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Abstract: Early characterization of emerging viruses is essential to control their spread, such as the
Zika Virus outbreak in 2014. Among other non-viral factors, host information is essential for the
surveillance and control of virus spread. Flaviviruses (genus Flavivirus), akin to other viruses, are
modulated by high mutation rates and selective forces to adapt their codon usage to that of their
hosts. However, a major challenge is the identification of potential hosts for novel viruses. Usually,
potential hosts of emerging zoonotic viruses are identified after several confirmed cases. This is
inefficient for deterring future outbreaks. In this paper, we introduce an algorithm to identify the
host range of a virus from its raw genome sequences. The proposed strategy relies on comparing
codon usage frequencies across viruses and hosts, by means of a normalized Codon Adaptation
Index (CAI). We have tested our algorithm on 94 flaviviruses and 16 potential hosts. This novel
method is able to distinguish between arthropod and vertebrate hosts for several flaviviruses with
high values of accuracy (virus group 91.9% and host type 86.1%) and specificity (virus group 94.9%
and host type 79.6%), in comparison to empirical observations. Overall, this algorithm may be useful
as a complementary tool to current phylogenetic methods in monitoring current and future viral
outbreaks by understanding host–virus relationships.

Keywords: flavivirus; host identification; codon adaptation index; algorithm

1. Introduction

Recent viral pandemics have shown that rapid characterization of the virus is essential
during the development of an outbreak [1–4]. Among other factors, host information is
essential for surveillance and control of virus spread. However, emerging viruses are
fully characterized only after several confirmed cases occur; this is an inefficient method
of deterring current and future outbreaks [5]. Fast and reliable computational biology
methods are needed to develop antiviral treatments, to improve medical diagnoses and
to efficiently contain viral outbreaks [6]. Viral genomes are modulated by high mutation
rates [7] and by selective forces to adapt their codon usage to that of their hosts, especially
when the viruses can infect a wide host range, as is the case for flaviviruses [8]. Previous
methods identify flavivirus host range based on an analysis of dinucleotides [9,10] based
on the idea that a virus that infects multiple hosts has a weaker dinucleotide bias [11].

In this article, we introduce an unsupervised algorithm to identify putative virus host
ranges based on only genome sequence information. The proposed methodology has been
tested in 94 viruses of genus Flavivirus and 16 potential hosts. Several flaviviruses are
major human pathogens, with potential host ranges from vertebrates to arthropods [12].
Flaviviruses are classified by vector type into mosquito-borne (MBFV), tick-borne (TBFV),
insect-only (IOFV) and unknown vector (UVFV) [13] flaviviruses. In MBFVs, there exists a
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paraphyletic subgroup of mosquito-specific viruses [14], also known as dual-host insect-
only flaviviruses (dhIOFVs). However, certain annotation ambiguities exist; e.g., the
Ecuador Paraíso Escondido Virus (EPEV) is defined as MBFV based on phylogeny, but
may also be classified as dhIOFV [15]. Flaviviruses with the same host type tend to be
monophyletic and are subject to the same selective pressures as the host; this situation is
reflected in their codon usage and dinucleotide composition [16]. The most widespread
and prevalent flaviviruses include Dengue virus (DENV), West Nile virus (WNV), Japanese
encephalitis virus (JEV), and Zika virus (ZKV) [17].

Several articles suggest that highly similar codon usage frequencies between viruses
and hosts are indicative of a high virus–host adaptation level [18]. Thus, the codon
adaptation index (CAI) [19] may be a robust indicator for determining putative hosts. Here,
we use a normalized CAI (nCAI) and a correspondence analysis (CA) to compare codon
usage frequencies across virus and host sequences (see Materials and Methods section).
Therefore, the nCAI-CA algorithm provides a fast and reliable method of identifying the
putative host range of a virus. This method requires only coding sequences (CDSs) without
prior knowledge, and can be implemented with minimal computational equipment. In
addition, we have developed an easy-to-use web server, available at http://ppuigbo.me/
programs/CAIcal/nCAI (accessed on 13 May 2021), to calculate nCAI values.

2. Materials and Methods

The optimal host identification algorithm (Figure 1) consists of two phases. In the first
phase, the algorithm computes the required codon usage tables through two subroutines:
one for the host and the other for the virus. These tables, along with complete genomic
CDSs, are then used as the input data for CAIcal [20]. This produces CAI data between the
virus and host (CAIh) using virus CDSs, and host codon usage tables and CAI data for the
virus itself (CAIs) using virus CDSs and virus codon usage tables. In the second phase, the
CAIh values are normalized by dividing each by its respective CAIs as in Equation (1):

nCAI =
CAIh
CAIs

(1)

This yields the normalized CAI (nCAI) value, from which the optimal and likely
hosts can be inferred depending on how similar the codon usage of a virus is to the codon
usage of its host organisms. The nCAI values range between −∞ and +∞, and the optimal
value is 1.0, indicating identical codon usage between the virus and host and therefore
perfect adaptation to the host. Values above and below 1.0 would indicate over- and
underoptimization, respectively, and thus suboptimal adaptation to a host.

The nCAI calculations can be performed with the CAIcal tool in a dedicated web
server, written in PHP, that works on any web browser (http://ppuigbo.me/programs/
CAIcal/nCAI, accessed on 13 May 2021). The server requires two sets of inputs: complete
DNA or RNA CDSs of the viruses of interest in FASTA format and the codon usage tables
of the potential host animals in the format used by the Codon Usage Database [21]. CAIcal
will then output the results in a tab-delimited table with the following values: name of
the query sequence (Name); CAI of the virus to a host (CAIh); CAI of the virus to itself
(CAIs); normalized CAI, calculated by dividing CAIh by CAIs (nCAI); length of the query
sequence (Length); overall %GC; and GC content at the first, second or third nucleotide of
each codon (%GC1–3).

Available flavivirus CDSs and their respective protein sequences were obtained from
the RefSeq [22] and GenBank [23] databases. The viruses (n = 94) were chosen according to
phylogenetic studies [24–26] and current ICTV classifications [13] (Supplementary Table S1).

In this study, a vector is defined as an organism capable of transmitting a virus to
another type of organism. This definition does not take into account whether the virus is
virulent within a vector, i.e., there is no differentiation between a vector and a vector-host.
A host, on the other hand, is an organism in which the virus primarily replicates, and
it does not directly transmit the virus to another organism of the same type. The host

http://ppuigbo.me/programs/CAIcal/nCAI
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organisms (N = 16) for this study were chosen based on information primarily provided
by the Virus–Host Database [27], which includes representative arthropod (mosquitoes
and tick) and vertebrate (mammals, birds, reptiles and amphibians) host species. Addi-
tionally, a more comprehensive list of hosts and vectors for each flavivirus is included in
Supplementary Table S1. This table includes only confirmed cases of viruses sequenced
from an organism, or cases in which viruses have successfully infected the cells of a host
in a laboratory experiment. It is important to note that not all host animals listed in the
database are primary hosts, as they might have acquired the viruses through happenstance.
We computed a codon usage reference table for 16 putative hosts representing all possible
flavivirus host types among vertebrates (mammals, birds, reptiles, and amphibians) and
arthropods (mosquitoes and ticks). We analyzed genomes that contained over 10,000 CDSs
to reflect actual codon usage frequencies, as well as those of Gallus gallus (6017) and Sus
scrofa (2953).
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Figure 1. Scheme of the algorithm used to calculate the normalized codon adaptation index (nCAI).
(a) Pipeline to identify putative hosts based on nCAI values. The complete coding sequences of hosts
and viruses are used to compute nCAI values, which are put into a table. These values are then
subjected to correspondence analysis to identify optimal hosts and, thus, the likelihood of a virus
infecting an organism. (b) Algorithm to calculate nCAI. The CAI values for possible hosts and viruses
of interest are computed from the complete coding sequences (CDSs) and the codon usage tables,
which are calculated from the same sequences. The CAI values of the host (CAIh) are calculated from
virus CDSs and host codon usages, and the CAI values of the viruses (CAIs) are computed using
virus CDSs and the codon usage values of the viruses themselves. The resulting CAI values are then
normalized by dividing each CAIh by its respective CAIs.

The %GC and relative synonymous codon usage (RSCU) values were calculated from
the CDSs of the flaviviruses. The RSCU describes the preference bias for a codon to be used
to encode an amino acid [28]. This can be calculated by dividing the observed number of
a codon by the expected frequency of the same codon, assuming that individual codons
for amino acids were used at equal frequency [29]. CA was performed for two different
types of nCAI datasets. The first analysis included all known flaviviruses, and the second
included separate datasets, containing only the values for DENV, JEV, WNV and ZKV. The
correspondence analyses were performed with the “ca” package (version 0.70) and then
plotted with the “ggplot2” package (version 2.2.1) in R (version 3.4.4). The nCAI values
of all MBFVs were plotted in a heat map with the “pheatmap” package (version 1.0.10) in
R. The virus phylogenetic tree was computed with the following steps: first, the amino
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acid sequences of each genome were aligned using MUSCLE [30]. Tree construction was
performed with FastTree [31]. Host trees were built based on NCBI taxonomy [32]. Each of
the viruses and host organisms were sorted to match their respective phylogenies. For the
DENV, JEV, WNV and ZKV genomes, their results were clustered based on k-means (5) in
the heat map (Supplementary Figure S9). The clustering of each subgroup was performed
and visualized by computing centroids based on the multivariate normal distribution
of each subgroup with a confidence level of 0.95. This was achieved with the “ggplot2”
package (version 2.2.1) in R (version 3.4.4). The virus subgroups included MBFV, TBFV,
IOFV, UVFV and dhIOFV, and the host type subgroups were vertebrates, mosquitoes,
and ticks.

3. Results

First, to assess whether a codon usage methodology could distinguish subgroups
within a viral species, we performed nCAI-CA analysis for all the available CDSs of
DENV, WNV, JEV, and ZKV, which numbered 4865, 297, 1619 and 494, respectively. Each
viral subgroup formed a distinct cluster based on relative synonymous codon usage
(Supplementary Figures S3 and S4) and GC content (%GC) (Supplementary Figures S5–S7).
In addition, we determined the interspecies and intraspecies variability of the RSCU and
%GC in the DENV, JEV, WNV and ZKV genomes. The results show that the RSCU values
could differentiate viral subgroups within species and that their distances mostly reflected
the evolutionary histories of the viruses (Supplementary Figure S5). The %GC was not a
discriminating factor at the intraspecific level (Supplementary Figure S6). At the interspecies
level, the clustering patterns based on the RSCU were only slightly more similar to the
evolutionary histories of the viruses than the %GC (Supplementary Figure S7).

Next, we used the nCAI-CA algorithm (Figure 1) to identify the optimal hosts of
94 flaviviruses, based on only complete CDSs and codon usage tables from 16 potential
hosts (vertebrates: mammals, birds, reptiles and amphibians; arthropods: mosquitoes
and ticks) (Supplementary Tables S1–S3). The nCAI-CA algorithm was able to accurately
determine host types for MBFVs and UVFVs (vertebrates), IOFVs (Aedes mosquitoes),
and TBFVs (Ixodes scapularis) (Figure 2). The paraphyletic group of dhIOFVs clustered
between Aedes mosquitoes and vertebrates (Supplementary Figure S1). The CA plot shows
a partial overlap between the MBFV and TBFV groups (Supplementary Figure S1); however,
on average, TBFVs had higher nCAI values (0.813) than MBFVs (0.765) for I. scapularis,
suggesting a higher degree of optimization for tick hosts (Table 1 and Supplementary
Table S2). The nCAI-CA analysis also revealed unexpected findings for individual viruses,
e.g., WNVs clustered within MBFVs but near TBFVs, which aligns with the results of
previous infectivity tests [33] and some observational studies (Supplementary Table S1).
All the viruses could be classified into two general host groups: vertebrates (MBFVs, TBFVs,
UVFVs and dhIOFVs) and mosquitoes (IOFVs) (Supplementary Figure S2). Our analysis
shows that no group clusters near Culex quinquefasciatus, suggesting that this is not an
optimal host for most flaviviruses. However, Culex mosquitoes are relatively good vector-
hosts for certain flaviviruses (e.g., JEV and WNV) and in many cases the preferred mosquito
vector-host is debatable [34–38]. Our results indicate a higher adaptation of MBFV towards
Aedes; however, a higher genomic adaptation does not imply that Aedes is currently the most
common host-vector for all MBFV, as additional factors should be considered. Moreover,
our algorithm mostly rules out Anopheles gambiae as the main host-vector, in agreement with
the literature [39], although there are few notable exceptions [40,41]. Overall, the nCAI-CA
algorithm is able to predict virus groups and host types with high values of accuracy and
specificity in comparison to empirical observations (Table 2 and Supplementary Table S4).
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Figure 2. Correspondence analysis of the normalized codon adaptation index (nCAI) values of flaviviruses (genus Flavivirus;
n = 94). The plot shows that nCAI can differentiate multiple subgroups of flaviviruses based on their degree of codon usage
optimization relative to their host organisms. Mosquito-borne flaviviruses are generally optimized for vertebrate hosts,
while tick-borne flaviviruses are optimized for ticks, and insect-only flaviviruses are optimized for mosquitoes. Dual-host
insect-only flaviviruses show optimization for both mosquitoes and vertebrates, and unknown vector flaviviruses are also
optimized for vertebrates. Dimension 1 explains 89.4% of the variation, and Dimension 2 explains 8.5% of the variation.
MBFV: mosquito-borne flaviviruses, TBFV: tick-borne flaviviruses, IOFV: insect-only flaviviruses and UVFV: unknown
vector flaviviruses.

The heat map of nCAI values for all flaviviruses shows common adaptation patterns
(Supplementary Figure S8). Likely optimal hosts (within an nCAI range of 0.9–1.1) include
mammals (Myotis brandtii, M. davidii, Mus musculus, Bos taurus, and Homo sapiens) and
Aedes mosquitoes (Aedes aegypti and A. albopictus). Unlikely hosts due to low adaptation
(nCAI < 0.9) include C. quinquefasciatus, A. gambiae, I. scapularis and S. scrofa. These re-
sults are in accordance with previous studies and observations, e.g., most MBFVs have
a reproductive cycle that includes Aedes (host-vector) or Culex (vector) mosquitoes and a
primary mammalian host (Supplementary Table S1). Based on these analyses, flaviviruses
are potentially less adapted to reproduction in Culex mosquitoes due to the differences in
%GC between Culex and Aedes mosquitoes. Moreover, our analysis suggests that TBFV is a
group of flaviviruses optimized to reproduce in vertebrates and use ticks as vectors (and
we speculate that they may occasionally reproduce in ticks). In general, flavivirus codon
usage is overoptimized (nCAI > 1.1) for birds (Columba livia, G. gallus, Anas platyrhynchos),
amphibians (Xenopus laevis) and reptiles (Alligator mississippiensis).
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Table 1. Values of %GC3 and nCAI (Mean ± Standard deviation) by flavivirus and host groups.

Tick Aedes Anopheles Culex Mammals Other Vertebrates
Flavivirus

Groups %GC3 72.0%
-

58.1%
±1.8%

69.6%
-

69.3%
-

60.9%
±2.5%

52.9%
±4.5%

dhIOFV
(n = 5)

50.0%
nCAI

0.738 0.949 0.729 0.764 0.889 1.027
±2.3% ±0.048 ±0.053 ±0.051 ±0.049 ±0.062 ±0.049

IOFV
(n = 14)

54.3%
nCAI

0.748 0.938 0.734 0.780 0.866 0.982
±3.8% ±0.046 ±0.044 ±0.042 ±0.047 0.051 ±0.037

MBFV
(n = 49)

52.1%
nCAI

0.765 0.967 0.752 0.792 0.925 1.053
±3.7% ±0.033 ±0.033 ±0.029 ±0.032 ±0.051 ±0.035

TBFV
(n = 20)

58.9%
nCAI

0.812 0.979 0.795 0.842 0.938 1.045
±1.8% ±0.021 ±0.024 ±0.020 ±0.020 ±0.043 ±0.028

UVFV
(n = 6)

44.4%
nCAI

0.705 0.948 0.706 0.746 0.907 1.057
±3.3% ±0.012 ±0.028 ±0.010 ±0.010 ±0.053 ±0.038

Mosquito
(n = 14)

54.3%
nCAI

0.748 0.938 0.734 0.780 0.866 0.982
±3.8% ±0.046 ±0.044 ±0.042 ±0.047 ±0.051 ±0.037

Tick
(n = 20)

58.9%
nCAI

0.812 0.979 0.795 0.842 0.938 1.045
±1.8% ±0.021 ±0.024 ±0.020 ±0.020 ±0.043 ±0.028

Vertebrate
(n = 60)

51.2%
nCAI

0.757 0.963 0.746 0.785 0.920 1.052
±4.3% ±0.038 ±0.035 ±0.033 ±0.035 ±0.053 ±0.037

Host types: Tick (Ixodes scapularis); Aedes (Aedes albopictus and Aedes aegypti); Anopheles (Anopheles gambiae); Culex (Culex quinquefasciatus);
Mammals (Homo sapiens, Bos taurus, Sus scrofa, Mus musculus, Myotis davidii and Myotis brandtii); and Other Vertebrates (Alligator mississippi-
ensis, Xenopus laevis, Anas platyrhynchos, Gallus gallus and Columba livia). Complete list of flaviviruses is available in Supplementary Table S1.
nCAI = CAIh/CAIs; nCAI: normalized Codon Adaptation Index; CAIh: Codon Adaptation Index calculated using host codon usage as a
reference; CAIs: Codon Adaptation Index calculated with virus codon usage as a reference. %GC3: Percentage of guanine and cytosine at
the third codon position. MBFV: mosquito-borne flaviviruses, TBFV: tick-borne flaviviruses, IOFV: insect-only flaviviruses and UVFV:
unknown vector flaviviruses.

Table 2. Values of specificity and accuracy between nCAI predictions and empirical observations from Supplementary Table S1.

Virus Group dhIOFV IOFV MBFV TBFV UVFV Host Type Mosquito Tick Vertebrate

Accuracy 1 91.9% 94.7% 96.8% 81.9% 95.7% 90.4% 86.1% 78.8% 86.7% 92.9%
Specificity 2 94.9% 94.4% 100.0% 95.6% 94.6% 90.9% 79.6% 75.3% 84.0% 79.5%

1 (TP + TN)/(TP + FN + FP + TN); 2 TN/(TN + FP).

4. Discussion

Despite the high values of specificity and accuracy produced by the nCAI-CA (Table 2
and Supplementary Table S4), there are certain limitations in its application. The algorithm
is based on the assumption that there is a selection pressure to optimize the relative use
of synonymous codons in the virus. However, it is well known that some viruses use the
opposite strategy, and some viruses deoptimize codon usage to hide from host defense
mechanisms [42]. The highest level of optimization is at nCAI = 1.0, when the relative
use of synonymous codons in the virus and host is identical. Virus–host adaptations
were also evaluated with a correspondence analysis (CA) plot (Figure 2). Flaviviruses
able to infect a wide range of hosts (generalists) tend to be in the center of the plot,
whereas host-specific flaviviruses move away from the center, towards their optimal hosts
(Supplementary Figures S1 and S2). Viruses with overoptimized codon usage (nCAI >> 1)
might be explained by multiple factors, e.g., adaptation to multiple hosts, effects of extreme
%GC bias or adaptation to highly expressed genes [43]. Moreover, some gene-specific
codon usage biases may better explain adaptations in certain viruses.

Nevertheless, further empirical investigations are necessary to determine reliable con-
fidence intervals for nCAI. Host determination may be uncertain if viruses display approx-
imately equal optimizations for different host types; for example, although dhIOFV codon
usage is optimized for both vertebrate and mosquito hosts, they are insect-specific [14]. Al-
though common host preference patterns are observed, the optimal hosts vary depending
on the virus or subgroup and may not reflect documented cases (Supplementary Table S1).
The observed host ranges also do not distinguish between vectors and hosts, and classical
phylogenomic methods cannot determine potential hosts without confirmed cases. Our
nCAI-based method overcomes this limitation by directly measuring the adaptation of
viruses to the translational machinery of their hosts.



Life 2021, 11, 442 7 of 9

5. Conclusions

In conclusion, this novel algorithm provides a fast and proactive method to assess the
potential host ranges and the risk of zoonotic host shift for new and emerging viruses. In
flaviviruses, this method distinguishes between arthropod and vertebrate hosts with high
accuracy. However, it might produce ambivalent results for viruses undergoing host shifts.
Overall, this nCAI-based algorithm may be used as a complement to current phylogenetic
methods to monitor current and future outbreaks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11050442/s1, Supplementary Figures S1–S9 and Supplementary Tables S1–S4.
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