71 (0.61, 0.81) < 0.01 0.72 (0.71, 0.73) < 0.01
Education 0.84 (0.80, 0.87) < 0.01 0.88 (0.84, 0.92) < 0.01 0.91 (0.91, 0.92) < 0.01
Number of previous terminations 1.27 (1.21, 1.32) < 0.01 1.24 (1.19, 1.30) < 0.01 1.15 (1.14, 1.15) < 0.01
WIC 0.80 (0.69, 0.93) < 0.01 0.81 (0.70, 0.93) < 0.01 1.17 (1.15, 1.19) < 0.01
Smoking before pregnancy 1.23 (1.14, 1.32) < 0.01 1.06 (0.96, 1.15) 0.22 1.14 (1.13, 1.15) < 0.01
BMI 1.04 (1.04, 1.05) < 0.01 1.04 (1.03, 1.05) < 0.01 1.02 (1.01, 1.02) < 0.01
Height 0.98 (0.95, 1.00) 0.07 0.95 (0.93, 0.97) < 0.01 0.96 (0.96, 0.97) < 0.01
Parity 0.83 (0.76, 0.90) < 0.01 0.91 (0.84, 0.98) 0.02 0.96 (0.95, 0.97) < 0.01
Pre-pregnancy diabetes 2.95 (1.69, 4.73) < 0.01 3.43 (2.07, 5.31) < 0.01 3.87 (3.69, 4.05) < 0.01
Gestational diabetes 0.34 (0.20, 0.55) < 0.01 0.51 (0.33, 0.75) < 0.01 1.56 (1.52, 1.60) < 0.01
Pre-pregnancy hypertension 2.66 (1.78, 3.80) < 0.01 1.91 (1.20, 2.86) < 0.01 3.15 (3.04, 3.26) < 0.01
Gestational hypertension 0.87 (0.60, 1.23) 0.46 0.68 (0.44, 0.98) 0.05 3.37 (3.30, 3.44) < 0.01
Hypertension eclampsia 4.16 (1.49, 8.99) < 0.01 2.41 (0.60, 6.26) 0.13 7.14 (6.61, 7.71) < 0.01
Previous preterm births 5.13 (4.06, 6.39) < 0.01 3.35 (2.54, 4.33) < 0.01 4.56 (4.44, 4.67) < 0.01
Infertility treatment 2.39 (1.44, 3.69) < 0.01 2.18 (1.29, 3.40) < 0.01 1.47 (1.38, 1.55) < 0.01
Infertility drugs 1.73 (0.68, 3.52) 0.18 1.95 (0.84, 3.79) 0.08 1.65 (1.53, 1.79) < 0.01
ART 2.56 (1.23, 4.64) 0.01 2.48 (1.19, 4.49) 0.01 1.23 (1.13, 1.35) < 0.01
Previous cesarean sections 0.73 (0.59, 0.91) 0.01 0.87 (0.71, 1.06) 0.18 1.21 (1.19, 1.23) < 0.01
Gonorrhea 1.09 (0.18, 3.37) 0.90 2.11 (0.65, 4.92) 0.14 1.64 (1.46, 1.82) < 0.01
Syphilis 1.70 (0.10, 7.49) 0.60 < 0.01 (< 0.01, < 0.01) 0.94 1.67 (1.37, 2.01) < 0.01
Chlamydia 1.09 (0.63, 1.75) 0.73 1.42 (0.88, 2.14) 0.12 1.25 (1.19, 1.31) < 0.01
Hepatitis B 1.71 (0.43, 4.46) 0.35 < 0.01 (< 0.01, < 0.01) 0.93 1.04 (0.91, 1.19) 0.56

Hepatitis C 1.99 (0.71, 4.29) 0.13 1.15 (0.29, 2.99) 0.81 2.05 (1.88, 2.23) < 0.01
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Risk prediction modelling
From the three case classes, early stillbirth classification 
performed the best overall. Logistic regression was able 
to achieve 0.73 and 0.74 AUC with CDC test data and 
NYC data, while deep neural network obtained 0.73 and 
0.74. SELU network and LGBM models both reached 
0.75 and 0.76 AUC, however SELU network had margin-
ally better TPR at 10% FPR. All of the models were able 
to achieve similar performance in the external NYC data 
set.

The weakest performance was seen in late stillbirth 
classification, which resulted in 0.58 and 0.61 AUC for 
logistic regression with CDC test data and NYC data, 
0.57 and 0.54 for deep neural network, 0.59 and 0.59 for 
SELU network and 0.60 and 0.61 for LGBM. For classi-
fying the external NYC data set, neural network models 
performed marginally worse, while Logistic regression 
and LGBM achieved an improved TPR at 10% FPR of 22% 
when compared to CDC test data. The outcome of classi-
fying PTB was 0.64 and 0.62 for logistic regression, 0.66 
and 0.63 for deep neural network, 0.67 and 0.64 for SELU 
network and LGBM. All models performed marginally 
worse with the NYC data set. The results are depicted in 
Tables 5 and 6.

Ensemble results
In all the binary classification tasks, SELU network out-
performed the deep neural network. Because of the simi-
larity in the models, only SELU network was used for the 
ensembles. Averaged ensemble performed similarly to 
the best performing models in tasks of early stillbirth and 
PTB classification for both CDC and NYC data. For late 
stillbirth, it achieved the best AUC of 0.63 and TPR com-
parable to the best individual model for NYC prediction. 
In the case of CDC, AUC was comparable to the best 
individual models, but TPR at 10% FPR was increased by 
1%.

WA ensemble performed similarly to the best perform-
ing models for all outcomes with CDC test data. This was 
also the case for early stillbirth and PTB outcomes with 
NYC data. However, late stillbirth model achieved a nota-
ble TPR increase of 26% at 10% FPR when compared to 
the second best TPR of 22% by LGBM. For this ensemble, 
the weights were 0.0 for logistic regression, 0.2 for SELU 
network and 0.8 for LGBM. Overall the ensemble mod-
els provided no significant increase in performance with 
early stillbirth and PTB outcomes. Late stillbirth was the 
only outcome to benefit from ensemble learning. The 
weight grid searches in Fig.  3 show that it was the only 
outcome that demonstrated some effect when weights 
were changed, when early stillbirth and PTB models were 
more unresponsive. All of model results are summarized 
in Tables 5 and 6.

Table 5 Model results of CDC test data

Model Early stillbirth AUC 
(95% CI)

TPR at 10% 
FPR (%)

Late stillbirth AUC 
(95% CI)

TPR at 10% 
FPR (%)

Preterm AUC (95% CI) TPR 
at 10% 
FPR (%)

Logistic regression 0.73 (0.71, 0.74) 38 0.58 (0.55, 0.60) 15 0.64 (0.64, 0.64) 27

Deep NN 0.73 (0.72, 0.75) 37 0.57 (0.54, 0.60) 16 0.66 (0.66, 0.66) 30

SELU network 0.75 (0.73, 0.76) 40 0.59 (0.56, 0.62) 17 0.67 (0.66, 0.67) 31

LGBM 0.75 (0.74, 0.77) 39 0.60 (0.58, 0.63) 17 0.67 (0.67, 0.67) 31

Averaged ensemble 0.75 (0.74, 0.77) 39 0.60 (0.57, 0.62) 18 0.67 (0.66, 0.67) 31

WA ensemble 0.75 (0.74, 0.77) 40 0.60 (0.58, 0.63) 19 0.67 (0.67, 0.67) 31

Table 6 Model results of NYC test data

Model Early stillbirth AUC 
(95% CI)

TPR at 10% 
FPR (%)

Late stillbirth AUC 
(95% CI)

TPR at 10% 
FPR (%)

Preterm AUC (95% CI) TPR 
at 10% 
FPR (%)

Logistic regression 0.74 (0.69, 0.78) 37 0.61 (0.56, 0.66) 18 0.62 (0.61, 0.62) 22

Deep NN 0.74 (0.70, 0.77) 37 0.54 (0.49, 0.59) 15 0.63 (0.63, 0.64) 24

SELU network 0.76 (0.73, 0.79) 38 0.59 (0.54, 0.65) 15 0.64 (0.63, 0.64) 24

LGBM 0.76 (0.70, 0.79) 37 0.61 (0.55, 0.67) 22 0.64 (0.63, 0.64) 24

Averaged ensemble 0.75 (0.72, 0.79) 38 0.63 (0.57, 0.68) 21 0.63 (0.63, 0.64) 22

WA ensemble 0.76 (0.71, 0.79) 38 0.62 (0.56, 0.67) 26 0.63 (0.63, 0.64) 23
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Conclusions
Beside various earlier studies [7, 15, 27, 30], this inves-
tigation further establishes the role of machine learning 
models as tools that can generate risk prediction models 
that show improved clinical prediction power over a mul-
tivariate logistic regression model, which was used as a 
control and represents the current standard method. Fur-
thermore, the ensemble models across three algorithms 
further improved the performance with late stillbirth.

We were able to improve performance, TPR at 10% FPR 
and AUC on average by 3% and 0.02, respectively, with 
the CDC test set over all case conditions. The improve-
ment was repeatable with the external NYC data set, 
where TPR was improved by 4% on average and AUC 
by 0.02 with ML methods. For early stillbirth, the best 
performing model was SELU network, while averaged 
ensemble was best for late stillbirth, and for PTB LGBM 
and SELU network performed the best. Compared to 
other published models, for late stillbirth our model dis-
played similar performance. For PTB, we were able to 
create similar performance but with no empirical evi-
dence of overfitting, due to the external validation. There 
are currently no prior models published for early still-
birth prediction, making our SELU network novel.

Multiclass implementations of the algorithms used in 
this study, i.e. one model predicting all four classes, were 
experimented upon but were excluded from further anal-
ysis due to inferior performance with late stillbirth and 
early stillbirth classification. It was suspected that the 
unbalanced class distribution in the study data caused 
the multiclass models to favor the two proportionally 
biggest classes, normal and PTB pregnancies, even when 
class weights were used. In practice, the model’s binary 
results would be interpreted in a hierarchical manner; 
from most hazardous to life, early stillbirth, to the least, 
PTB.

Variables increasing the risk for late stillbirth included 
increased age and BMI, previous pregnancies with 
adverse effect, various comorbidities and having an ART 
pregnancy. Compared to stillbirth the biggest difference 
to PTB birth was seen on infectious diseases that are 
known to be involved in about 25–30% of the PTB preg-
nancy cases [6]. On the other hand, education level had 
great positive effect on lowering the risk for these adverse 
events of pregnancy.

Our SELU network experiments showed no con-
crete improvement in adding hidden layers beyond four, 
despite what was stated in the original SELU publication 
[14]. Iterating more or less epochs with smaller batch 
sizes also did not significantly improve prediction per-
formance. Substantial class imbalance in our data sets is 
suspected to cause this, more experimentation is needed 
in the future to fully understand the effect. As for LGBM, 

Fig. 3 Weight grid searches of early stillbirth (a), late stillbirth (b) and 
preterm (c) for WA ensemble. Color is determined by the calculated 
AUC of the ensemble
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training the model was frequently stopped early after 500 
iterations, indicating that going beyond this would start 
to decrease validation data performance. Using AUC as 
the stopping criteria for early stopping could also poten-
tially inhibit us from generating a model that produces 
the most optimal TPR at 10% FPR, because AUC as a 
metric takes into consideration the whole FPR range.

We want to highlight that due to the large amount of 
data there were enough samples for independent selec-
tion, training, validation and test sets. The original data, 
i.e. medical records, are not available to us, so it is not 
feasible to estimate the quality and integrity of the data 
used in this study. However, because the data contains 
observations from multiple years, regions and hospitals, 
the number of random artifacts such as incorrect data 
entry should be reduced to insignificant levels.

The machine learning models used in this study pro-
vide a solid basis for adding biochemical and/or biophysi-
cal markers to further improve sensitivity and specificity 
of these risk models. Further research would also include 
inspecting the reproducibility of the results beyond the 
population of the United States with different ML mod-
els. The best machine learning models (SELU network, 
LGBM and averaged ensemble) were able to produce 
repeatable performance over two data sets. Using these 
machine learning models, especially for early stillbirth, 
could provide earlier identification of at-risk pregnancies 
with high accuracy and provide tools for better utiliza-
tion of healthcare resources targeted to those needing it 
most.
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