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Redshift measurement of active galactic nuclei (AGNs) remains a time-consuming and
challenging task, as it requires follow up spectroscopic observations and detailed analysis.
Hence, there exists an urgent requirement for alternative redshift estimation techniques.
The use of machine learning (ML) for this purpose has been growing over the last few years,
primarily due to the availability of large-scale galactic surveys. However, due to
observational errors, a significant fraction of these data sets often have missing entries,
rendering that fraction unusable for ML regression applications. In this study, we
demonstrate the performance of an imputation technique called Multivariate Imputation
by Chained Equations (MICE), which rectifies the issue of missing data entries by imputing
them using the available information in the catalog. We use the Fermi-LAT Fourth Data
Release Catalog (4LAC) and impute 24% of the catalog. Subsequently, we follow the
methodology described in Dainotti et al. (ApJ, 2021, 920, 118) and create an MLmodel for
estimating the redshift of 4LAC AGNs. We present results which highlight positive impact
of MICE imputation technique on the machine learning models performance and obtained
redshift estimation accuracy.
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1 INTRODUCTION

Spectroscopic redshift measurement of Active Galactic Nuclei (AGNs) is a highly time-consuming
operation and is a strong limiting factor for a large-scale extragalactic surveys. Hence, there is a
pressing requirement for alternative redshift estimation techniques that provide reasonably good
results Salvato et al. (2019). In current cosmological studies, such alternative redshift estimates,
referred to as photometric redshifts, play a key role in our understanding of the Extragalactic
Background Light (EBL) origins Wakely and Horan (2008)1, magnetic field structure in the
intergalactic medium Marcotulli et al. (2020); Venters and Pavlidou (2013); Fermi-LAT
Collaboration et al. (2018) and help in determining the bounds on various cosmological
parameters Domínguez et al. (2019); Petrosian (1976); Singal et al. (2013b), Singal et al. (2012),
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Singal et al. (2014); Singal (2015); Singal et al. (2013a); Chiang
et al. (1995); Ackermann et al. (2015); Singal et al. (2013b);
Ackermann et al. (2012).

One technique that has gained significant momentum is the
use of machine learning (ML) to determine the photometric
redshift of AGNs Brescia et al. (2013), Brescia et al. (2019);
Dainotti et al. (2021); Nakoneczny et al. (2019); Jones and
Singal (2017); Cavuoti et al. (2014); Fotopoulou and Paltani
(2018); Logan and Fotopoulou (2020); Yang et al. (2017);
Zhang et al. (2019); Curran (2020); Nakoneczny et al. (2019);
Pasquet-Itam and Pasquet (2018); Jones and Singal (2017). Large
AGN data sets derived from all-sky surveys like the Wide-field
Infrared Survey Explorer (WISE) Brescia et al. (2019); Ilbert et al.
(2008); Hildebrandt et al. (2010); Brescia et al. (2013); Wright
et al. (2010); D’Isanto and Polsterer (2018) and Sloan Digital Sky
Survey (SDSS) Aihara et al. (2011) have played a significant role
in the proliferation of ML approaches. However, the quality of the
results from an ML approach depends significantly on the size
and quality of the training data: the data on which the MLmodels
learn the underlying relationship to predict the redshift.
Unfortunately, almost all of these large data sets suffer from
the issue of missing entries, which can lead to a considerable
portion of the data being discarded.

This is especially problematic in catalogs of smaller size, such
as in the case of gamma-ray loud AGNs.

Using the Fermi Fourth Data Release Catalog’s (4LAC)
gamma-ray loud AGNs Ajello et al. (2020); Abdollahi et al.
(2020), Dainotti et al. (2021) demonstrated that ML methods
lead to promising results, with a 71% correlation between the
predicted and observed redshifts. However, in that study, the
training set consists of only 730 AGNs, and a majority of the data
(50%) are discarded due to missing entries. More specifically, we
have several reasons why the sources are missing also in relation
to the variables we consider. Regarding the missing values of the
Gaia magnitudes: this could be either because the sources are too
faint and thus they undergo the so called Malmquist bias effect
(only the brightest sources are visible at high-z) or the coordinates
are not accurate enough and the cross-matching is failing to
produce a counterpart (the latter is not that likely, the former is
much more likely).

Regarding the variables observed in γ-rays: here the source is
detected, but it is faint in gamma-rays and again we have the
Malmquist bias effect in relation to the detector threshold of
Fermi-LAT and/or it does not appear variable and/or the spectral
fitting fails to produce values, hence the missing values.

Regarding the multi-wavelength estimates (], ]f]): these
depend on the availability of multi-wavelength data from radio
to X-rays. If sufficient data exists then a value can be estimated, so
the missing values are most likely sources that have not been
observed by telescopes. In other words, this does not mean that
the sources are necessarily faint, they could be bright, but just no
telescope performed follow-up observations.

There is also the possibility to explain the missing values
because of the relativistic effects that dominate blazar emission.
The relativistic effects, quantified by a parameter called the
Doppler factor, boost the observed flux across all frequencies,
but also shorten the timescales making sources appear more

variable. It has been shown that sources detected in γ-rays have
higher Doppler factors and are more variable Liodakis et al.
(2017), Liodakis et al. (2018). This would suggest that sources
observed more off-axis, i.e., lower Doppler factor, would have a
lower γ-ray flux and appear less variable. Therefore introduce
more missing values as we have discussed above.

In this study, we address this issue of missing entries using an
imputation technique called Multivariate Imputation by Chained
Equations (MICE) Van Buuren and Groothuis-Oudshoorn
(2011). This technique was also recently used by Luken et al.
(2021) for redshift estimation of Radio-loud AGNs.

Luken et al. (2021) test multiple imputation techniques, MICE
included, to determine the best tool for reliably imputing missing
values. Their study considers the redshift estimation of radio-loud
galaxies present in the Australia Telescope Large Area Survey
(ATLAS). However, in contrast to our approach where we impute
actual missing information in the catalog, they manually set
specific percentages of their data as missing and test how
effective various imputation techniques are. Their results
demonstrate distinctly that MICE is the best imputation
technique, leading to the least root mean square error (RMSE)
and outlier percentages for the regression algorithms they have
tested.

In our study, we are using the updated 4LAC catalog, and
using MICE imputations to fill in missing entries, we achieve a
training data set which is 98% larger than the one used in Dainotti
et al. (2021). We achieve results on this more extensive training
set that are comparable to Dainotti et al. (2021) while attaining
higher correlations. Furthermore, we are using additional ML
algorithms in the SuperLearner ensemble technique, as compared
to Dainotti et al. (2021).

Section 2 discusses the specifics of the extended 4LAC data set:
how we create the training set, which predictors are used and
which outliers are removed. In Section 3 we discuss the MICE
imputation technique, the SuperLearner ensemble with a brief
description of the six algorithms used in this analysis, followed by
the different feature engineering techniques implemented.
Finally, we present the results in Section 4, followed by the
discussion and conclusions in Section 5.

2 SAMPLE

This study uses the Fermi Fourth Data Release Catalog (4LAC),
containing 3,511 gamma-ray loud AGNs, 1764 of which have a
measured spectroscopic redshift. Two categories of AGNs
dominate the 4LAC catalog, BL Lacertae (BLL) objects and
Flat Spectrum Radio Quasars (FSRQ). To keep the analysis
consistent with Dainotti et al. (2021), we remove all the non-
BLL and non-FSRQ AGNs.

These AGNs have 13 measured properties in the 4LAC
catalog; however, we only use 11 and a categorical variable
that distinguishes BLLs and FSRQs. The two omitted
properties in the analysis are Highest_Energy and
Fractional_Variability because 42.5% of the entries are
missing, and there is insufficient information to impute them
reliably. We consider imputation of predictors which have
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missing entries in less than 18% of the data. The remaining 11
properties and the categorical variables are Gaia_G_Magnitude,
Variability_Index, Flux, Energy_Flux, PL_Index, ]f], LP_Index,
Significance, Pivot_Energy, ], and LP_β and LabelNo, serve as the
predictors for the redshift in the machine learning models and are
defined in Dainotti et al. (2021) and Ajello et al. (2020). However,
some of these properties are not used as they appear in the 4LAC,
since they span several orders of magnitude. The properties Flux,
Energy_Flux, Significance, Variability_Index, ], ]f], and
Pivot_Energy are used in their base-10 logarithmic form. In
the categorical variable LabelNo we assign the values 2 and 3
to BLLs and FSRQs, respectively. We are not training the ML
models to predict the redshift directly. Instead, we train the
models to predict 1/(z + 1), where z is the redshift. Such a
transformation of the target variable is crucial as it helps improve
the model’s performance. In addition, 1/(z + 1) is known as the
scale factor and has a more substantial cosmological significance
than redshift itself. We remove AGNs with an LP_β < 0.7,
LP_Index > 1, and LogFlux > -10.5, as they are outliers of
their respective distributions. These steps lead us to a final
data sample of 1897 AGNs, out of which 1,444 AGNs have a
measured redshift (see Figure 1). These AGNs form the training
sample, while the remaining 453 AGNs, which do not have a
measured redshift, form the generalization sample.

3 METHODOLOGY

Here we present the various techniques implemented in the
study, definitions of the statistical metrics used, and a
comprehensive step-by-step description of our procedure to
obtain the results. We use the following metrics to measure
the performance of our ML model:

• Bias: Mean of the difference between the observed and
predicted values.

• σNMAD: Normalized median absolute deviation between the
predicted and observed measurements.

• r: Pearson correlation coefficient between the predicted and
observed measurements.

• Root Mean Square Error (RMSE) between the predicted and
observed redshift

• Standard Deviation σ between the predicted and observed
redshift

We present these metrics for both Δznorm and Δz, which are
defined as:

Δz � zobserved − zpredicted (1)
Δznorm � Δz

1 + zobserved
(2)

We also quote the catastrophic outlier percentage, defined as
the percentage of predictions that lies beyond the 2σ error. The
metrics presented in this study are the same as in Dainotti et al.
(2021), allowing for easy comparison.

3.1 Procedure
Here we provide a walk-through of how the final results are
obtained. First, we remove all the non-BLL and non-FSRQ AGNs
from the 4LAC data set, in addition to outliers, and end up with
1897 AGNs for the total set. Then, we impute the missing entries
using MICE (see Section 3.2). Having obtained a complete data
set, we split it into the training and the generalization sets,
depending on whether the AGNs have or do not have a
measured redshift value. We aim to train an ensemble model
that is the least complex and best suited to the data at hand. For
this purpose, we need to test many different algorithms with ten-

FIGURE 1 | Redshift distribution of the training set.
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FIGURE 2 | (A): The coefficients assigned by SuperLearner to the algorithms tested. We select the algorithms that have a coefficient above 0.05 to be incorporated
into our ensemble. (B): The RMSE error (risk) of each of the algorithms, scaled to show the minimum risk algorithm at 0, which is Cforest. These values are average over
one hundred iterations of 10fCV.

FIGURE 3 | The pattern of the missing data. The blue cells represent complete values, while the pink ones indicate where we havemissing data. The first row shows
that there are 1,432 AGNs without missing values. Second row shows that there are 228 data points with Gaia_G_Magnitude missing. Third row shows that there are
122 data points with Log] and Log]f]missing. And finally, the last row shows that there are 115 data points with missing values inGaia_G_Magnitude, Log] and Log]f].
The columns indicate that there are 237 missing values in Log] and Log]f], and 343 missing values in Gaia_G_Magnitude. The remaining predictors have no
missing entries.
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fold cross-validation (10fCV). Cross-validation is a resampling
procedure that uses different portions of the data, in this case 10,
to train and test a model, and find out which algorithm performs
the best in terms of the previously defined metrics. However,
since there is inherent randomness in how the folds are created
during 10fCV, we perform 10fCV one hundred times and average
the results to derandomize and stabilize them. This repeated

k-fold cross-validation technique is standard in evaluating ML
models. In each of the one hundred iterations of 10fCV, we train a
SuperLearner model (see Section 3.3) on the training set using
the twelve algorithms shown in Figure 2. Finally, averaging over
the one hundred iterations, we obtained the coefficients and risk
measurements associated with each SuperLearner ensemble
model, as well as the individual algorithms. Following the
previous step, we pick six algorithms that have coefficients
greater than 0.05 (see Section 3.4 for information about these
algorithms).

With the six best ML algorithms, we create an ensemble with
SuperLearner and perform the 10fCV one hundred times once
more. The final cross-validated results are again an average of
these one hundred iterations.

Next, we proceed to show the results obtained without the
repeated cross-validation procedure. For this, we simply select
a fixed validation set by choosing the last 111 AGNs from the
1,444 AGNs of the previously used training data. Now, with
the new training set of 1,333 AGNs, we train a SuperLearner
model, with the algorithms being the same as in the cross-
validation step, and we predict the redshift of the validation
set. We then calculate the same statistical metrics for these
results as we did for the cross-validated results. The results on
this fixed validation set provide a representative of the
performance of the SuperLearner model, which we have
explored in more details (and in a more computationally
expensive way) during the repeated cross-validation
procedure.

3.2 Multivariate Imputation by Chained
Equations
Multivariate Imputation by Chained Equations (MICE) is a
method for imputing missing values for multivariate data Van
Buuren and Groothuis-Oudshoorn (2011); Luken et al. (2021).
The multivariate in MICE highlights its use of multiple variables
to impute missing values. The MICE algorithm works under the
assumption that the data are missing at random (MAR). MAR
was first detailed in the paper Rubin (1976). It implies that errors
in the system or with users cause the missing entries and not
intrinsic features of the object being measured. Furthermore,
MAR implies the possibility that the missing entries can be
inferred by the other variables present in the data Schafer and
Graham (2002). Indeed, this is a strong assumption, and it is our
first step to deal with missing data. However, we know that
selection biases play an important role for the flux detection.
Although this problem is mitigated for the gamma-ray sources,
for the G-band magnitude, one can argue that, e.g., BL Lacs are
systematically fainter than FSRQs and below the Gaia limiting
magnitude. A more in-depth analysis to take this problem into
account is worthwhile, but this is beyond the scope of the
current paper.

With this assumption, MICE attempts to fill in the absent
entries using the complete variables in the data set iteratively. We
impute the missing variables 20 times with each iteration of
MICE consisting of multiple steps. General practice is to perform
the imputation ten times as in Luken et al. (2021) and Van

FIGURE 4 | The white bars show the initial distribution of the variables.
The magenta bars plotted on top of it are the MICE imputed values. The top
plot shows the distribution of Gaia_G_Magnitude with and without MICE. The
central plot shows this for Log]f], and the bottom plot shows this
for Log].
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Buuren and Groothuis-Oudshoorn (2011), but we perform it
twenty times to stabilize the imputation.

Here, we use the method “midastouch”—a predictive mean
matching (PMM) method Little and Rubin (2019). It works by
initializing a feature’s missing entries with its mean and then
estimating them by training a model using the rest of the
complete data. For each prediction, a probability is assigned
based on its distance from the value imputed for the desired
entry. The missing entry is imputed by randomly drawing from
the observed values of the respective predictor, weighted
according to the probability defined previously.

The process is repeated for each missing entry until all have
been refitted. This new complete table is used as a basis for the
next iteration of MICE, where the same process is repeated until
the sequence of table converges or a set number of iterations is
achieved.

3.3 SuperLearner
SuperLearner Van der Laan et al. (2007) is an algorithm that
constructs an ensemble of ML models predictions using a cross-
validated metric and a set of normalized coefficients. By default
Superlearner uses a ten-fold cross-validation procedure. It
outputs a combination of user-provided ML models such that
the RMSE of the final prediction is minimized by default Polley
and Van der Laan (2010) (or any other user-defined metric
defining the expected risk of the task at hand). In our setup,
SuperLearner achieves this using 10fCV, where the training data
is divided into ten equal portions or folds, the models are trained
on nine folds, and the 10th fold is used as a test set. The models
predict the target variable of the test set, and based on the RMSE
of their predictions, SuperLearner assigns a coefficient. If an
algorithm has a lower RMSE in 10fCV, it will be assigned a
higher coefficient. Finally, it creates the ensemble as a linear
combination of the constituent models multiplied by their
respective coefficients. Note that this 10fCV is an internal
procedure of model selection to build the SuperLearner
ensemble model, and it is separate from the repeated cross-
validation procedure which we described in Section 3.1 and
which is used to evaluate the performance and final results.

3.4 The Machine Learning Algorithms Used
in Our Analysis
Following Dainotti et al. (2021) we analyze the coefficients
assigned by SuperLearner to 12 ML algorithms, and pick those
with a value greater than 0.05. In Figure 2, we show all the ML
algorithms tested, and their coefficients. We pick the six
algorithms above the 0.05 cutoff, which are: Enhanced

Adaptive Regression Through Hinge (EARTH), KSVM,
Cforest, Ranger, Random Forest, and Linear Model. We
provide brief explanations for each of them below.

Enhanced Adaptive Regression Through Hinges (EARTH) is
an algorithm that allows for better modeling of predictor
interaction and non-linearity in the data compared to the
linear model. It is based on the Multivariate Adaptive
Regression Splines method (MARS) Friedman and Roosen
(1995). EARTH works by fitting a sum or product of hinges.
Hinges are part-wise linear fits of the data that are joined such
that the sum-of-squares residual error is minimized with each
added term.

KSVM is an R implementation of the Support Vector
Regression method (SVR). Similar to Support Vector Machine
(SVM) Cortes and Vapnik (1995), SVR uses a kernel function to
send its inputs to a higher-dimensional space where the data is
linearly separable by a hyper-plane. SVR aims to fit this hyper-
plane such that the prediction error is within a pre-specified
threshold. For our purposes, KSVMuses the Gaussian kernel with
the default parameters.

The Random Forest algorithm Breiman (2001); Ho (1995)
seeks to extend decision trees capabilities by simultaneously
generating multiple, independent decision trees. For regression
tasks, Random Forest will return the average of the outputs of
each of the generated decision trees. An advantage of Random
Forest over decision trees is the reduction in the variance.
However, Random Forest often suffers from low interpretability.

The Ranger algorithm is similar to Random Forest with the
difference of extremely randomized trees (ERTs) Geurts et al.
(2006) and quicker implementation.

Similar to Random Forest, the Cforest algorithm Hothorn
et al. (2006) builds conditional inference trees that perform splits
on significance tests instead of information gain.

We use the ordinary least squares (OLS) linear model found in
the SuperLearner package. This model aims to minimize the
mean squared error.

Note that we are using the default hyperparameter settings for
all the algorithms.

3.5 Feature Engineering
Feature engineering is a broad term that incorporates two
techniques: feature selection and feature creation. Feature
selection is a method where the best predictors of a response
variable are chosen from a larger pool of predictors. There exist
multiple methods to perform feature selection. We are using the
Least Absolute Selection and Shrinkage Operator (LASSO)
method. Feature selection is an essential part of any ML study
as it reduces the dimensionality of the data andminimizes the risk

TABLE 1 | Composition of the training and generalization sets, and Redshift properties on the training set.

Type Training set Generalization set Redshift median Redshift minimum Redshift maximum

BLLs 721 450 0.336 3.7 × 10–5 2.82
FSRQ 723 3 1.12 0.097 4.313

Total 1,444 453 0.628 3.7 × 10–5 4.313
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FIGURE 5 | First row: The scatter plot between the observed and predicted MICE values for the Log] predictor, followed by the overlapped histogram distributions
of the same. Second row: The scatter plot between the observed and predictedMICE values for the Log]f] predictor, followed by the overlapped histogram distributions
of the same. Third row: The scatter plot between the observed and predicted MICE values for the Gaia_G_Magnitude predictor, followed by the overlapped histogram
distributions of the same.
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of overfitting. Feature creation is a technique where additional
features are created from various combinations of existing
properties. These combinations can be cross-multiplications,
higher-order terms, or ratios. Feature creation can reveal
hidden patterns in the data that ML algorithms might not be
able to discern and consequently boost the performance.

In machine learning, some of the methods used by
SuperLearner are linear by nature (BayesGLM, Lasso, elastic-
net). Adding quadratic and multiplicative terms allows us to
model some types of non-linear relationships. Interactions
among variables are very important and can boost the
prediction when used. The phrase “interaction among the
variables” means the influence of one variable on the other;

however, not in an additive way, but rather in a multiplicative
way. In our feature engineering procedure, we build these
interactions by cross-products and squares of the initial
variables. It is common that adding O2 predictors aids results
since they may contain information not available in the O1
predictors.

In this study, we create 66 new features, which, as mentioned,
are the cross-products and squares of the existing features of the
4LAC catalog. We denote the existing predictors of the 4LAC
catalog as Order-1 (O1) predictors and the new predictors as
Order-2 (O2). Thus, we expand the set of predictors from the
initial eleven O1 predictors to a combined seventy-eight O1 and
O2 predictors.

FIGURE 6 | These plots are for the O1 predictors case. Top left and right panels: The correlation plots between the observed and predicted redshift from 10fCV in
the 1

z+1 and linear scales, respectively. Bottom left and right panels: The validation set correlation plots in the 1
z+1 and linear scales, respectively.
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For features selection, LASSO Tibshirani (1996) is used. It
works by constraining the ℓ1 norm of the coefficient vector to be
less than or equal to a tuning parameter λ while fitting a linear
model to the data. The predictors that LASSO chooses have a
non-zero coefficient for the largest λ value with the property that
the corresponding prediction error is within one standard
deviation of the minimum prediction error Friedman et al.
(2010); Birnbaum (1962); Hastie and Tibshirani. (1987), Hastie
and Tibshirani. (1990); Friedman et al. (2010). This study
performs LASSO feature selection on a fold-by-fold basis
during external 10fCV. Optimal features are picked using
LASSO for nine of the ten folds, and the predictions on the
10th fold are performed using these selected features. This step is
iterated such that for every combination of nine folds, an
independent set of features is picked. This usage of LASSO is
in contrast to Dainotti et al. (2021), where the best features are
picked for the entire training set. Our updated technique ensures
that during the 10fCV, LASSO only picks the best predictors
based on the training data, and the test set does not affect the
models. This feature selection method is applied to both the O1
and O2 predictor sets.

4 RESULTS

The quality of theMICE imputations depends on the information
density of the entire data set. Hence, to ensure the best possible
imputations we use all 1897 AGNs which remain after the
removal of outliers and non-BLL and non-FSRQ AGNs. The
pattern of the missing entries in our data set is shown in Figure 3,
and they are present in only three predictors, namely, Log], Log]
f], and Gaia_G_Magnitude (see Sec. 2). There are 237 AGNs
which have missing values in both Log] and Log]f], and 343
AGNs have a missing value in Gaia_G_Magnitude. MICE is used
to fill the missing values of these AGNs. In Figure 4 we show the
distributions of Log], Log]f], and Gaia_G_Magnitude with and
without MICE. The quality of the MICE imputations can be

evaluated in part by comparing the original distribution of a
variable and its distribution with imputations. If the imputations
alter the distribution, the results cannot be trusted and would
require additional precautions or measures to deal with the
missing values. However, as can be discerned from the plots
(Figure 4), the MICE imputations are indeed following the
underlying distribution for the three predictors, and hence we
confidently incorporate them into our analysis. We impute 465
data points, 24% of our data set, resulting in a training sample of
1,444 AGNs and a generalization sample of 453 AGNs. The two
sets are detailed in Table. 1.

4.1 Multivariate Imputation by Chained
Equations Reliability Analysis
In the work by Luken et al. (2021), they present an extensive
analysis of the reliability of MICE imputations. However, since
they use a different dataset than ours, a similar investigation
regarding the performance of MICE is essential. Thus, we take
1,432 AGNs from our catalog with no missing entries and
randomly dropped 20% of the entries from each of the three
predictors which have missing entries, namely: Log], Log]f], and
Gaia_G_Magnitude. We then impute these dropped entries using
MICE, as described in Section 3.2. This process is repeated fifteen
times, and each time a different set of random entries are
dropped. Furthermore, as we can see in Figure 5, the observed
vs predicted values for Log], Log]f] and Gaia_G_Magnitude are
concentrated about the y = x line, with little variance. The mean
squared error (MSE), defined as the, of the observed values vs the
MICE imputed values for Log], Log]f], and Gaia_G_Magnitude
were 1.05, 0.196, and 1.43, respectively. Thus, the MSEs are all
small, which provides evidence that the MICE imputed
effectively. Note that if MICE imputes effectively, then the
imputed values and observed values should come from the
same distribution for each of the three variables. To check
this, we performed a Kolmogorov-Smirnov (KS) test on the
observed vs MICE imputed values for each of the three

FIGURE 7 | Here we present the distribution across one hundred iterations of 10fCV of the σNMAD and RMSE for the O1 case. (A): Distribution of σNMAD in linear
scale. Note that σNMAD is denoted as NMAD in the plots. (B): Distribution of RMSE in linear scale.
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variables with missing entries. The p-values of the KS test for
Log], Log]f], and Gaia_G_Magnitude were 0.744, 0.5815, and
0.6539, respectively. Since each of these p-values is above 0.05, we
cannot reject the null-hypothesis; namely, we conclude that the
observed values and the MICE imputed values come from same
distributions for any of the three variables. As shown in Figure 5,
the overlapped histogram of the observed vs MICE imputed
values for Log], Log]f] and Gaia_G_Magnitude are each very
similar, which reinforces the findings of the KS test - namely, that
they are from the same distribution. This provides additional
proof for the accuracy, and reliability of the MICE imputations.

4.2 With O1 Variables
The O1 variable set consists of 12 predictors, including the
categorical variable LabelNo, which distinguishes between
BLLs and FSRQs. LASSO chooses the best predictors from
within this set for each fold in the 10fCV as explained in
Section 3.5.

Using this feature set with the six algorithms mentioned, we
obtain a correlation in the 1/(z + 1) scale of 75.8%, a σ of 0.123, an
RMSE of 0.123, and a σNMAD of 0.118. In the linear redshift scale
(z scale), we obtain a correlation of 73%, an RMSE of 0.466, a σ of
0.458, a bias of 0.092, and a σNMAD of 0.318. In the normalized

FIGURE 8 | These plots are for the O1 predictor case. Top left panel: Distribution of the correlations in linear scale from the 100 iterations of 10fCV. Top right panel:
Distribution of Δz (Dz in the plots) with average bias (red) and sigma lines (blue). Bottom left panel: Distribution of the Δznorm (Normalized Dz in the plots) with the average
bias (red) and sigma values (blue). Bottom right panel: Relative influence of the O1 predictors. The suffix of Sqr implies the square of the respective predictor.
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scale (Δznorm), the RMSE obtained is 0.209, bias is 6 × 10–3, and
σNMAD is equal to 0.195. The correlation plots are shown in
Figure 6, with the left panel showing the correlation in the 1/(z +
1) scale and the right panel showing the correlation in the z scale.
We obtain a low 5% catastrophic outlier percentage in this
scenario. The lines in blue depict the 2σ curves for each plot,
where the σ is calculated in the 1/(z + 1) scale.

In Figure 7, we present the distributions of σNMAD and RMSE
across the one hundred iterations. Note that σNMAD is written as
NMAD in the plots for brevity.

In Figure 8, we present the distributions of various parameters
and the normalized relative influence plot of the 11 predictors -
LabelNo is excluded, as its a categorical variable. The top left
panel shows the variation in the linear correlation obtained from
the one hundred iterations. The top right panel shows the
distribution of Δz along with the σ (blue vertical line) and bias
(red vertical line) values. The bottom left panel shows the
distribution of the Δznorm along with the bias and σ presented
similarly. Finally, the barplot in the bottom right panel shows the
relative influence of the 11 predictors used. LP_β has the highest

FIGURE 9 | These plots are for the O2 predictor case. Top left and right panels: Correlation plots between observed vs cross-validated redshift in the 1
z+1 and linear

scale, respectively. Bottom left and right panels: The validation set correlation plots in the 1
z+1 and linear scale, respectively.
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influence, followed by Log], LogPivot_Energy, and
LogSignificance. Surprisingly, Gaia_G_Magnitude has the least
influence at ≈ 1%, in contrast to Dainotti et al. (2021), where we
found it to be quite significant at ≈ 11% influence. The difference
we obtain from this analysis and the previous one of Dainotti et al.
(2021) lies in the data set and that MICE had not been used.

4.3 With O2 Variables
The O2 variables, 78 in total, are made from cross-products of
the O1 variables. As in the O1 case, LASSO feature selection is
performed on a fold-by-fold basis, after which the
SuperLearner ensemble with the six algorithms previously
mentioned is trained and makes predictions. The cross-
validation and validation correlation plots are presented in
Figure 9.

As shown in the previous section, we have correlation plots in
the 1/(z + 1) scale and the z scale. In the 1/(z + 1) scale, we get a
correlation of 75.6%, RMSE of 0.124, and σNMAD of 0.116. In the z
scale, we obtain a correlation of 73%, RMSE of 0.467, and σNMAD

of 0.308. We obtain the statistical parameters for Δz: an RMSE of
0.467, a σ of 0.458, a bias of 0.093, and a σNMAD of 0.308. For
Δznorm, we obtain an RMSE of 0.21, a bias of 7 × 10–4, and a
σNMAD of 0.193. We have a similar catastrophic outlier percentage
(5%) as the O1 variable case, although the number of AGNs
predicted outside the 2σ cone is seven AGNs more. This
discrepancy can be attributed to the randomness inherent in
our calculations and additional noise introduced by the O2
predictors.

In Figure 10, we show the distributions of σNMAD and RMSE.
Note that there is an outlier during the analysis, which leads to the
unusually high RMSE value seen in the distribution.

Figure 11 shows the distribution plots for various parameters.
The top left panel shows the distribution of the correlations across
the one hundred iterations. There is an outlier in the distribution

of the correlation plot, corresponding to the distributions of
RMSE in Figure 10. This scenario only happens with the O2
variable set and with MICE imputations. Apart from this
fluctuation, most of the correlations lie around 73%. The
histogram distribution plots for Δz (top right) and Δznorm
(bottom left) show a similar spread as in the case of the O1
variable set. We only present predictors with influence greater
than 0.5% in the relative influence plot. In this case, PL_Index
turns out to have the highest influence, over 20%, followed by
LogSignificance, LogPivot_Energy, and LogEnergy_Flux100.

We note that out of the 11 O1 predictors with relative
influences, only 3 have less than 5% influence, and out of the
78 O2 predictors, only 4 have greater than 5% influence. Thus, the
majority of the O2 predictors do not seem to provide much
additional information about the redshift.

In Tables 2 and 3 we provide a comparision between the
results obtained in the two experiments we have here with MICE,
and one without MICE imputations. The latter results have been
taken from Narendra et al. (2022).

5 DISCUSSIONS AND CONCLUSION

In Dainotti et al. (2021), the correlation between the observed
and predicted redshift achieved with a training set of 730
AGNs was 71%, with RMSE of 0.434, σNMAD (Δznorm) of 0.192,
and a catastrophic outlier of 5%. Here, with the use of an
updated 4LAC catalog, O1 predictors, and the MICE
imputation technique, along with additional ML algorithms
in the SuperLearner ensemble, we achieve a correlation of 73%
between the observed and predicted redshift, an RMSE of
0.466, σNMAD (Δznorm) of 0.195 and a catastrophic outlier of
5%. Although the RMSE and σNMAD (Δznorm) are increasing by
7 and 1.5%, respectively, we are able to maintain the

FIGURE 10 | Here we present the distribution of the σNMAD and RMSE for the O2 case. (A): Distribution of σNMAD in linear scale. Note that σNMAD is denoted as
NMAD in the plots. (B): Distribution of RMSE in linear scale.
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catastrophic outliers at 5%, while increasing the correlation by
3%. These results are achieved with a data sample 98% larger
than the one used by Dainotti et al. (2021). Note that this
achievement is not trivial, as a larger data set does not
guarantee favourable results.

With the O2 predictor set, we obtain a similar correlation of
73% between the predicted and observed redshifts. However,
compared to the O1 case, the RMSE goes up by 0.2%–0.467 and
the σNMAD (Δznorm) goes down by 1% to 0.193. The catastrophic
outlier percentage is maintained at 5% in both cases.

The most influential O1 predictors in this study were LP_β,
Log], LogPivot_Energy, LogSignificance, LP_Index, PL_Index,

and LogEnergy_Flux, each of which has a relative influence
greater than 5%. LP_β was also the most influential predictor
in Dainotti et al. (2021), followed by LogPivot_Energy,
LogSignificance, LogEnergy_Flux, and Log]. The main
difference in the relative influences of the predictors in
these studies is that in the O1 case with MICE, LP_Index
and PL_Index are the 5th and 7th most influential predictors,
respectively, while in Dainotti et al. (2021), they were not
influential.

Among the O2 predictors, PL_Index is the most influential,
followed by LogSignificance, LogPivot_Energy, and
LogEnergy_Flux, each of which has a relative influence

FIGURE 11 | These plots are for the O2 predictor case. Top left panel: Distribution of the correlations in linear scale from the 100 iterations of 10fCV. Top right panel:
Distribution of Δz (Dz in the plots) with average bias (red) and sigma lines (blue). Bottom left panel: Distribution of the Δznorm (Normalized Dz in the plots) with the average
bias (red) and sigma values (blue). Bottom right panel: Relative influence of the O2 predictors, above cutoff of 0.1.
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greater than 5%. Note that the only O2 predictors with
influence greater than 5% are those we have just listed and
they are also O1 predictors. When additional variables are
added it is not guaranteed that the most influential variables
will be kept the same. This is true for both parametric and non-
parametric models. The influence is a measure of how much
your improvement in the prediction changes when you remove
one variable in relation to the presence of the other variables.
Thus, these measures depend on the other variables in the
model and are different when O2 variables are added. We can
conclude from these results that the O1 predictors contain
most of the predictive information for redshift, in the case of
the 4LAC catalog. Furthermore, we note that obtaining results
with the O2 set takes more time than with the O1 set due to the
larger list of predictors. However, in other catalogs, such O2
predictors might perform better and be an avenue worth
exploring in the future.

Here, we use MICE on the O1 variables, because this allows
MICE to act on three variables which present missing entries.
In this way, we can control the effectiveness of MICE and the
results. We agree with the referee that imputing the MICE in
the cross products would imply an imputation on variables
that are currently not defined and most importantly would
allow more uncertainty when the cross products would involve
for example two variables with missing entries. If we had used
MICE in the O2 parameters we would have had a large number
of imputation which would be less controllable. From these
results, we can discern that the MICE imputation technique is
a robust method to mitigate the issue of missing entries in a
catalog while maintaining the predictive power of the data.
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TABLE 3 | Comparision of the statistical metrics across the different experiments
performed. These have been calculated for the z scale.

Metric SL with O1 SL with O2 Without MICE

r 0.73 0.73 0.74
RMSE (Δz) 0.466 0.467 0.467
Bias (Δz) 0.091 5 0.093 1 0.095
σNMAD (Δz) 0.318 0.308 0.321
σ (Δz) 0.458 0.458 0.458
Bias (Δznorm) 5.9, ×, 10–4 6.9, ×, 10–4 9.6 × 10–4

σNMAD (Δznorm) 0.195 0.193 0.195
σ (Δznorm) 0.209 0.210 0.208

TABLE 2 | Comparision of the statistical metrics across the different experiments
performed. These have been calculated for the 1/(z + 1) scale.

Metric SL with O1 SL with O2 Without MICE

r 0.758 0.757 0.781
RMSE 0.123 0.124 0.119
Bias −8.2 × 10–5 7.1 × 10–5 4 × 10–4

σNMAD 0.118 0.116 0.113
σ 0.209 0.210 0.119
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