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Abstract. We give a complete characterization for extreme quantum observables, i.e. for nor-

malized positive operator valued measures (POVMs) which are extremals in the convex set of

all POVMs. The characterization is valid both in discrete and continuous cases, and also in the

case of an infinite dimensional Hilbert space. We show that sharp POVMs are pre-processing

clean, i.e. they cannot be irreversibly connected to another POVMs via quantum channels.

PACS numbers: 03.65.Ta, 03.67.–a

1. Introduction

In the modern formalism of quantum mechanics, observables are described by normalized

positive operator (valued) measures (POVMs) which have found numerous applications in var-

ious areas of quantum physics, ranging from quantum theory of open systems to detection,

estimation and quantum information theories. POVMs generalize the traditional concept of an

observable, a selfadjoint operator or a normalized projection (valued) measure (PVM), which

turned out to be a too restrictive idealization to efficiently describe actual experimental settings

such as fuzzy position and momentum measurements or (inefficient) photon counting and phase

measurements in quantum optics [1, 2].

A fundamental problem is to characterize the most precise and informative observables. One

crucial property of such optimal POVMs is the lack of noise; classical or quantum. The present

article focuses on the determination of noise-free observables. Here we consider two types

of noise: classical noise associated with the randomness due to fluctuations in the measuring

procedure and quantum noise due to the possibility of irreversibly manipulating the state before

a measurement (using a quantum channel).

POVMs form a convex set if the measurement outcome space Ω, the σ-algebra Σ ⊆ 2Ω,

and the Hilbert space H are fixed. For any two POVMs P and P′ from Σ to L(H) (bounded

operators on H), a convex combination X 7→ aP(X) + (1 − a)P′(X), 0 < a < 1, corresponds

to a classical randomization or mixing between P and P′. Such mixing is a source of classical

noise. A POVM P : Σ → L(H) is extreme (or pure) if, for any POVM P′ : Σ → L(H) and
1
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a ∈ (0, 1), the condition aP(X) + (1 − a)P′(X) for all X ∈ Σ implies P′ = P. Thus, extreme

POVMs are free from the classical noise arising from this type of randomization [1].

For a finite dimensional system (dimH < ∞), a simple criterion for extremality can be

given [3] and Chiribella et al. [4] showed that all extreme POVMs are concentrated on a finite

number of outcomes. However, in the infinite case (dimH =∞), there exist extreme (nonsharp)

POVMs with continuous measurement outcome spaces [5, 6].

In this paper, we fully characterize all extreme POVMs using a diagonalization technique

of Hytönen et al. [7]. This result is a generalization of the finite dimensional characterization

[3]. We also introduce a simple polynomial method which can be used to show that a POVM

is extreme. This method is very useful in many areas of quantum physics, e.g. in continuous

variable quantum information.

Finally, we show that any PVM P : Σ → L(H) can be connected to any (P-continuous)

POVM P′ : Σ→ L(H′) via a quantum channel Φ (i.e. Φ∗(P(X)) = P′(X) for all X ∈ Σ), or in

other words, P′ is obtained from P via pre-processing [8]. The pre-processing can change the

POVM irreversibly, reducing the information from the measurement. Our result shows that

PVMs are (pre-processing) clean or ‘undisturbed’ in the sense that they are not irreversibly

connected to another POVMs. Thus they do not have any additional ‘extrinsic’ quantum noise

[8].

2. Extreme POVMs

Let us briefly recall the mathematical description of quantum observables via normalized

positive operator measures (POVMs) [1, 2]. Consider a quantum system with a separable

(complex) Hilbert space1 H and suppose that the measurement outcomes form a set Ω. We

assume that Ω is arbitrary and Σ is any σ-algebra of subsets of Ω. Usually, in ‘continuous’

cases, Ω is a manifold and Σ is its Borel σ-algebra B(Ω).

Let L(H) (resp. T (H)) be the set of bounded (resp. trace-class) operators onH. A POVM is a

function P which associates to each X ∈ Σ a positive operator P(X) ∈ L(H). It is required that

for every state (a density operator) % ∈ T (H), % ≥ 0, tr [%] = 1, the mapping X 7→ tr [%P(X)]

is a probability measure. Especially, P satisfies the normalization condition P(Ω) = I. The

number tr [%P(X)] is the probability of getting a measurement outcome x belonging to X, when

1We use the same symbol 〈 · | · 〉 (resp. I) for the inner product (resp. the identity operator) of any Hilbert

space. We assume that an inner product is linear with respect to its second argument. We let ‖ · ‖ denote the

norm associated with 〈 · | · 〉, and also the norm of a bounded operator.
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the system is in the state % and the measurement of P is performed. A POVM P : Σ→ L(H)

is a normalized projection measure (PVM), or a sharp POVM, if P(X)2 = P(X) for all X ∈ Σ.

It is well known that PVMs are extreme (see example 1). Next we show that any POVM can

be diagonalized (see a) of Theorem 1).

Fix an (arbitrary) orthonormal (ON) basis {en}dimH
n=1 of H, and let V be the (dense) linear

subspace of H consisting of all finite linear combinations of the basis vectors en. Let V × be

the algebraic antidual of the vector space V . Recall that V × can be identified with the linear

space of formal series c =
∑dimH

n=1 cnen where the cn’s are arbitrary complex numbers. Denote

the dual pairing 〈ψ|c〉 :=
∑dimH

n=1 〈ψ|en〉cn and 〈c|ψ〉 := 〈ψ|c〉 for all ψ ∈ V and c ∈ V ×. Note

that V ⊆ H ⊆ V × and the above notation for the dual pairing is consistent with the inner

product 〈 · | · 〉 of H.

Let P : Σ → L(H) be a POVM, and let µ : Σ → [0,∞) be any measure such that P is

absolutely continuous with respect to µ (see [7], Remark 3.8). For example, µ can be chosen to

be a probability measure µ : Σ→ [0, 1],

µ(X) :=
dimH∑
n=1

λn〈en|P(X)en〉, X ∈ Σ,

where λn > 0 for all n and
∑dimH

n=1 λn = 1. Note that, in the discrete case, µ is a (weighted)

counting measure and all integrals below reduce to sums.

We say that f : Ω → C is µ-measurable if it is measurable with respect to the Lebesgue

extension of Σ with respect to µ. Moreover, a mapping c : Ω → V ×, x 7→
∑dimH

n=1 cn(x)en is

(weak∗-)µ-measurable if its components x 7→ cn(x) are µ-measurable; for measurability of (vec-

tor valued) maps, see [7], Section 4. In what follows, we write briefly (m.) for (µ-measurable).

Also we write a.a. for µ-almost all.

Let
∫ ⊕

Ω
Hn(x)dµ(x) be the direct integral of Hilbert spaces Hn(x) where Hl is an l-dimensional

Hilbert space spanned by vectors e1, e2, . . . , el, H0 := {0} and H∞ := H (if dimH = ∞). A

bounded decomposable operator D =
∫ ⊕

Ω
D(x)dµ(x) on

∫ ⊕
Ω
Hn(x)dµ(x) consists of a (m.) field

of bounded operators D(x) on Hn(x), and D operates as (Dψ)(x) = D(x)ψ(x) for all ψ ∈∫ ⊕
Ω
Hn(x)dµ(x) and a.a. x ∈ Ω. The norm ‖D‖ of D is the essential supremum of {‖D(x)‖ |x ∈

Ω}. We consider any essentially bounded (m.) function f : Ω → C (e.g. the characteristic

function χ
X

of X ∈ Σ) as a multiplicative (diagonalizable) bounded operator on
∫ ⊕

Ω
Hn(x)dµ(x).

Obviously, f is decomposable. As usual,
∑0

k=1(· · · ) := 0.
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Theorem 1. Let P : Σ→ L(H) be a POVM.

a) There are (m.) mappings Ω 3 x 7→ n(x) ∈ {0, 1, . . . , dimH} and dk : Ω → V × such that,

for all x ∈ Ω, dk(x) 6= 0 for all k = 1, . . . , n(x), and

〈ϕ|P(X)ψ〉 =

∫
X

n(x)∑
k=1

〈ϕ|dk(x)〉〈dk(x)|ψ〉dµ(x), ϕ, ψ ∈ V, X ∈ Σ.

b) There are (m.) maps Ω 3 x 7→ ψm(x) ∈ Hn(x) ⊆ H ⊆ V × such that, for all X ∈ Σ,

P(X) =
dimH∑
n,m=1

∫
X

〈ψn(x)|ψm(x)〉dµ(x)|en 〉〈 em|

=
(∑

m

|χ
X
ψm 〉〈 em|

)∗(∑
m

|χ
X
ψm 〉〈 em|

)
(weakly) and the set of linear combinations of vectors χ

X
ψm is dense in

∫ ⊕
Ω
Hn(x)dµ(x) (the

minimal Kolmogorov decomposition of P).

c) P(X) = J∗P(X)J , X ∈ Σ, where J :=
∑dimH

m=1 |ψm 〉〈 em| is an isometry, i.e. J∗J = I, and

X 7→ P(X) := χ
X

is the (canonical) PVM on HP :=
∫ ⊕

Ω
Hn(x)dµ(x) (the minimal Naimark

dilation of P).

d) P is a PVM if and only if {ψm}dimH
m=1 is an ON basis of HP. Then HP can be identified with

H, i.e. JJ∗ = I and J is a unitary operator. [9]

Proof. a) and b) follow from Theorems 4.5 and 5.1 of [7] by defining ψm(x) :=
∑n(x)

k=1 〈dk(x)|em〉ek,

and c) follows from b) and Theorem 3.6 of [7]. Finally, d) follows from Corollary 5.2 of [7]. �

Remark 1. Note that
∫ ⊕

Ω
Hn(x)dµ(x) is a closed subspace of L2(Ω, µ,H) ∼= L2(Ω, µ,C) ⊗ H,

the space of (µ-square integrable) ‘wave functions’ ψ : Ω→ H, such that ψ(x) ∈ Hn(x) for a.a.

x ∈ Ω. Usually, when Ω is a manifold and µ is a ‘volume’ form,
∫ ⊕

Ω
Hn(x)dµ(x) can be seen as a

space of square integrable vector fields (e.g. spinors), that is, sections of a vector bundle over Ω

with fibers Hn(x). The map J can be viewed as a transformation from the ‘matrix mechanics’

to the ‘wave mechanics’ generated by the POVM P.

Remark 2. For all x ∈ Ω, define (possibly unbounded) operators A(x) : V → Hn(x),

A(x) :=

n(x)∑
k=1

|ek 〉〈 dk(x)| =
dimH∑
m=1

|ψm(x) 〉〈 em|.

By a) of Theorem 1, one can write

(2.1) 〈ϕ|P(X)ψ〉 =

∫
X

〈ϕ|A(x)∗A(x)ψ〉dµ(x)
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for all ϕ, ψ ∈ V and X ∈ Σ. We use a brief notation

P(X) =

∫
X

A(x)∗A(x)dµ(x)

for (2.1), which we interpret as a sesquilinear form V × V → C. We use this interpretation for

equations containing operators A(x) or vectors dk(x).

The following theorem characterizes extreme POVMs, that is, the extreme points of a convex

set consisting of all POVMs from Σ to L(H). Retaining the notations of Theorem 1 we have:

Theorem 2. A POVM P : Σ→ L(H) is extreme if and only if, for any bounded decomposable

operator D =
∫ ⊕

Ω
D(x)dµ(x) on HP the condition

∫
Ω
〈ψn(x)|D(x)ψm(x)〉dµ(x) = 0 for all n, m

implies that D = 0.

Proof. Suppose that there exists a nonzero bounded D =
∫ ⊕

Ω
D(x)dµ(x) such that∫

Ω

〈ψn(x)|D(x)ψm(x)〉dµ(x) = 0

for all n, m. Redefining D as i(D −D∗) (if D∗ 6= D) and then scaling D by 1/‖D‖, one may

assume that D∗ = D, ‖D‖ ≤ 1 and, thus, D± := I ± D ≥ 0 and D+ 6= D−. Since vectors

χ
X
ψm span HP there exists a set X ′ ∈ Σ and n′, m′ such that

∫
X′〈ψn′(x)|D+(x)ψm′(x)〉dµ(x) 6=∫

X′〈ψn′(x)|D−(x)ψm′(x)〉dµ(x) implying that POVMs

P±(X) :=
∑
n,m

∫
X

〈ψn(x)|D±(x)ψm(x)〉dµ(x)|en 〉〈 em|

are distinct and P = (P+ + P−)/2 so that P is not extreme.

Suppose then that P is not extreme, that is, of the form P = (P+ + P−)/2 for some POVMs

P± : Σ → L(H) such that P+ 6= P−. Now P±(X) ≤ 2P(X), X ∈ Σ, so that, POVMs P± are

absolutely continuous with respect to µ and, by Theorem 1,

P±(X) =
dimH∑
n,m=1

∫
X

〈ψ±n (x)|ψ±m(x)〉dµ(x)|en 〉〈 em| =
∫
X

A(x)∗±A(x)±dµ(x)

where A(x)± :=
∑

m |ψ±m(x) 〉〈 em|. In addition, 〈ϕ|P±(X)ϕ〉 ≤ 2〈ϕ|P(X)ϕ〉 (for all ϕ ∈ V )

implies that ‖A(x)±ϕ‖ ≤
√

2‖A(x)ϕ‖ (for all ϕ ∈ V ) holds for a.a. x ∈ Ω. Hence, for a.a.

x ∈ Ω, one can define bounded (well-defined) operators C±(x) on Hn(x) as follows: (a) define

C±(x)
(
A(x)ϕ

)
:= A(x)±ϕ, (b) extend C±(x) to the closure of A(x)V , and (c) extend C±(x) to

the whole fiber Hn(x) by setting C±(x) to zero on the orthogonal complement of the closure

of A(x)V . Define then (linear) operators C± by (C±ψ)(x) := C±(x)ψ(x) where ψ is a linear

combination of vectors χ
X
ψm. Since ‖C±(x)‖ ≤

√
2, C±(χ

X
ψm) = χ

X
ψ±m and vectors χ

X
ψm
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span HP, one can extend C± to the whole space HP and C± =
∫ ⊕

Ω
C±(x)dµ(x) is bounded.

Define then D±(x) := C±(x)∗C±(x) to get

P±(X) =
dimH∑
n,m=1

∫
X

〈ψn(x)|D±(x)ψm(x)〉dµ(x)|en 〉〈 em|

since C±(x)ψm(x) = ψ±m(x). From the assumption P+ 6= P− one gets

D :=

∫ ⊕
Ω

[D(x)+ −D(x)−]dµ(x) 6= 0.

But, for all n,m,
∫

Ω
〈ψn(x)|D(x)ψm(x)〉dµ(x) = 〈en|[P+(Ω)− P−(Ω)]em〉 = δnm − δnm = 0. �

The condition of Theorem 2 can also be written in the form

J∗DJ =

∫
Ω

A(x)∗D(x)A(x)dµ(x) = 0,

or (formally) in the form

(2.2)

∫
Ω

n(x)∑
k,l=1

〈ek|D(x)el〉|dk(x) 〉〈 dl(x)|dµ(x) = 0.

Hence, Theorem 2 is a (‘continuous’ and infinite) generalization of [3]. Formally, one could say

that P is extreme if and only if

’the (overcomplete) system of generalized coherent states dk(x) generates a lin-

early independent set of operators |dk(x) 〉〈 dl(x)| in the sense that (2.2) implies

that D = 0.’

Example 1. Similarly, as in the case of position and momentum, H can be identified with the

‘P-reprensentation’ space HP := ran J = PHP = PL2(Ω, µ,H) where

P := JJ∗ =
dimH∑
m=1

|ψm 〉〈ψm|

is a projection. Theorem 2 can be restated in the following form: P is extreme if and only if

PDP = 0 implies D =
∫ ⊕

Ω
D(x)dµ(x) = 0. If P is a PVM then P = I and hence PDP = D so

that any PVM is extreme.

From Theorem 2 one gets the following necessary conditions for P to be extreme. Let P be

an extreme POVM:

• For any bounded (m.) function Ω 3 x 7→ f(x) ∈ C, the condition
∫

Ω
f(x)dP(x) = 0

implies f(x) = 0 (for a.a. x ∈ Ω). (Put D = f in Theorem 2.)
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• For any fixed X ∈ Σ, the condition
∫
X
〈ψn(x)|D(x)ψm(x)〉dµ(x) = 0 for all n,m implies

that D(x) = 0 for a.a. x ∈ X. (Replace D with χ
X
D in Theorem 2.)

• For any disjoint sets X1, . . . , Xp ∈ Σ such that P(Xi) 6= 0 for all i = 1, . . . , p the

condition
∑p

i=1 ciP(Xi) = 0 implies c1 = · · · = cp = 0, i.e. effects P(Xi) are linearly

independent. (Now D =
∑

i ciχXi
.)

Next we introduce a simple concrete polynomial method which gives a sufficient criterion for

extremality of (continuous) quantum observables.

2.1. The polynomial method. Collecting the fibers of the same dimension together, one can

write ∫ ⊕
Ω

Hn(x)dµ(x) = L2(Ω1, µ1,H1)⊕ L2(Ω2, µ2,H2)⊕ · · · ⊕ L2(ΩN , µN ,HN),

where N := dimH, Ωl := {x ∈ Ω |n(x) = l} and µl is the restriction of µ to Ωl, i.e. µl(X) :=

µ(X) for all X ⊆ Ωl such that X ∈ Σ. We have the following necessary extremality condition

for a POVM P: If P is extreme then∫
Ωl

〈ψn(x)|D(x)ψm(x)〉dµ(x) = 0

for all n,m implies that
∫ ⊕

Ωl
D(x)dµ(x) = 0. Hence, it is not very restrictive to consider the

case HP = L2(Ω, µ,Hl) where l ∈ {1, . . . , N}.

Assume then that HP = L2(Ω, µ,Hl). Usually in physically relevant ‘continuous’ cases

Ω ⊆ Rp and, by choosing suitable coordinates, Ω is of the form I := I1 × · · · × Ip where

Ii ⊆ R is an interval. (Without restricting generality, we may even assume that any Ii is

either [−1, 1], [0,∞) or R.) Moreover, in practice, dµ(x) = w1(x1) · · ·wp(xp)dx1 · · · dxp (where

x = (x1, . . . , xp) and any ‘weight function’ y 7→ wi(y) > 0 is integrable) and an ON basis of

L2(I, µ,Hl) is

{f 1
k1
⊗ · · · ⊗ fpkp

⊗ en} (here n = 1, . . . , l)

where {f iki
}ki

is an ON polynomial basis of L2(Ii, wi(xi)dxi,C).

Remark 3. In many cases, f iki
(y) is a classical ON polynomial: when Ii = [−1, 1] (and

wi(y) = (1 − y)ν(1 + y)µ), f iki
(y) is a Jacobi polynomial P

(ν,µ)
n (y), when Ii = [0,∞) (and

wi(y) = yνe−y), f iki
(y) is an associated Laguerre polynomial Lνn(y), and when Ii = R (and

wi(y) = e−y
2
), f iki

(y) is a Hermite polynomial Hn(y). If Ii = [0, 2π) then a suitable basis could

be a trigonometric polynomial basis {einθ}n∈Z. (Note that here we implicitly assume that the

above polynomials are normalized.)
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Next we give a simple version of the polynomial method in the form of a proposition: Assume

that n(x) ≡ 1, i.e. l = 1 and HP
∼= L2(I, µ,C) with the above assumptions. Hence ψm(x) ∈ C.

From Theorem 2 we get:

Proposition 1. P is extreme if the linear span of
{
ψn(x)ψm(x)

}
n,m

is dense in L2(I, µ,C).

Especially, if any ψm(x) is a polynomial and lin
{
ψn(x)ψm(x)

}
n,m

contains all polynomials then

P is extreme.

Proof. P is extreme if and only if, for any essentially bounded (m.) λ : I → C, the condition∫
Ω
λ(x)ψn(x)ψm(x)dµ(x) = 0 for all n,m implies λ = 0. Assume that lin{ψn(x)ψm(x)}n,m is

dense in L2(I, µ,C). Since λ ∈ L2(I, µ,C) it follows that λ = 0. Moreover, since the space of

all polynomials is dense in L2(I, µ,C) we get the last claim of the proposition. �

Example 2. Let Q(X) = χ
X

, X ∈ B(R), be the PVM of the canonical position operator

(Qψ)(x) = xψ(x) of a particle moving on R. Using (normalized) Hermite functions hn(x) =

cnHn(x)e−x
2/2, cn > 0, we can write (weakly)

Q(X) =
∞∑

m,n=0

∫
X

hn(x)hm(x)dx|hn 〉〈hm|.

Let Pk := I − |hk 〉〈hk| be a projection, H = PkL
2(R, dx,C), dµ(x) = e−x

2
dx, and Qk(X) =

PkQ(X)Pk a POVM with vectors ψn(x) = cnHn(x) where now n ∈ {0, 1, . . .}\{k}. If, say, k = 2

then Q2 is extreme by the polynomial method since {Hn(x)Hm(x)}n6=2,m 6=2 contains at least one

polynomial of each degree: H0(x)Hm(x) is a polynomial of degree m 6= 2 and H1(x)H1(x) is of

degree 2.

Similarly, using the polynomial method, one easily sees that the POVM associated to the

measurement of the quantum optical Q-function [5] and the canonical phase observable [6] are

extreme. Next we consider the case of the Q-function and note that one needs to slightly modify

Proposition 1.

Example 3. Let

E(Z) :=
1

π

∫
Z

|z 〉〈 z|d2z =
∞∑

n,m=0

∫
Z

rn+mei(n−m)θ

√
n!m!

e−r
2

dr2 dθ

2π
|n 〉〈m|, Z ∈ B(C),

be the POVM associated to the measurement of the Q-function z 7→ 〈z|%|z〉 of a state %, where

z = reiθ ∈ C, r = |z|, and

|z〉 = e−|z|
2/2

∞∑
n=0

zn√
n!
|n〉
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is a coherent state (in the Hilbert space spanned by the number states |n〉, n = 0, 1, . . .).

For all s = 0, 1, . . . , define a measure µs(X) :=
∫
X
ts/2e−tdt, X ∈ B([0,∞)), and note

that polynomials are dense in L2
(
[0,∞), µs,C

)
since the (normalized) associated Laguerre

polynomials L
s/2
n (t), n = 0, 1, . . . . , constitute an ON basis of L2

(
[0,∞), µs,C

)
.

Denoting t = r2 we get

rn+mei(n−m)θ = tmeikθtk/2 = tne−ilθtl/2

where k := n−m and l := m− n. From Theorem 2 one sees that E is extreme if∫ ∞
0

[∫ 2π

0

λ(θ, t)eikθdθ

]
tmdµk(t) = 0, k, m ∈ {0, 1, . . .},∫ ∞

0

[∫ 2π

0

λ(θ, t)e−ilθdθ

]
tndµl(t) = 0, l, n ∈ {0, 1, . . .},

implies λ = 0 (where λ is an essentially bounded (m.) complex function). Since polynomials

are dense in L2
(
[0,∞), µs,C

)
and both m and n run from 0 to ∞ it follows that∫ 2π

0

λ(θ, t)eikθdθ = 0

for all k ∈ Z, i.e. λ = 0 and E is pure.

3. Clean POVMs

In this section, we show that any PVM P can be connected to any (P-continuous) POVM P′

via a channel Φ.

Let P and P′ be POVMs with the same outcome space Ω (and Σ) but acting possibly different

separable Hilbert spaces H and H′. Recall that a channel Φ : T (H′) → T (H) is a completely

positive trace-preserving linear map between state spaces associated to physical systems with

Hilbert spaces H′ and H. Its dual map Φ∗ : L(H) → L(H′) (i.e. tr [%Φ∗(B)] = tr [Φ(%)B] for

all % ∈ T (H′) and B ∈ L(H)) is identity-preserving (unital): Φ∗(I) = I.

Physically, the condition Φ∗P = P′ (i.e. tr [%P′(X))] = tr [Φ(%)P(X)] for all % ∈ T (H′) and

X ∈ Σ) between POVMs means that to get the measurement outcome statistics of P′ in the

state % one can equally measure P in the state Φ(%). A POVM P is (pre-processing) clean if,

for any (P-continuous) POVM P′ and a channel Φ̃ such that P = Φ̃∗P′ there exists a channel Φ

such that P′ = Φ∗P. Hence, a clean POVM cannot be obtained by (irreversibly) manipulating

the state before the measurement and then measuring some other POVM.

Let {e′n} be an ON basis of H′. Similarly, as is the case of P (see Theorem 1), we let µ′(X),

n′(x), ψ′n(x), etc. denote the corresponding maps related to P′. Suppose that there exists a
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channel Φ such that Φ∗(P(X)) = P′(X) for all X ∈ Σ. Then, if P(X) = 0 one has P′(X) = 0

so that (by the Radon-Nikodým theorem) dµ′(x) = w(x)dµ(x) where x 7→ w(x) ≥ 0 is µ-

integrable; we say that P′ is P-continuous. If P′ is P-continuous, one can absorb
√
w(x) into

functions ψ′n(x) and redefine ψ′n(x) to be
√
w(x)ψ′n(x). Hence, without restricting generality,

we may (and will) assume that µ′ = µ.

Lemma 1. There exists a channel Φ such that Φ∗(P(X)) = P′(X) for all X ∈ Σ if and

only if P′ is P-continuous, there exist vectors vsn in a (separable) Hilbert space M such that∑dimH
s=1 〈vsn|vsm〉 = δnm, 1 ≤ n, m < dimH′ + 1, and there exists a decomposable isometry

W =
∫

Ω
W (x)dµ(x) from H′

P
′ to M⊗HP such that W (x)ψ′n(x) =

∑dimH
s=1 vsn ⊗ ψs(x).

Proof. Any channel Φ : T (H′) → T (H) has a Kraus decomposition Φ(%) =
∑N

k=1 Ak%A
∗
k,

% ∈ T (H′), or, for the dual map Φ∗ : L(H)→ L(H′),

Φ∗(B) =
N∑
k=1

A∗kBAk

(ultraweakly) where B : H → H and Ak : H′ → H are bounded operators and N ≤

dimH dimH′ [10]. Let M be any Hilbert space with an ON basis {fk}Nk=1. Defining vsn :=∑
k〈es|Ake′n〉fk ∈M one sees that

∑
s〈vsn|vsm〉 = δnm and ‖vsn‖2 ≤

∑
s ‖vsn‖2 = 1. Moreover, for

all B ∈ L(H),

Φ∗(B) = Y ∗(B ⊗ I)Y

(the Stinespring form) where Y :=
∑

n,s |es⊗vsn 〉〈 e′n| is an isometry, i.e. Y ∗Y = I =
∑

n |e′n 〉〈 e′n|.

Conversely, if there exist a Hilbert spaceM (with an ON basis {fk}dimM
k=1 ) and vectors vsn ∈M

such that
∑

s〈vsn|vsm〉 = δnm, one can define bounded operators Ak :=
∑

s,n〈fk|vsn〉|es 〉〈 e′n|,∑
k A
∗
kAk =

∑
n |e′n 〉〈 e′n|, an isometry Y :=

∑
n,s |es ⊗ vsn 〉〈 e′n|, and a channel Φ(%) :=∑dimM

k=1 Ak%A
∗
k with the dual map Φ∗(B) =

∑
k A
∗
kBAk = Y ∗(B ⊗ I)Y . To conclude, any

channel Φ is characterized by (nonunique) vectors vsn as above and we have

〈e′n|Φ∗(B)e′m〉 =
dimH∑
s,t=1

〈vsn|vtm〉〈es|Bet〉.

Hence, there exists a channel Φ such that Φ∗P = P′ if and only if P′ is P-continuous and there

exist vectors vsn in a (separable) Hilbert space M such that
∑dimH

s=1 〈vsn|vsm〉 = δnm and, for all
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X ∈ Σ,

∫
X

〈ψ′n(x)|ψ′m(x)〉dµ(x) = 〈ψ′n|χXψ
′
m〉 =

dimH∑
s,t=1

〈vsn|vtm〉〈ψs|χXψt〉

=
dimH∑
s,t=1

∫
X

〈vsn ⊗ ψs(x)|vtm ⊗ ψt(x)〉dµ(x).(3.1)

If there exists a decomposable isometry2 W such that W (x)ψ′n(x) =
∑

s v
s
n ⊗ ψs(x) then (3.1)

clearly follows. Conversely, if (3.1) holds then 〈χ
X
ψ′n|χX̃ψ

′
m〉 =

∑
s,t〈vsn ⊗ χ

X
ψs|vtm ⊗ χ

X̃
ψt〉

and, since vectors χ
X
ψ′n span H′

P
′ by Theorem 1, there exists an isometry W : H′

P
′ →M⊗HP

such that W (χ
X
ψ′n) =

∑
s v

s
n ⊗ (χ

X
ψs). But now W commutes with the linear combinations

of functions χ
X

so that it commutes with the von Neumann algebra L∞(Ω, µ,C), the space of

essentially bounded (m.) functions Ω→ C. (As usual, we consider any element of L∞(Ω, µ,C)

as a diagonalizable bounded operator.) Since a bounded operator is decomposable if and only

if it commutes with every diagonalizable operator [11], it follows that W decomposable. �

Theorem 3. a) If P is sharp and P′ any P-continuous POVM then there exists a channel such

that Φ∗(P(X)) = P′(X) for all X ∈ Σ.

b) If there exists a channel Φ such that Φ∗(P(X)) = P′(X) for all X ∈ Σ then Φ∗(B) =

Φ
∗
(JBJ∗) for all B ∈ L(H) where Φ

∗
is the dual of a channel Φ which satisfies the relation

Φ
∗
(P(X)) = P′(X) for all X ∈ Σ.

Proof. a) Let P be a PVM and P′ a P-continuous POVM. Let Ω′ be the subset of Ω such that

Ω′ consists of all points x ∈ Ω for which n(x) 6= 0. Note that if n(x) = 0 then n′(x) = 0 (for

a.a. x ∈ Ω) by the P-continuity of P′. Let µ|Ω′ be the restriction of µ to Ω′, and let {ηt}Mt=1

be an ON basis of L2(Ω′, µ|Ω′ ,C) which is separable since HP = HP is separable by Theorem

1. Extend an ON set {ηte1}Mt=1 of HP to an ON basis {ψs}dimH
s=1 of HP (note that this forces

M ≤ dimH). Since functions x 7→ 〈ek|ψ′n(x)〉 belong to L2(Ω′, µ|Ω′ ,C) they can be represented

as L2-convergent series with respect to the basis {ηt}Mt=1 and, hence,

〈ek|ψ′n(x)〉 =
M∑
t=1

c̃tknηt(x) =
dimH∑
s=1

cskn〈e1|ψs(x)〉

2Note that a decomposable operator W =
∫

Ω
W (x)dµ(x) is an isometry if and only if operators W (x) are

isometries for a.a. x ∈ Ω.
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where c̃tkn, c
s
kn ∈ C and, e.g.

∑
s,k c

s
knc

s
km = δnm. Define vectors vsn :=

∑∞
k=1 c

s
knfk ∈ M where

M is a Hilbert space with an ON basis {fk}∞k=1. Now
∑

s〈vsn|vsm〉 =
∑

s,k c
s
knc

s
km = δnm and

〈ψ′n|χXψ
′
m〉 =

∫
X

n′(x)∑
k=1

〈ψ′n(x)|ek〉〈ek|ψ′m(x)〉dµ(x) =
∑
s,t

〈vsn|vtm〉〈ψsχX|ψt〉

so that there exists a channel Φ such that Φ∗P = P′ by (3.1).

b) Assume that Φ∗P = P′ and let vsn’s be the vectors associated to Φ. It is easy to check

that Φ
∗
(B) :=

∑dimH′

n,m=1

∑dimH
s,t=1 〈vsn|vtm〉〈ψs|Bψt〉|e′n 〉〈 e′m| (where B is a bounded operator on

HP ) is the dual of a channel Φ for which Φ
∗
(P(X)) = P′(X), X ∈ Σ, and Φ∗(B) = Φ

∗
(JBJ∗),

B ∈ L(H). �

To close this section, we exhibit an example which demonstrates that it could be possible to

replace a PVM P with an extreme POVM in a) of Theorem 3. The equation Φ∗P = P′ could

then hold in some approximate sense.

Example 4. Consider the canonical phase observable P : B
(
[0, 2π)

)
→ L(H),

X 7→ P(X) :=
∞∑

n,m=0

∫
X

ei(n−m)θ dθ

2π
|n 〉〈m| =

∫
X

|θ 〉〈 θ|dθ
2π

where |θ〉 :=
∑∞

n=0 e
inθ|n〉 ∈ V × is the Susskind-Glogower phase state. Now x = θ, dµ(θ) =

dθ/(2π), en = |n − 1〉, n(θ) ≡ 1, d1(θ) = |θ〉, and (since C|0〉 ∼= C) ψn(θ) = e−i(n−1)θ|0〉 ∼=

e−i(n−1)θ where n ∈ {1, 2, . . .} (see Theorem 1). Using Proposition 1 one sees that the canonical

phase observable is extreme.

Let P′ : B
(
[0, 2π)

)
→ L(H′) be any P-continuous POVM. Hence, P′ is of the form

P′(X) =
dimH′∑
n,m=1

∫
X

〈ψ′n(θ)|ψ′m(θ)〉dθ
2π
|e′n 〉〈 e′m|, X ∈ B

(
[0, 2π)

)
.

Since each ψ′n ∈ L2
(
[0, 2π), µ,H′

)
it has the L2-convergent Fourier series ψ′n(θ) =

∑∞
s=−∞ ṽ

s
ne
−isθ

where ṽsn ∈ H′ and
∑∞

s=−∞〈ṽsn|ṽsm〉 = 〈ψ′n|ψ′m〉 = δnm.

Let X be any finite subset of B
(
[0, 2π)

)
, and let N < dimH′+ 1 and ε > 0. One can pick an

M > 0 such that ∣∣∣∣∫
X

〈ψ′n(θ)|ψ′m(θ)〉dθ
2π
−
∫
X

〈ψMn (θ)|ψMm (θ)〉dθ
2π

∣∣∣∣ < ε

for all X ∈ X and n,m ≤ N where ψMn (θ) :=
∑M

s=−M ṽsne
−isθ. (Note that ψMn is a projection of

ψ′n.) Define a positive operator (valued) measure P′M : B
(
[0, 2π)

)
→ L(H′),

X 7→ P′M(X) =
dimH′∑
n,m=1

∫
X

〈ψMn (θ)|ψMm (θ)〉dθ
2π
|e′n 〉〈 e′m| ≤

dimH′∑
n=1

|e′n 〉〈 e′n| = I
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which is not necessarily normalized. However, one can consider P′M as an approximation of P′

when M is large. Since

e−iMθψMn (θ) =
M∑

s′=−M

ṽs
′

n e
−i(s′+M)θ =

2M+1∑
s=1

vsnψs(θ),

where vsn := ṽs−M−1
n , following the proof of Lemma 1, one can show that there exists a completely

positive linear mapping ΦM : T (H′)→ T (H) such that Φ∗M(P(X)) = P′M(X), X ∈ B
(
[0, 2π)

)
,

where the (possibly nonunital) dual mapping Φ∗M : L(H)→ L(H′) is of the form

Φ∗M(B) = Y ∗M(B ⊗ I)YM , B ∈ L(H),

and YM :=
∑dimH′

n=1

∑2M+1
s=1 |es ⊗ vsn 〉〈 e′n| for which

Y ∗MYM =
dimH′∑
n,m=1

〈ψMn |ψMm 〉|e′n 〉〈 e′m| ≤ I.

Hence, to obtain approximately a measurement outcome statistics of P′ : B
(
[0, 2π)

)
→ L(H′)

in a state % ∈ T (H′), that is, a probability measure X 7→ tr [%P′(X)], one can pick a large M

and measure P in a state %M := ΦM(%)/tr [ΦM(%)] to get

tr [%P′(X)] ≈ tr [%P′M(X)] = tr [%MP(X)] tr [ΦM(%)]

for a finite number of sets X which can constitute, e.g., an arbitrarily dense discretization of

the interval [0, 2π).

4. Discussion

In conclusion, we have shown that the traditional observables, PVMs, have a special role

among quantum observables, namely, they are (extreme and) clean and free from any additional

extrinsic quantum noise. However, the above example suggests that this result could also

be approximately true for all extreme observables and, hence, the most accurate quantum

observables should be described by extreme POVMs.

The physically significant POVMs usually satisfy certain properties of covariance with re-

spect to a symmetry group of the theory [1]. For example, quantum optical phase observables

are described by POVMs which transform covariantly with respect to phase shifts generated

by the number operator. However, covariant phase POVMs are never sharp. Theorem 2 and

Proposition 1 provide powerful tools (i) for constructing extreme POVMs describing ‘canonical’

(covariant) observables of physical quantities (phase, time, angle, etc.) and (ii) for studying
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whether (or not) a POVM associated to an actual measurement scheme (e.g. homodyne detec-

tion in quantum optics) is extreme.
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