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We consider a possibility of the magnetostatic type spin waves driven by a long-range magnetic
dipole interactions, to account for the peaks in the ESR spectra observed in our previous work [24].
The Walker equation for magnetostatic modes is solved for a cylinder of atomic hydrogen, first in a
uniform magnetic field and second in a linearly decreasing magnetic field. The frequency behavior
of the solved modes with length of the cylinder and density of the gas is compared to experimental
data. We conclude that magnetostatic modes are unlikely to account for the observed modulations
of ESR spectra.

I. INTRODUCTION

A perturbation of the local spin order in a magnetized
medium may propagate over a long distance in the form
of a wave. Such behavior was predicted by F. Bloch
in 1929 [6] and since then has been intensively studied
in different materials including ferromagnets and mag-
netic insulators [11, 33], liquid 3He [3] and quantum gases
[23, 36]. The large variety of linear and non-linear spin-
wave phenomena boosted interest into theoretical stud-
ies of their fundamental properties and stimulated de-
velopment of numerous applications including microwave
devices, telecommunication systems, radars [1, 30, 34],
spintronics [8, 18, 32, 38], and quantum information pro-
cessing [7, 17]. Being bosons magnons can form a Bose-
Einstein condensate, which was demonstrated in liquid
3He [3], cold gas of atomic hydrogen [35] and in ferro-
magnets at room temperature [9].

Spin interactions fall roughly into two categories:
short-range interactions like the nearest neighbor ex-
change interaction, and long-range interactions such as
the dipolar interaction between the magnetic dipole mo-
menta of the spins via Maxwell’s laws. In spin-polarized
atomic hydrogen, during collisions the exchange inter-
action gives rise to the Identical Spin Rotation Effect
(ISRE) when the gas is in the quantum gas regime, i.e.
non-degenerate but the thermal de Broglie wavelength
exceeds the typical size of the atoms [4, 25, 27]. The
ISRE leads to a propagation of the spin perturbation in
the form of spin waves. In our recent work we found a
large variety of the spin wave modes dependent on den-
sity of the gas, magnetic field gradients, and geometry of
the sample [24, 35, 36]. We demonstrated a possibility of
trapping and guiding [36] ISRE spin waves and compiled
an argument for the existence of a Bose-Einstein conden-
sate of magnons in atomic hydrogen [35]. However some
series of peaks in the ESR spectra could not be explained
by the ISRE and its origin remains unclear. In this work,
we turn our attention to another possible origin of spin
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waves, the long-range dipolar interactions and analyze
a possibility for the magnetostatic spin wave modes in
a high density gas. Atomic hydrogen at high densities
studied in our experiments represents a unique system
where these phenomena could be observed. In typical
experiments with all other alkali vapours the range of
accessible densities is lower by several orders of magni-
tude, and effective magnetic moments of atoms are much
smaller.

Magnetostatic waves arise from the dipolar interaction
between spins in a magnetized sample. They were first
observed by Griffiths [10] and explained by Kittel [19].
A more general theory was laid out by Walker [39] who
derived the Walker equation for magnetostatic modes in
a uniform field and solved it for ellipsoids. The Walker
equation has also been solved for some other geometries,
such as the infinite cylinder and infinite films, but gen-
erally the nonuniformity of the demagnetizing field the
restricts the applicability of the Walker equation. A gen-
eralization of the Walker equation [2] overcomes this lim-
itation, but is more difficult to solve.

Following the features of the experimental observation
of the electron spin waves, we model the magnetostatic
problem in a finite cylinder of variable length. First we
just extend the results of Joseph and Schlömann for the
infinite cylinder [16], in this case for a finite cylinder.
Then, a small linear gradient field is added to the problem
and an approximate solution to the Walker equation is
found by simplifying boundary conditions.

II. EXPERIMENTAL OBSERVATIONS

Experiments are performed with a gas of atomic hy-
drogen in a strong magnetic field of 4.6 T in a temper-
ature range of 300 mK–500 mK. The gas is compressed
to high densities up to ∼ 10× 1018 cm−3 using the pis-
ton of liquid helium in a U-tube like geometry, where the
compression is driven by the fountain effect of superfluid
4He [24]. Compression is performed by raising the helium
level in a thin-walled polyimide tube of 0.5 mm diameter
to a variable height ranging between 0.5 mm and 2 mm
(see fig. 1). This is done by driving down the level in
the other arm of the U-tube system by decreasing the
temperature and fountain pressure in the latter. The
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Figure 1. Schematics of the Sample Cell Used for Compres-
sion of Atomic Hydrogen

compression is stopped after reaching a certain height.
Highest densities are reached for largest height and vol-
ume changes, i.e. stopping the ramp at smallest heights.
After stopping the compression, the sample evolves with
the recombination processes decreasing number of atoms,
density and pressure of the sample. Decrease of pressure
of the gas leads to further reduction of its height. There-
fore, the height and density appear to be bound parame-
ters of the experiment. In order to obtain different values
of the gas density for the same height, we run a series of
compressions with different values of the final height at
compression stage.

For diagnostics of the compressed gas we use Electron
Spin Resonance (ESR) technique [37] at 130 GHz. Ex-
citation of the gas is performed via the evanescent mi-
crowave field, penetrating from the high Q Fabry-Perot
cavity into the compression cylinder via a 0.5 mm cou-
pling orifice. The characteristic size of the microwave
field region is ∼ 80 µm, substantially smaller than the
height of the cylinder with the gas. Despite of a special
care taken to avoid any magnetic impurities in the sam-
ple cell, we found that even essentially ”nonmagnetic”
materials like the Stycast 1266 epoxy may influence the
magnetic field homogeneity at the levels sufficient to in-
fluence the magnetic resonance of the compressed gas.
The presence of the weakly diamagnetic epoxy created ∼
0.3 G local field maximum near the walls of the cylinder.
Since for the ISRE magnons the field inhomogeneities are
equivalent to the change of the potential, such field pro-
file allowed formation of the standing modes of the ISRE
magnons in the regions of magnetic field maximum [35].

In order to be able to change the static magnetic field
homogeneity we installed a pair of extra coils in the anti-
Helmholtz geometry, which could create axial gradients
of magnetic field up to 30 G/cm. Using these gradi-
ent coils we found that in the case of large (>10 G/cm)
positive gradient the ISRE magnon modes are localized
near the upper end of the cylinder, in the maximum of
magnetic field [35]. In the opposite case of the large neg-
ative gradient, our rf excitation launched traveling ISRE
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Figure 2. ESR Spectra of the Compressed Hydrogen Gas
Recorded After the Compression Ramp. — The density and
height of the sample decrease from top to bottom spectra.
The modes of possible magnetostatic origin considered in this
work are outlined by arrows. They appear below the main
ESR peak which is found at the Larmor frequency in the
static magnetic field of our experiments.

waves going towards the lower end of the cylinder down
the magnetic potential [36].

The observed peaks in the ESR spectra in large gradi-
ents as well as in the local maxima of the static field are
understood and interpreted in terms of the ISRE. How-
ever, in the case of the most homogeneous static field,
with the only small disturbances originating from the
diamagnetic epoxy, we observed a set of the peaks in the
ESR spectrum dependent of the H density and on the
height of the gas column. These peaks occurred below
the main ESR peak in frequency space, approaching it as
the density and height of the sampled decreased during
the decay of the sample (see fig. 2). They behave differ-
ently from the ISRE modes, which are typically concen-
trated in the regions of stronger magnetic field and ap-
pear above the main peak. We were not able to explain
it by the ISRE effect. Motivated by this discrepancy we
consider another possibility for the spin waves in mag-
netized media, well known in solid-state physics, namely
magnetostatic waves.

In fig. 3 we plot the data of the displacement of the
observed spin-wave peaks as a function of the cylinder
height taken from a single compression experiment. By
virtue of the compression experiment, the density of the
gas decreased proportionally to the height, which is la-
beled by the color of the symbols (see color map on the
right of the figure). Even though the plot reveals quite a
clear linear dependence, such data is difficult to analyze.

In order to separate the dependence of the experimen-
tal parameters, we performed a series of compressions
with different initial height and density. This allows
selection of the spectra for same density and different
height, as well as the same height but variable density.
The plots of the frequency displacement of the modes
from the main ESR peak (ω0 − ω) against gas column
height and gas density are shown in fig. 4.
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Figure 3. Slope of Frequency Difference — The figure shows
the linear behavior of the frequency displacement from the
main peak when plotted against the height of cylinder. While
the mode frequency decreases, their displacement from the
main peak increases.

III. FINITE CYLINDER IN UNIFORM
MAGNETIC FIELD

By dimensional analysis one would expect a slope of
magnitude

γeµ0Ms

L
=

=
2.8× 1010 Hz T−1 · 1.25× 10−4 T cm A−1

0.1 cm

×
≈0.046 A cm−1︷ ︸︸ ︷

5× 1017 cm−3 · 9.27× 10−20 Acm2

≈1.6× 106 Hz cm−1,

which is very close to the measured dependence, so an
explanation in terms of magnetostatic modes seems at
least initially plausible. Magnetostatic modes or Walker
modes are a specific kind of approximate solution of the
precessing magnetization equation:

d ~M

dt
= γ( ~M × ~H).

One assumes that ~H = ~H0 + ~h and ~M = ~Ms + ~m⊥ to
solve ~m⊥ in terms of ~h, and then uses the Gauss’ law for
magnetic field to derive the Walker equation[39]:

µ

[
∂2

∂x2
+

∂2

∂y2

]
Ψ(~r) +

∂2Ψ(~r)

∂z2
= 0.

The solutions in terms of Bessel functions are found in ap-
pendix A; the frequencies are solved numerically from the
boundary conditions eq. (A12) for experimental cylinder
lengths and gas densities. The calculated frequencies for
certain modes as a function of cylinder length are shown
in fig. 5.

It turns out that generally magnetostatic modes ap-
pear when ω ∈ [γH, γ

√
HB], however experiment tells us
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Figure 4. Positions of Main and Side Peaks Observed in Ex-
periment — The two subfigures show the same data with a
different x-axis: height of the gas cylinder in the upper and
density of hydrogen gas in the lower. The other variable is
indicated by the color as shown in the colorbar, so the color
encodes different data in the subfigures. The modes of inter-
est are selected based on their behavior in the upper plot and
are shown with a red outline; the same modes are outlined
in the lower plot. The data points near the top of the figure
with round markers show the position of the main peak; tri-
angular markers and rectangular markers show the positions
of the first and second peak counting down from the main
peak, respectively. While occasionally the spectra had three
peaks in this set of data, in most of them only two peaks were
visible.

that the observed mode always appears below the main
peak, whose frequency is ω0 = γH0. This conflict is clear
in fig. 5: the distance ω0−ω is negative even if the magni-
tude of the slope is off by only a factor of 5. It is possible
to add an averaged demagnetization factor to the field
(see appendix A), but it only slightly changes the offset
and does not significantly affect the slope.

The effect of using ωB = γ (H0 + 4πMs(ρ)) instead of
H0 is to essentially flip the sign of the slope (because it
would move the main peak above the modes). However,
the data are best explained by the ad hoc H0+12πMs(ρ),
for which the slope is 2.34× 106 Hz cm−1. As a possible
source of this kind of dependence we consider the uniform
Kittel (magnetostatic) mode [20], whose frequency in an
infinite cylinder would be γ(H+2πMs(ρ)); unfortunately
this does not even manage to flip the sign of the slope,
and the cylinder is in any case far from infinite with a
radius
length > 0.1.

Although the magnetization should not directly affect
the main peak frequency, it should affect it through the
demagnetizing field, however one would expect it to lower
the main peak frequency (a demagnetizing field should
reduce the field), making the discrepancy worse. In a
finite cylinder along the z-axis the demagnetizing field
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Figure 5. Frequency Displacement of Pure Walker Magneto-
static Modes — The frequencies of the modes are calculated
using Walker’s equation for a finite cylinder for experimen-
tal cylinder heights and gas densities. Demagnetizing field
is ignored completely and the frequency of the main peak is
assumed to be constant. The behavior of the modes is clearly
in the opposite direction compared to the experiment( fig. 3),
and the magnitude is off by a factor of 5. Notably, the modes
seem to exist above the main ESR peak ω0 = γH0 and grow
more distant from it as the length of the cylinder grows (cf.
fig. 2).

can be solved (appendix B); at the ends of the cylinder
(where the exciting field is concentrated) it has a simple
expression:

Hd,z(0, 0, L) = −4πMs +
4πMs

2

L√
r2
c + L2

. (1)

The result in shown in fig. 6. As expected, the shift is in
the wrong direction, although the magnitude of the slope
is only off by a factor or 2.5.

As stated previously, modes were only found in range
ω ∈ [γH, γ

√
HB], which corresponds to the region where

the parameter µ is negative. In the case of the infinite
cylinder, some solutions were also found for positive µ,
that is at frequencies below the main peak. In the case of
finite cylinders, those solutions seem to be excluded by
the boundary conditions at the ends of the cylinder (see
also appendix A 1).

All in all, the model one chooses for the main peak
significantly affects the predicted behavior, and the most
plausible models for the main peak do not succeed in
predicting the observed length/density dependence.

IV. LINEAR GRADIENT IN A FINITE
CYLINDER

In some of the experiments the calculated magnetic
field inside the gas cloud has a small linear gradient. As
the height of the gas column changes, the minimum or
the maximum of the magnetic field moves, so it is not
quite so obvious what happens to the modes — espe-
cially when the spins can only be tilted near one end of
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Figure 6. Expected Behavior of Modes With Respect to the
Main Peak — Modes calculated as in fig. 5, but the main
peak’s frequency is assumed to be f = γ

2π
(H0+Hd,z) (eq. (1)).

The magnitude of the slope is off by factor of 2.5, but in the
wrong direction, so the result is worse than in fig. 5.

the cylindrical container: the gradient could well shift
some of the modes below the main peak. On the other
hand, in some respects this gradient facilitates the treat-
ment of the problem, as the demagnetizing field can be
counted as a part of the gradient. However generally
the solution becomes more difficult due to introduction
of z-dependence to the µ-factor (H0 → H0 − Cz), which
makes both the axial differential equation and boundary
conditions more difficult to solve. In addition the Walker
equation is slightly modified by the presence of the gra-
dient, but this turns out to not play a major role.

The solution is derived in appendix C in terms of the
confluent hypergeometric function 1F1 and the Kummer
U -function, using simplified boundary conditions where

the ~h-field vanishes at the boundary. The frequencies are
again found numerically from eq. (C3). An example of a
solution appears in fig. 7. Only a handful of modes were
found for the experimental C = 3.0 G/cm, compared to
the uniform field case where countably infinite modes ex-
ist. At a lower gradient the number of modes increased,
suggesting that the gradient somehow suppresses magne-
tostatic modes.

The calculated mode frequencies are shown in fig. 8
as a function of height of gas cylinder for experimental
heights and densities. The situation mirrors fig. 5 and ap-
pears unable to explain the observed slope of the modes.
Surprisingly no modes were found below the main peak
frequency γH0 (the maximum field), counter to the as-
sumption that the field gradient would shift the modes
below the main peak.
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Figure 7. Two Solutions of the Walker Equation in a Linear Gradient — Solutions rn = 2, zn = 0, 1 with n = 2.1 × 1017 cm−3

and L = 0.142 cm. mz = 0 by assumption so hz = bz. The x-component along the z-axis has a clear turning point around
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Figure 8. Simulated Frequency Displacement of Walker Mag-
netostatic Modes In Linear Gradient — The modes are cal-
culated in appendix C, with α = 6.52 · 10−5, corresponding
to C = 3.0 G/cm. The markers correspond to different radial
mode numbers. The main peak is located at ω0 = γH0. The
figure shows some axial and radial modes with mode num-
bers around 10, as they have the highest slopes. The slopes
initially seem to increase with zn but appear to reach some
maximum value close to that of the figure. The situation is
quite similar to fig. 5: the slope is a factor of 7 too small, on
the wrong side of the main peak, and the slope has the wrong
sign.

V. DISCUSSION

Two models were examined as candidate explanations
of the data in fig. 3 and fig. 4: naive model that ignored
the demagnetizing field, and a simplified model with a
linear gradient of magnetic field Czêz. While the magni-
tude of the predicted behavior is not off by more than a
factor of 2-7, its direction is wrong, putting the predicted
modes on the wrong side of the main peak; in this, the
models are similar. This is not altogether surprising in
retrospect, as the range of frequencies where the Walker
equation and its generalizations are expected to have os-
cillatory, wave-like solutions is[2]

γH(~r) < ω < γ
√
H(~r)B(~r), (2)

where the field ~H is a sum of the applied field ~H0 and

the demagnetizing field ~Hd. That no modes were found
below the main peak is somewhat surprising, as in an
infinite cylinder some do exist and one could expect to
see some in a linear gradient setup. While such modes
may not be categorically excluded, a better accounting
of the demagnetizing field and possibly the inclusion the
ISRE effect (as is done in [28]) are probably required to
find them.

Although the peaks in question are unlikely to be
among the found magnetostatic modes, it is interest-
ing to examine the question of whether we should be
able to see any of the found modes. In the case of uni-
form field, eq. (2) evaluates to a frequency range of width
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Figure 9. Characteristic Equation of Walker Problem in Lin-
ear Gradient — Log-scaled magnitude of the characteristic
equation as a function of scaled frequency ω̄ = ω

γH0
− 1.

∆ω ∼ 6− 60 mG, which places them on top of our main
peak. It is then possible that the modes are excited and
modify the main peak, along with ISRE.

In the case of the linear gradient, the frequency range
is an order of magnitude larger, ∆ω ∼ 70−600 mG, so in
certain conditions some of the modes could be separate
from the main peak. On the other hand, modes were
only found above ω0 = γH0, so instead of the gradient
shifting the modes below the main peak it seems more
like they vanished. This is supported by the nature of
the characteristic equation eq. (C3), shown in fig. 9. As
the gradient increases, the roots (= downward cusps) of
the characteristic equation move towards 0 (= ω0), the
main peak. It is possible that not all roots were found,
but if there are roots beyond 0, they are likely complex
roots. Despite some effort, none were found. In any case,
it seems that magnetostatic modes only exist above the
main peak, and it may be that due to modes vanishing,
the modes in the linear case are not any more separated
from the main peak than in the uniform field case.
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Appendix A: Solution of the Walker Equation in a
Finite Cylinder with Uniform Magnetic Field

We seek solutions to the so-called Walker equation for
magnetostatic modes. A magnetic dipole in a magnetic

field experiences a torque d ~J
dt = ~µ × ~B. The magnetic

moment ~µ is related to the angular momentum ~J by ~µ =

γe ~J , where γe in our case is the gyromagnetic ratio of
the electron. This leads to the equation of a precessing
magnetic moment:

d~µ

dt
= γe(~µ× ~B).

Within media consisting of multiple magnetic moments,
one typically looks for an equation for a precessing mag-
netization:

d ~M

dt
= γ( ~M × ~Heff) (A1)

where in SI units γ = γeµ0 and γ = γe in Gaussian units,
and Heff is the effective magnetic field which may have
various contributions depending on the medium; in our
case, only the applied field H0 and the demagnetizing
field Hd are relevant.

The Walker equation arises as an approximate solution

of this equation. First we assume that ~H and ~M have
the following form:

~H = H0êz +

~h︷ ︸︸ ︷
(hx, hy, hz) e

iωt (A2)

~M = Msêz + (mx,my, 0)︸ ︷︷ ︸
~m

eiωt. (A3)

Here H0 is the applied field, and Ms the saturation
magnetization. We then substitute this into eq. (A1):

iω(mx,my, 0)eiωt

=γ(myH0 − hyMs, hxMs −mxH0, 0)eiωt
(A4)

⇒

4πmx =
4πγ2H0Ms

γ2H2
0 − ω2︸ ︷︷ ︸
κ

hx − i
4πγMsω

γ2H2
0 − ω2︸ ︷︷ ︸
ν

hy (A5)

4πmy =iνhx + κhy. (A6)

Using the relation ~B = ~H + 4π ~M and Gauss’ law for
the magnetic field, we arrive to the Walker equation:

0 =∇ · ~B = ∇2

~h=∇Ψ︷︸︸︷
Ψ +4π∇ · ~m

=∇2Ψ +
∂ (κhx − iνhy)

∂x
+
∂ (iνhx + κhy)

∂y

=∇2Ψ + κ
∂2Ψ

∂x2
−
�
�

��iν
∂2Ψ

∂y∂x
+
�

�
��iν
∂2Ψ

∂y∂x
+ κ

∂2Ψ

∂y2

=

(1 + κ)︸ ︷︷ ︸
µ

(
∂2

∂x2
+

∂2

∂y2

)
+

∂2

∂z2

Ψ(~r).

(A7)

So in cylindrical coordinates the Walker equation reads

µ

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

]
Ψ(~r) +

∂2Ψ(~r)

∂z2
. (A8)

Outside the magnetized cylinder of gas, κ = 0 and the
equation reduces to the Laplace equation.

The boundary conditions are those common to
Maxwell’s equations: the continuity of Ψ, the continu-

ity of the tangential component of ~h, and the continuity

of the normal component of ~b = ~h + 4π~m at all bound-
aries. In practice one needs to worry about the continuity
of hz across the ends and the continuity of br across the
sides. The latter gives the following matching condition
for radially symmetric solutions with radial number l :

µ
∂Ψin

∂r
+
lν

r
Ψin =

∂Ψout

∂r
. (A9)

Further, as both ~h and ~b are generated by local fields
and finite cloud of gas, they are expected to vanish as
|~r| → ∞, i.e. Ψ(~r) tends to some constant at large dis-
tances from the setup. Solutions are only found for µ < 0
(fig. 10):
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Figure 10. Areas of the Cylinder

Ψ(r, θ, z) =


AJl (kr) e

ilθ (
√−µ cos(k

√−µz) + sin(k
√−µz)) in A{

A
√−µJ

l
(kr)eilθekz z < 0(

1
2A(1− µ) sin(k

√−µL)ekL
)
Jl(kr)e

ilθe−kz z > L
in C(

A Jl(krc)
Kl(k

√−µrc)

)
Kl(k

√−µr)eilθ (
√−µ cos(k

√−µz) + sin(k
√−µz)) in B

(A10)

with the condition

k =


1√−µL

[
tan−1

(
−2
√−µ

1+µ

)
+ nπ

]
µ < −1

1√−µL

[
tan−1

(
−2
√−µ

1+µ

)
+ (n+ 1)π

]
µ > −1

(A11)

and the characteristic equation given by boundary con-
ditions from which the frequencies are solved:

Jl(krc)K
′
l(k
√−µrc)k

√−µ−Kl(k
√−µrc)

×
[
µkJ ′l (krc) +

lν

rc
Jl(krc)

]
= 0. (A12)

The modes are solved numerically with a Python pro-
gram using IPython, SciPy, and NumPy [14, 29, 31].

The analysis so far has ignored the major problem of
modeling magnetostatic modes in a finite cylinder: the
demagnetizing field of the cylinder. For certain simple
shapes such as ellipsoids, the demagnetizing field is uni-
form and proportional to the magnetization, so its con-
tribution is easily handled using demagnetizing factors
such as Nz:

H0 → H = H0 +Hd = H0 − 4πNzMs. (A13)

Here H0 is the applied field, Hd the demagnetizing field,
and Ms the saturation magnetization. There is no such
demagnetizing factor for a finite cylinder, as the demag-
netizing field is not uniform (see fig. 11), and in fact also
has components in the x- and y-directions. A rudimen-
tary attempt to circumvent the problem is using an aver-
aged demagnetization factor, although as the cylinder is
not one of the objects for which the demagnetizing field

is uniform, such an attempt is at best suspect. Neverthe-
less one may hope to learn something from the study of

0.4

0.2

0.0

0.2

0.4

H
d,

z(z
)
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Cylinder Axis (z)
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0.8

M
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H

d,
z(z

)

Figure 11. Example of the Demagnetizing Field in a Finite
Cylinder — The upper plot shows the Nzz-component of the
demagnetizing tensor in cylinder, based on [22]. The lower
plot shows the overall effect of a uniformly magnetized sample
and the demagnetizing field.

Walker modes by ignoring the complex behavior of the
demagnetizing field.

The averaged demagnetization factor is given by [5, 15]

Nz =1− 8

3π

rc
L

[
−1 +

1

ε

(
2ε2 − 1

ε2
E(ε) +

1− ε2

ε2
K(ε)

)]
ε2 =

1

1 +
(
L

2rc

)2 .

(A14)
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Figure 12. Some Examples of Mode Functions in Uniform Field — The modes are specified by the triple (l, zn, rn), where l
specifies the rotation symmetry (azimuthal number), and zn and rn are the axial and radial mode numbers, respectively.
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Figure 13. ~b(~r) of Select Magnetostatic Modes in Uniform Field — The figure shows ~b = ~h+ 4π~m of select modes; see fig. 12
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1. Absence of Solution for Positive µ

Joseph and Schlömann find some solutions also for pos-
itive µ in the infinite cylinder[16]. These modes would be
found below the main peak so their absence is highly un-
desirable. The solution of Joseph and Schlömann has an
oscillatory nature along the axis of the cylinder, paired
with the Il Bessel-function in the radial direction. In a fi-
nite cylinder these modes cannot be glued to a vanishing
solution of the Laplace equation at the ends of the cylin-
der. In contrast, it is entirely possible to write a physical
solution with radial Jl(r) and sinh(z) and cosh(z), but
the resulting dispersion relation has no solution for pos-
itive k:

tanh (k
√
µL) =

−2
√
µ

1 + µ
. (A15)

(Solutions with a negative k would not vanish at infin-
ity.) On the other hand, it is easily seen that for different
boundary conditions solutions for positive µ probably ex-
ist, for instance for Ψ(~r) = 0 at the ends. So both the
geometry and Maxwell boundary conditions contribute to
the lack solutions when µ > 0, as if the field leaking out-
side would be in some sense problematic. Given that this
treatment does not account for the demagnetizing field
which does leak out of the cylinder, it is a distinct pos-
sibility that modes below the main peak could be found
in real physical systems.

Appendix B: Demagnetizing Field in a Finite
Cylinder

The static magnetic field in the cylinder of hydrogen
gas has two major components: the applied (external)
magnetic field H0, and the magnetic field due to the po-
larized gas, often called the demagnetizing field or stray
field. The equation of the demagnetizing field is derived
from the Gauss’s law for magnetism:

∇ · ~B = ∇ · ~H + 4π∇ · ~M = 0.

With ∇× ~H = 0 and ~H = H0êz + ~Hd, ~Hd = ∇Ψ and we
arrive to the equation

∇2Ψ = −4π∇ · ~M
= −4πMs(δ(z)− δ(z − L)).

This can be solved using the Green’s function for a cylin-
der:

Ψ =4πMs

∫
δ (z)− δ (z − L)

4π

√
r2 + (z − u)

2
r dr dz dθ

=4πMs

∫  1

2
√
r2 + u2

− 1

2

√
r2 + (u− L)

2

 r dr

=− 4πMs

2

(
u−

√
r2
c + u2 −

√
L2 − 2Lu+ u2

+
√
L2 − 2Lu+ r2

c + u2
)

=− 4πMs

2

(
u−

√
r2
c + u2 − |L− u|

+
√
L2 − 2Lu+ r2

c + u2
)

=− 4πMs

2

(
2u− L−

√
r2
c + u2

+
√
L2 − 2Lu+ r2

c + u2
)
.

Then ~Hd = ∇Ψ:

Hd,z (0, θ, z) =
dΨ

du

=− 4πMs

2

2− u√
r2
c + u2

+
−L+ u√

r2
c + (u− L)

2


(B1)

u→L−→ − 4πMs +
4πMs

2

L√
r2
c + L2

(B2)

at the ends of the cylinder. As a check, substituting
v = u − L

2 to eq. (B1) and taking the limit of infinite
cylinder gives the correct result inside the cylinder:

~B(z = L) = ~H + 4π ~M

= (H0 +Hd,z(0, θ, v) + 4πMs) êz

=

H0 + 4πMs −
4πMs

2

2− v + L
2√

r2
c +

(
v + L

2

)2
+

v − L
2√

r2
c +

(
v − L

2

)2
 êz

L→∞−→ H0êz.

Appendix C: Solution of the Walker Equation In a
Finite Cylinder with a Linearly Increasing Magnetic

Field

In a sense the presence of a linear gradient simplifies
the treatment as the static case may now be considered
solved, i.e.

~H (z) = H0êz+ ~H1 (~r)+4π ~M (~r)+ ~Hd (~r) ≈ [H0 + Cz] êz,
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where ~H1 (~r) denotes other magnetic fields present in the

setup, and ~Hd (~r) is the demagnetizing field. This sug-
gests an approach where H0 is just replaced with H0+Cz
in the Walker equation; it turns out this is indeed the
case, but not trivially so. The substitution makes κ, ν,
and µ into functions of z. Generally one must be careful
with such substitutions and rederive the Walker equation
(or use the generalized Walker equation [2]); in this case,
the z-dependence of κ and ν plays no role in eq. (A7)
and we have

κ (z) =
4πγ2 (H0 + Cz)M0

γ2 (H0 + Cz)
2 − ω2

.

However, a modification occurs when the Gauss law

∇· ~B is applied, and the resulting Walker equation inside
the cylinder turns out to be

[1 + κ (z)]

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

]
Φ +

∂2Φ

∂z2
+ C = 0.

(C1)
The equation has a z-dependent coefficient with po-

tentially troublesome behavior for some values of ω and
z, and the constant C makes it not separable; had we
not rederived the Walker equation but just modified
κ, we would have missed the latter. Fortunately, it
turns out the separability is not a problem: ψ (z) =
−C2 z2 is a solution of the equation, so substituting
Φ (~r) = Ψ (r, z)+ψ (z) gets rid of the constant and re-
duces eq. (C1) to a separable Walker equation for Φ (~r).
ψ (z) is also a solution of the Laplace equation, so that
part of the solution inside and outside the cylinder at the
sides can be matched, supposing the magnetic field also
has a similar gradient outside the cylinder. At the ends of
the cylinder it is perhaps easiest to assume that the mag-
netic field attains its maximum or minimum value and
remains constant outside the cylinder: this way the con-
tinuity of the magnetic field cancels delta-function contri-
butions coming from ∂z (Cz) at the sides of the cylinder.
The continuity of Φ across the ends requires also that the

solution outside include CL2

2 (also a solution of Laplace
equation) at the z = L end.
κ and ν being functions of z significantly complicates

solving the boundary conditions. For one, it is not trivial
to match the z-dependent solution of the Laplace equa-
tion and the Walker equation at the sides of the cylinder;
for another, eq. (A9) has also become z-dependent. To
facilitate finding a solution, we modify the boundary con-
ditions. For the radial boundary condition, it is easiest
to choose either the vanishing of the radial function or its
derivative at the boundary; this should not matter much
as the equation is still separable and we are not really
interested in changing the radius of the cylinder which is
fixed in our experiments. In principle there is no need
to modify the axial boundary conditions, but for ease we
have done so. While this may affect the resulting mode
behavior we hope something can be learnt from it. We

have chosen the somewhat natural dΨ
dz = hz = 0 at the

ends of the cylinder.
The following redefinitions of the parameters are used:

ΩH =
4πMs

H0
, α =

C

H0
, ω̃ =

ω

γH0
,

κ (z) =
ΩH (1− αz)

(1− αz)2 − ω̃2
.

The separable Walker equation can be solved with
Ψ (r, θ, z) =Z (z)φ (r, θ). The radial equation just gives
the Bessel equation whose solutions inside the cylinder
must be Jl (kr), and the azimuthal solutions are the usual
eilθ. We immediately choose l = 0. The axial equation
becomes

k2 =
d2Z
dz2

Z (z) (1 + κ (z))
⇔

d2Z

dz2
=

k2Z (z)

ω̃2 − (2− αz)2

×
[
ω̃2 − (1− αz)2 − ΩH (1− αz)

]
.

Substituting y = αz + ω̃ − 1 gives

α2 d2Z

dy2
=

k2Z (y)

y (2ω̃ − y)
[y (2ω̃ − y) + ΩHy − ΩH ω̃]

whose partial fraction decomposition is

α2 d2Z

dz2
= k2Z (y)

[
1− ΩH

2y
+

ΩH
2 (2ω̃ − y)

]
. (C2)

The experimentally observed frequencies are small
compared to the static field, so that typically
ω ≈γH0 (1 + δ) with δ ∼ 10−5 − 10−6. With α ∼
1× 10−6 cm−1and z ∼ 0.1 cm, y ≈ 10−7 + 1 + δ − 1 ≈
δ ≤ 10−4. 2ω̃ − y is just ω̃ − αz + 1 which (for positive
frequencies) is close to 2. Hence we neglect the last term
of eq. (C2) as small by at least 4 orders of magnitude:

α2 d2Z

dy2
=k2Z (y)

[
1− ΩH

2y

]
.

This equation has a solution in terms of the conflu-
ent hypergeometric function and the Kummer/Tricomi
U function (with ω̄ = ω̃ − 1):

Z (z) =

[
A 1F1

(
1− ΩHk

4α

2
;

2k

α
(αz + ω̄)

)
+ BU

(
1− ΩHk

4α
, 2,

2k

α
(αz + ω̄)

)]
× (αz + ω̄) e−

k
α (αz+ω̄).

The frequencies ω̄ are given by imposing the boundary
conditions at the ends of the cylinder. The resulting two
equations (one at z = 0 and the other z = L) can be
combined into one equation whose roots give the ω̄:
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0 =
FL0 k

2

(
−4U0

0α (α− kω) + 2U0
1 kω (4α− ΩHk)

)
×
(
LΩHαk − 4Lα2 + ΩHkω − 4αω

)
+2FL1 α

(
−4U0

0α (α− kω) + 2U0
1 kω (4α− ΩHk)

)
× (Lαk − α+ kω)

−UL0 k
(
4F 0

0α (α− kω) + F 0
1 kω (4α− ΩHk)

)
×
(
LΩHαk − 4Lα2 + ΩHkω − 4αω

)
+2UL1 α

(
4F 0

0α (α− kω) + F 0
1 kω (4α− ΩHk)

)
× (Lαk − α+ kω)

F ti :=1F1

(
1 + i− ΩHk

4α

2 + i
;

2k

α
(αt+ ω̄)

)
U ti :=U

(
1 + i− ΩHk

4α
, 2 + i,

2k

α
(αt+ ω̄)

)
.

(C3)

The equations were derived in a Jupyter notebook [21]
using the SymPy package [26]; finding the numerical so-
lutions required at times arbitrary precision arithmetic
and special functions of the mpmath package [13]. Fig-
ures were produced with matplotlib [12].

Figure 14 shows how the modes are distributed as func-
tion of experimental data. For low radial modes numbers,
only one axial mode is present, though the number of ax-
ial modes increases slowly with the radial mode number
for these parameters. For a lower gradient (fig. 15), more
axial modes are found for even the first radial mode, and
the number clearly increases for higher modes. The num-
ber of axial modes seems to increase with higher radial
mode numbers, although not that many zn = 4 modes
were found among the first 12 radial modes; those that
were found occurred at relatively high densities. This
seems to support the idea that the gradient reduces the
magnetostatic character of the modes, i.e. the number of
magnetostatic modes decreases as the gradient increases,
as is readily seen from fig. 15.
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Figure 14. Distribution of Modes in Linear Gradient —
α = 6.52 · 10−5, corresponding to gradient C = 3.0G/cm.
For convenience, f − γH0

2π
has been plotted. Only one

axial mode seems to correspond to the first radial mode.
For higher radial modes (different markers) some more
axial modes are present, albeit not all that many zn = 4
modes were found for the first 12 radial modes.
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Figure 15. Distribution of Modes in Linear Gradient —
α = 6.52 · 10−6, corresponding to gradient C = 0.3G/cm.
For convenience, f − γH0

2π
has been plotted. The number

of modes is clearly greater than in the case of a higher
gradient.
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