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Abstract

Background: Genomes of bacteria and archaea (collectively, prokaryotes) appear to exist in incessant flux,
expanding via horizontal gene transfer and gene duplication, and contracting via gene loss. However, the actual
rates of genome dynamics and relative contributions of different types of event across the diversity of prokaryotes
are largely unknown, as are the sizes of microbial supergenomes, i.e. pools of genes that are accessible to the given
microbial species.

Results: We performed a comprehensive analysis of the genome dynamics in 35 groups (34 bacterial and one
archaeal) of closely related microbial genomes using a phylogenetic birth-and-death maximum likelihood model to
quantify the rates of gene family gain and loss, as well as expansion and reduction. The results show that loss of
gene families dominates the evolution of prokaryotes, occurring at approximately three times the rate of gain.
The rates of gene family expansion and reduction are typically seven and twenty times less than the gain and loss
rates, respectively. Thus, the prevailing mode of evolution in bacteria and archaea is genome contraction, which is
partially compensated by the gain of new gene families via horizontal gene transfer. However, the rates of gene
family gain, loss, expansion and reduction vary within wide ranges, with the most stable genomes showing rates
about 25 times lower than the most dynamic genomes. For many groups, the supergenome estimated from the
fraction of repetitive gene family gains includes about tenfold more gene families than the typical genome in the
group although some groups appear to have vast, ‘open’ supergenomes.

Conclusions: Reconstruction of evolution for groups of closely related bacteria and archaea reveals an extremely
rapid and highly variable flux of genes in evolving microbial genomes, demonstrates that extensive gene loss and
horizontal gene transfer leading to innovation are the two dominant evolutionary processes, and yields robust
estimates of the supergenome size.
Background
Comparative genomics of bacteria and archaea (collect-
ively, prokaryotes) reveals extensive variation of gene rep-
ertoires, which is thought to reflect a highly dynamic
regime of genome evolution [1-6]. Prokaryotic genomes
present a wide variety of genome sizes, from approximately
150 kb in some intracellular endosymbionts of insects [7]
to approximately 13 Mb in the largest cyanobacteria [8]
and myxobacteria [9]. This broad range of genome sizes is
reflected in the diversity of gene repertoires: only a tiny mi-
nority of prokaryotic genes are (nearly) universal whereas
the great majority are present in small subsets of genomes
[6,10,11]. Substantial differences in genome size and gene
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content are often evident between species within the same
genus [12-14] and even between strains of the same spe-
cies [15-17].
The enormous diversity of the gene repertoires among

bacteria and archaea implies that prokaryotic genomes
exist in a state of incessant flux, expanding through hori-
zontal gene transfer (HGT), gene duplication and possibly
de novo emergence of genes, and contracting via gene loss
[6,18-20]. Beyond the comparative genomic observations,
estimates of the genome dynamics rates in prokaryotes
have been obtained via explicit evolutionary reconstruc-
tion using maximum parsimony or maximum likelihood
(ML) methods. These approaches typically employ the
pattern of gene presence/absence in a set of species, which
is mapped onto a guide phylogenetic tree [19-23]. All evo-
lutionary reconstructions performed with widely different
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groups of bacteria and archaea infer various combinations
of vertical inheritance, gene loss and gain. Averaged over
long spans of evolution, gene loss appears to be a more
common process than gene gain as shown for different
groups of bacteria and archaea [19,21,23-25]. In obligate
intracellular parasitic bacteria as well as in parasitic ar-
chaea, gene loss is the single dominant evolutionary
process [7,26-28]. However, genome reduction, often de-
scribed as streamlining, also prevails in the evolution of
bacterial saprophytes [24,29] and some free-living mi-
crobes, particularly in marine environments [23,25,30,31].
These findings are compatible with the observation of the
overall deletion bias in the evolution of prokaryotic (as
well as eukaryotic) genomes [32,33]. Furthermore, gene
loss has been reported to be a more uniform, ‘clock-like’
process than gene gain, which shows a stronger episodic
character [19,29]. Taken together, these findings have in-
spired the concept of genome reduction as the ‘default’
evolutionary process counterbalanced by episodes of gene
gain, primarily via HGT [34].
The discovery of the diversity of the gene repertoires,

even among bacteria and archaea with closely related
nucleotide sequences, led to a conceptual shift in micro-
biology. Under the new view of the microbial world, the
key unit of microbial evolution is not the genome of an
individual bacterium or archaeon but rather the pan-
genome of a prokaryote species [17,35-38]. The term
‘pangenome’ has been used alternatively to describe ei-
ther the superset of the genes present in the genomes of
all sequenced isolates of a given species, or the entire
pool of genes that are potentially available for acqui-
sition to the given species (or an otherwise defined
monophyletic group of genomes) over the course of its
evolution. Hereinafter, to avoid ambiguity, we restrict
the use of ‘pangenome’ to denote the empirically de-
tected superset of genes and use the term ‘supergenome’
[39] to refer to the entire gene reservoir. Obviously, the
supergenome of any microbial species cannot be char-
acterized directly and can only be estimated from the
analysis of samples of the relevant genomes. Such esti-
mates have pointed to vast, ‘open’ supergenomes for
most prokaryotes because analysis of newly sequenced
isolates did not show any signs of saturation of new
gene discovery [36,37,40]. However, for a minority of
bacteria, the supergenomes appear to be ‘closed’, with
new genomes adding few if any new genes [36,37,40].
Attempts to estimate microbial supergenome sizes have
been made using either statistical approaches or explicit
mathematical models of the evolutionary process. In
particular, Snipen et al. [41] estimated the supergenome
size for several bacteria using a binomial mixture ap-
proach [42] to approximate the gene frequency distribu-
tion in an analyzed set of genomes. This analysis, unlike
the earlier approximations, yielded closed and relatively
small supergenomes that were only several fold larger
than a typical microbial genome. A recent model of mi-
crobial (pan)genome evolution by gene replacement,
known as the Infinitely Many Genes model, under
which the replacing genes are drawn from a formally in-
finite reservoir [43,44], also suggested a close but much
larger supergenome for the cyanobacterium Prochloro-
coccus. On the whole, the accuracy of the available
supergenome estimates and the validity of the under-
lying models remain uncertain. Thus, delineation of
supergenomes across the diversity of bacteria and ar-
chaea and elucidation of the factors that underlie the
supergenome evolution are major tasks for evolutionary
microbial genomics.
HGT is at present universally recognized as a major

factor in the evolution of prokaryotes and a key source
of innovation and adaptation to new environments and
lifestyles [5,18,45-47]. However, attempts at quantifica-
tion have yielded widely different estimates of the
prevalence of HGT. Some early studies that involved a
small number of genomes resulted in modest estimates,
which implied a limited importance for HGT compared
to vertical inheritance [21,48,49]. More recent phyloge-
nomic analyses that included larger sets of genomes
widely representative of the bacterial and archaeal di-
versity, generally reveal a much greater level of HGT
[50-56]. For example, a quantitative assessment of the
contributions of vertical inheritance and HGT to the
evolution of prokaryotes based on the topological com-
parison of thousands of phylogenetic trees suggested
that nearly two-thirds of evolutionary events originate
from HGT [55]. Furthermore, evidence has been pre-
sented that HGT rather than gene duplication is the
principal contributor to the evolution of gene families
in prokaryotes [57].
We were interested in taking a comprehensive census

of various events of genome dynamics across the di-
versity of prokaryotes. To obtain reliable rates of these
events, we sought to analyze groups of multiple, closely
related genomes so that robust identification of gene
orthology and estimation of phylogeny and evolutionary
distances would be ensured. The rates of gene dynamics
were estimated for 35 clusters of prokaryotic genomes
that make up an updated version of the collection of
alignable tight genome clusters (ATGCs) [58] using a
phylogenetic birth-and-death ML model [22,23]. The re-
sults reveal extremely rapid genome dynamics, albeit
with broad ranges of gene loss and gain rates among
prokaryotic species, and indicate an overall tendency to
genome contraction, which is partially compensated by
gene gain via HGT. We show that the overall flux of
genes is the defining parameter of genome dynamics and
provide estimates of the supergenome size for diverse
groups of prokaryotes.
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Results
Genome dynamics in prokaryotes: extensive gene family loss
and gain dominate over family expansion and reduction
We employed an updated version of the ATGCs [58] to
reconstruct the genome evolution for 34 groups of bac-
teria and one group of archaea (Additional file 1: Table S1
and Additional file 2: Figure S1). From the clusters of
orthologous genes (COGs) that are associated with each
ATGC, we derived the phyletic patterns (i.e. the patterns
of presence/absence of gene families in each genome) as
well as data on the number of members of each family in-
cluding all paralogous genes. These patterns were mapped
onto the phylogenetic tree of the respective ATGC (see
Methods) and employed for the evolutionary reconstruc-
tion using Count, an ML method based on a phylogenetic
gene birth-and-death model [22]. It should be emphasized
that the COGs derived under this procedure account for
the entire pangenome of each ATGC, and thus include
genes shared between any number of organisms within
the ATGC as well as genes unique to a single genome
(singletons). Thus, no biases that could result from using a
subset of genes preselected on certain criteria, such as, for
example, the degree of sequence conservation, affect the
estimates described below.
The rates of four types of elementary evolutionary event

(hereinafter called genome dynamics events or GDEs)
were analyzed: (i) gain of a gene family not present in the
ancestor node (hereinafter, gain, for brevity), (ii) loss of all
Figure 1 The clock of genome dynamics. The figure shows the correlati
(c) expansions and (d) reductions. It excludes singletons, i.e., gains in the te
scale. All P < 0.0001. BL, branch length or number of nucleotide substitution
gene family members (loss), (iii) expansion of a gene family,
i.e. addition of one or several family members (expansion)
and (iv) reduction of a gene family, i.e. elimination of one
or several family members (reduction). In mechanistic
terms, gains are most likely to originate from HGT, and
perhaps on rare occasions, from de novo gene birth; ex-
treme divergence of duplicated genes that could lead to
the appearance of a new family is highly unlikely on the
short evolutionary scale of an ATGC. Gene family expan-
sion is a combination of bona fide gene duplication and
acquisition of a new member of a pre-existing family via
HGT (here we do not attempt to distinguish between
these two sources).
The number of GDEs of each type associated with

each tree branch shows a strong significant positive
correlation with the branch length (Figure 1, Additional
file 2: Figure S2 and Additional file 3: Table S2). Thus, all
these events appear to occur under a genomic clock, by
analogy to the traditional molecular clock of sequence
evolution [59]. The accuracy of the genomic clock was
found to be the highest for gene family gain and the lowest
for gene family loss (Figure 1) although this difference has
to be taken with caution due to the limited number of data
points (ATGCs). A bootstrap analysis (1,000 replicates) of
the GDE rates shows that the estimated rates are not dis-
proportionately affected by a small number of outliers and
also supports the observation on the wider scatter of the
loss rate compared to the gain rate (Additional file 2:
on of branch lengths and number of (a) gains, (b) losses,
rminal branches of the tree. Both x and y axes are have a logarithmic
s per site.
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Figure S3). Previous analyses performed on genomes re-
presenting diverse branches of bacteria, have suggested
that gene loss was more of a clock-like process than gene
gain, which showed a tendency to occur in isolated epi-
sodes [19]. The present results suggest that this trend is
not manifest at the short evolutionary scale of the ATGCs,
compatible with more recent observations of an apparent
clock-like character of HGT, at least among universally
conserved prokaryotic genes [60].
The demonstration of the existence of the genomic

clock justifies the estimation of the rates of gain, loss,
expansion and reduction per unit of nucleotide subs-
titution and in what follows, we primarily use this
measure.
Table 1 shows the rates of each type of GDE for the 35

ATGCs. Five major trends are immediately apparent:

i). The rates of gain and loss are approximately an
order of magnitude greater than the rates of
expansion and reduction.

ii). The loss rate typically is nearly threefold higher
than the gain rate.

iii). The expansion rate is almost 1.5 times higher than
the reduction rate.

iv). The rates of all types of GDE vary within a broad
range, spanning almost two orders of magnitude
(Figure 2a); the ratios between the rates of different
events vary within similar ranges (Figure 2b,c). This
trend is independent of the number of species in an
ATGC (Additional file 2: Figure S4).

v). The rates of genome change are remarkably high,
typically tens of thousands of GDEs per nucleotide
substitution per site, or tens to hundreds of GDEs
per substitution per gene (Table 1, Additional file 3:
Table S2).

On the whole, the dominant process in prokaryote gen-
ome evolution is the loss of gene families, i.e. genome
contraction. This finding provides definitive quantitative
support for the previous, more qualitative conclusions of
the importance of genome streamlining in evolution, par-
ticularly among prokaryotes [19,21,23,25,34,61]. However,
due to the high variation in the rates of different processes
of genome evolution, this general trend is reversed in
some of the analyzed groups of microbes (Table 1). In par-
ticular, despite the overall dominance of gene family loss,
there are clear gainers among the analyzed bacteria, such
as Enterobacter, Klebsiella, Campylobacter and Listeria.
Furthermore, the switch from the loss mode of evolution
to the gain mode appears to occur in the course of evo-
lution of some relatively close-knit groups of bacteria
(Table 1 and Figure 3). Specifically, the Enterobacteriaceae
and Campylobacterales clades include both gainer and
loser ATGCs (Table 1 and Figure 3). Rapid, extensive gene
loss (loss + reduction to gain + expansion ratio >10) is par-
ticularly prominent in Legionella and Corynebacterium
(Table 1 and Figure 3).

Estimates of gene dynamics rates and phylogenetic depth
When the events are analyzed on individual tree branches,
the rates of all four types of GDE strongly and negatively
correlate with the phylogenetic depth of the respective
branch (Figure 4). Most likely, this observation reflects the
fact that Count only estimates the number of GDEs for
those gene families that survived in at least one extant
genome. Genes that were present at some point during
the history of the ATGC but have been subsequently lost,
are missed altogether so that the corresponding GDEs do
not contribute to the calculations. These findings point to
the high prevalence of such transient GDEs in microbial
evolution and suggest that our reported estimates (Table 1)
represent the low bound of the actual gene flux.
To estimate the extent to which Count underreports the

number of GDEs, we used the dependence of the esti-
mated rates on the depth of the branch mid-point. Within
each ATGC, the observed rates were normalized to 100%
at the depth of 0.0001 substitutions per site (Figure 4;
Additional file 2: Figure S5). The results indicate that at a
phylogenetic depth of 0.1 (the deepest branches among all
ATGCs), Count might underestimate the rates by up to
40%. At the more typical tree branch depth, the expected
deficit is much lower. Thus, we expect our estimates to be
accurate within a factor of 2 at most. Furthermore, we
show that the relative GDE rates are consistent independ-
ent of the phylogenetic depth (Additional file 2: Figure S6).
In agreement with the trend observed for individual
branches, the ATGC-wide estimate of the gene flux rate
(overall GDE rate; see below) also shows significant ne-
gative correlation with the total phylogenetic tree depth,
estimated as the mean root-to-leaves distance (Additional
file 2: Figure S7).

Factors of microbial genome dynamics
Despite the substantial variability among individual ATGCs,
the genome dynamics rates appeared to be (nearly)
randomly scattered across the diversity of prokaryotes
(Figure 3) and in particular showed no significant differ-
ences between the three major bacterial phyla represented
by multiple ATGCs, namely Proteobacteria, Actinobacteria,
and Firmicutes (Figure 5a). Thus, the trends of genome
contraction (loss and reduction) and expansion (gain and
expansion) appear to hold for most of the lineages across
the entire bacterial domain.
We also compared the rates of gain, loss, expansion

and reduction between microbes with three lifestyles,
free-living, facultative host-associated and obligate intra-
cellular parasite (Figure 5b). Perhaps unexpectedly, given
the typically much smaller genomes of the intracellular



Table 1 Rates of the four types of genome dynamics eventsa

ATGC Genera Gain Loss Expansion Reduction

Site Gene Site Gene Site Gene Site Gene

ATGC001 Enterobacteria 18563 17.3 50517 47.1 1864 1.7 4405 4.1

ATGC002 Enterobacter–Klebsiella 25866 24.5 6448 6.1 1914 1.8 237 0.2

ATGC003 Streptococcus 11894 11.8 53500 53.0 1368 1.4 5092 5.0

ATGC004 Streptococcus 5633 5.5 29233 28.5 1601 1.6 2984 2.9

ATGC005 Streptococcus 11940 11.3 42215 40.0 3755 3.6 2380 2.3

ATGC014 Bacillus 25485 25.5 77488 77.7 3895 3.9 6908 6.9

ATGC015 Bacillus 6521 6.6 25293 25.5 804 0.8 1343 1.4

ATGC021 Chlamydia 16346 14.0 25968 22.3 419 0.4 240 0.2

ATGC022 Chlamydia–Chlamydophila 5434 5.2 11202 10.8 1213 1.2 524 0.5

ATGC025 Mycobacterium 50823 45.9 74868 67.6 5109 4.6 3708 3.3

ATGC033 Mycoplasma 5865 4.6 8335 6.6 2484 2.0 548 0.4

ATGC046 Rickettsia 6677 7.4 23674 26.4 325 0.4 750 0.8

ATGC052 Helicobacter 3733 3.6 8293 8.0 288 0.3 974 0.9

ATGC054 Staphylococcus 21512 19.9 146937 135.8 2924 2.7 21696 20.1

ATGC056 Lactobacillus 3417 3.3 17553 17.2 1094 1.1 314 0.3

ATGC067 Corynebacterium 10013 9.0 146236 131.5 1582 1.4 734 0.7

ATGC068 Corynebacterium 5338 4.9 82891 76.0 2335 2.1 4414 4.0

ATGC072 Pseudomonas 10467 9.2 25516 22.5 2162 1.9 1766 1.6

ATGC082 Clostridium 7223 6.6 82676 75.8 3745 3.4 1030 0.9

ATGC089 Burkholderia 39593 35.5 252406 226.3 4988 4.5 3417 3.1

ATGC090 Burkholderia 15276 13.6 54192 48.2 4582 4.1 1644 1.5

ATGC094 Sulfolobus 5956 6.1 42639 43.4 3931 4.0 1643 1.7

ATGC105 Bifidobacterium 10383 8.3 11148 9.0 655 0.5 817 0.7

ATGC106 Bifidobacterium 11039 8.9 16473 13.3 742 0.6 812 0.7

ATGC109 Listeria 7650 7.5 3411 3.4 551 0.5 207 0.2

ATGC121 Shewanella 8576 7.3 5340 4.5 973 0.8 348 0.3

ATGC128 Yersinia 20234 17.5 39460 34.2 2391 2.1 2369 2.1

ATGC135 Xanthomonas 13993 12.2 31495 27.4 3413 3.0 1518 1.3

ATGC137 Brucella–Ochrobactrum 16268 15.6 25177 24.1 1968 1.9 1033 1.0

ATGC138 Neisseria 7278 6.4 29817 26.4 990 0.9 2638 2.3

ATGC139 Francisella 2324 2.0 9075 7.7 546 0.5 401 0.3

ATGC144 Campylobacter 14997 14.6 6085 5.9 1365 1.3 109 0.1

ATGC153 Acinetobacter 5416 5.1 54454 51.7 3747 3.6 2029 1.9

ATGC163 Propionibacterium 2948 2.7 13223 12.0 446 0.4 145 0.1

ATGC186 Legionella 2082 1.9 99232 89.9 3546 3.2 1647 1.5

Median 10013 8.3 29233 26.4 1864 1.7 1343 1.3
aFor each ATGC, the rates of each type of GDE per nucleotide substitution per site and per nucleotide substitution per gene are indicated.
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parasites, the overall relationship between the rates of the
four types of event did not depend on the lifestyle: Loss >
Gain > > Expansion > Reduction. Nevertheless, among the
three groups, free-living bacteria present the highest rates
of gain (not significant), expansion (P < 0.01 compared to
parasites) and reduction (P < 0.01 compared to parasites),
whereas obligate intracellular parasites and facultative
host-associated bacteria show a modest but significantly
higher rate of gene family loss than free-living bacteria
(P < 0.05) (Figure 5b). Thus, on the whole, genomes of
free-living prokaryotes appear to be more dynamic than
genomes of intracellular parasites which is compatible
with the greater exposure to HGT in extracellular com-
pared to intracellular habitats.
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Figure 2 Distributions of the genome dynamics rates across the ATGCs. (a) Rates of gain, loss, expansion and reduction per nucleotide
substitution per site. (b) Loss/gain and reduction/expansion ratios. (c) Gain/expansion and loss/reduction ratios. G/E, gain/expansion; L/G, loss/
gain; L/R, loss/reduction; R/E, reduction/expansion.
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Perhaps surprisingly, no connection was found to exist
between the rates of the GDEs and the strength of the
selection pressure on protein sequences estimated as the
ratio of non-synonymous to synonymous substitution
rates in protein-coding genes (dN/dS) [63], which shows
a robust correlation with various ATGC-wide character-
istics [64] (Additional file 2: Figure S8). Neither did we
detect any dependence of the four GDE rates on the
genomic GC content (Additional file 2: Figure S9), not-
withstanding the strong positive correlation between the
GC content and genome size [65,66], or with the gen-
ome shuffling rate (see Additional file 2: Figure S10 and
Methods for the details of the shuffling rate calculation).

Flux and balance in prokaryotic genome evolution
We further examined possible correlations between dif-
ferent types of GDEs. Strikingly, relatively high, statisti-
cally significant, positive correlation was shown to exist
between all types of event (Figure 6). These findings sug-
gest that the dynamics of genome evolution in prokary-
otes is largely determined by the overall gene flux.
To further investigate key factors of genome dynamics,

we performed principal component analysis (PCA) of
the rates of gain, loss, expansion and reduction (Figure 7a
and Additional file 2: Figure S11). In this case, the PCA
was remarkably efficient in revealing major trends of
genome evolution. The first principal component ex-
plained approximately 64% and the second principal
component approximately 19% of the variance in the
GDE rates, indicating that each of these composite vari-
ables reflected a major trend of genome evolution. The
loadings plot (Figure 7b) shows that all four rates (gain,
loss, expansion and reduction) contributed to the first
principal component with the same sign. Accordingly,
this principal component appears to reflect the overall
gene flux, which thus appears to be the key determinant
of genome dynamics. The second principal component
was dominated by gene family gain and loss, which con-
tribute with opposite signs (Figure 7b). Thus, this com-
ponent reflects the balance of family loss and gain.
To account for the difference in the contributions of

different GDEs to the net extent of the genome change
(Loss > Gain > > Expansion > Reduction), we use the sum
of all event rates as the measure of the total gene flux
and the gain + expansion to loss + reduction ratio as the
measure of the balance.
Gene flux but not the balance of the GDE positively and

significantly correlates with the genome size (Figure 8 and
Additional file 2: Figure S12). Combined with the obser-
vations on the transient character of many genomic
events, this finding implies that the larger microbial ge-
nomes are products of recent and conceivably short-
lived gene accretion.

Evolutionary dynamics of different functional classes of
genes
We further estimated the overall gene flux and the rates of
each type of GDE for broad functional categories of genes
as defined in the COGs [67,68]. All rates showed largely
consistent ranking of functional categories (Figure 9), in
agreement with the overall positive correlation between
them (Figure 6). Predictably, genes encoding protein



Figure 3 Distribution of the gain, loss, expansion and reduction rates over the evolutionary tree of prokaryotes. The tree is from
MicrobesOnline [62]. The areas of the circles are proportional to the rates of the respective events to a logarithmic scale. The numbers in
parenthesis indicate the number of species in the ATGC. The ATGCs with episodes of rapid gene gain are denoted with *(<10% of branches)
or **(>10% of branches). ATGC, alignable tight genome cluster.
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components of the translation system, which constitute
the great majority of the (nearly) universal genes in cel-
lular life forms [69-71], make up the category with the
lowest flux per gene (mostly static), closely followed by
enzymes of nucleotide and coenzyme metabolism as
well as molecular chaperones, which also tend to be
highly conserved in evolution (Figure 9). In contrast, by
far the most dynamic class included genes of mobile
elements, followed by uncharacterized genes and genes
involved in defense functions (Figure 9). It appears
likely that numerous genes in the uncharacterized cat-
egory actually are unidentified components of the mobi-
lome or defense systems [72], suggesting that, as one
might expect, these two categories jointly make up the
most dynamic component of microbial genomes. The
difference between the per gene flux rates of the mobi-
lome components and the translation genes was ap-
proximately fourfold, and when the gain rates were
compared, the difference was greater than an order of
magnitude. These findings are generally compatible
with the patterns of long-term gene conservation [6]
and emphasize the heterogeneity of gene dynamics in
bacterial and archaeal genomes.

Supergenome size estimation
The results described above indicate that prokaryote
genome evolution is an extremely dynamic process that
involves rapid gain and loss of numerous gene families.
This process can be naturally represented as sampling of
a gene pool by the evolving genomes, which draw new
gene families at random. We denote this gene pool the
supergenome of an ATGC, to differentiate it from the
pangenome, the empirically observed superset of genes
of a group of genomes. The size of the supergenome is
unknown but can be estimated from the number of fam-
ilies that have been gained multiple times: obviously,
with a vast supergenome, the chance to draw the same
family again is effectively nil, whereas with a superge-
nome only slightly exceeding the typical genome size of
a given group, many families will be gained repeatedly.



Figure 5 Dependence of the rates of gain, loss, expansion and reduction on bacterial taxonomy and lifestyle. (a) Rates of the four types
of event for Actinobacteria, Firmicutes and Proteobacteria. (b) Rates of the four types of event for bacteria and archaea with three different
lifestyles. FHA, facultative host-associated; FL, free-living; P, obligate intracellular parasite.

Figure 4 Dependence of the rates of gains, losses, expansion and reductions on phylogenetic depth. (a) Gains, (b) losses, (c) expansions and
(d) reductions per unit of branch length vs the phylogenetic depth. The figure excludes singletons, i.e., gains in the terminal branches of the tree are
not represented. Both x and y axes have a logarithmic scale. The phylogenetic depth is measured in the number of nucleotide substitutions per site.
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Figure 6 Correlations between the rates of gain, loss, expansion and reduction.
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We developed an ML model to estimate the size of the
supergenome from the number of repeated gains; the esti-
mates were obtained for two models of genome evolution,
namely the simplest conceivable model, with a uniform
probability of drawing a gene from the supergenome and
a more complex model with a power-law distribution of
the drawing probabilities (see Methods for details).
The results obtained with the two approaches were con-

sistent and showed a wide spread of estimated superge-
nome sizes, from approximately four genomic equivalents
(hence numerous repeated gains) to effectively open
supergenomes (no or very few repeated gains) (Table 2
and Figures 10a and 11). In ATGCs with closed superge-
nomes (Table 2), the characteristic size of the superge-
nome was estimated at about an order of magnitude
larger than the typical number of families in a genome
(Figure 10b). For these closed supergenomes, the esti-
mates were highly reliable, with the confidence intervals
typically less than 10% of the estimate (Table 2).
The estimated supergenome size positively correlated

with the mean genome size in an ATGC, indicative of
a trend of genome growth dependent on the pool of
available genes (Figure 10a). By contrast, and perhaps un-
expectedly, the estimated supergenome size, expressed ei-
ther as the number of families or relative to the genome
size (in genomic units), does not correlate significantly
with the gene flux or with gain, loss, expansion and reduc-
tion rates separately (Additional file 2: Figure S13). In
other words, microbes with large supergenomes can, at
least transiently, evolve in a relatively static regime and
conversely microbes with rapidly evolving genomes can
have small supergenomes.
Supergenome size estimates show a strong positive

correlation with the total tree depth (Additional file 2:
Figure S14a). This dependence is likely to stem from at
least two factors. First, the deeper the divergence of the
ATGC, the more variation in the history of the environ-
ments, and therefore, in the adaptive requirements and
the available gene pool, is expected. Second, our superge-
nome estimate procedure is intrinsically dependent on the
number of multiple gene gains, derived from the phyletic
patterns. As shown above (Figure 4a; Additional file 2:
Figures S5), the gene gain rate is underestimated in the
deeper trees and branches; accordingly, the number of
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multiple gene gains is underestimated as well, resulting in
inflation of the supergenome size estimates.
Supergenome size estimates also show a strong and sig-

nificant negative correlation with the ATGC-wide estimate
of the dN/dS ratio (Additional file 2: Figure S14b). This
dependence might reflect genuine relationships between
the characteristic population dynamics of the respective
group, which affect the strength of the purifying selection
on the protein-coding genes [64]. However, the dN/dS ra-
tio estimates themselves are negatively correlated with the
ATGC tree depth (Additional file 2: Figure S14c) and gen-
ome size [64] (Additional file 2: Figure S14d). Thus, the
apparent connection between the supergenome size and
the protein-level selection might be due, at least in part, to
indirect effects.
There are clear connections between the obtained super-

genome size estimates and the microbial lifestyle. Thus,
nine of the eighteen free-living microbes in the analyzed
set but only two of the seventeen host-associated mi-
crobes were estimated to possess open supergenomes
(chi-squared, P = 0.015) (Table 2 and Figure 11). This
substantial excess of open supergenomes among free-
living organisms could be expected as the result of their
greater exposure to diverse gene pools. Also in line with
the lifestyles of the respective microbes, by far the smal-
lest supergenomes were estimated for intracellular
(Chlamydia) and extracellular (Mycoplasma) parasites
with highly reduced genomes; intracellular parasites
with somewhat larger genomes (Rickettsia) appeared to
have larger supergenomes, suggestive of a distinct evo-
lutionary history (Table 2 and Figure 11).
Previously published supergenome size estimates (mostly

referred to as pangenome size estimates by the authors)
can be broadly classified into three categories. Estimates
based on the sampling curve use an approximation for the
number of new genes brought into the pangenome by
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additional genomes with a (semi-arbitrary) function [35-
37,40]. If such a function converges to a finite total num-
ber of genes, a supergenome is considered closed and a
quantitative estimate can be produced, otherwise the
supergenome is considered open. Another category of es-
timates employs an explicit sampling model that assumes
Figure 9 Genome flux by COG functional categories. (a) Flux. (b) Gain.
categories (modified from [67]): C, energy production and conversion; D, ce
metabolism and transport; G, carbohydrate metabolism and transport; H, coen
replication and repair; M, membrane and cell wall structure and biogenesis; N
and chaperone functions; P, inorganic ion transport and metabolism; Q, biosy
functional prediction only (typically, prediction of biochemical activity); S, func
secretion; V, defense systems; X, mobilome. COG, cluster of orthologous gene
random independent sampling of genes from a common
pool into individual genomes [41,42]. The third category
employs a tree-based model of evolution of a group of
genomes where sampling is performed along the tree
branches [43,44]. The latter two approaches explicitly or
implicitly fit the sampling model parameters to the
(c) Loss. (d) Expansion. (e) Reduction. Designations of the functional
ll division; E, amino acid metabolism and transport; F, nucleotide
zyme metabolism; I, lipid metabolism; J, translation; K, transcription; L,
, secretion and motility; O, post-translational modification, protein turnover
nthesis, transport and catabolism of secondary metabolites; R, general
tion unknown; T, signal transduction; U, intracellular trafficking and
s.



Table 2 Supergenome size estimates

ATGC Genera F P K M S, uniform S, power

a b a b

ATGC001 Enterobacteria 4215 24845 38293 13448 37267 ± 458 8.8 45092 10.7

ATGC002 Enterobacter–Klebsiella 5234 10802 13454 2652 17560 ± 429 3.4 18403 3.5

ATGC003 Streptococcus 2020 4478 5330 852 6754 ± 297 3.3 6754 3.3

ATGC004 Streptococcus 1808 3746 4132 386 6664 ± 554 3.7 6664 3.7

ATGC005 Streptococcus 1948 3466 3692 226 7669 ± 877 3.9 7669 3.9

ATGC014 Bacillus 5533 16678 19554 2876 43302 ± 1676 7.8 43303 7.8

ATGC015 Bacillus 3976 9242 9871 629 55655 ± 7699 14.0 78848 19.8

ATGC021 Chlamydia 901 1168 1395 227 1260 ± 31 1.4 1344 1.5

ATGC022 Chlamydia–Chlamydophila 1011 1441 1699 258 1758 ± 83 1.7 1759 1.7

ATGC025 Mycobacterium 3836 7293 9481 2188 9484 ± 190 2.5 13514 3.5

ATGC033 Mycoplasma 742 883 899 16 1784 ± 539 2.4 1785 2.4

ATGC046 Rickettsia 1107 4454 5050 596 14677 ± 1293 13.3 24011 21.7

ATGC052 Helicobacter 1501 4568 6270 1702 6377 ± 179 4.2 7246 4.8

ATGC054 Staphylococcus 2452 4815 5413 598 8071 ± 464 3.3 8322 3.4

ATGC056 Lactobacillus 2896 4893 4896 3 Open Open

ATGC067 Corynebacterium 2074 2721 2721 0 Open Open

ATGC068 Corynebacterium 2227 3453 3460 7 Open Open

ATGC072 Pseudomonas 5297 11389 12037 648 125699 ± 20767 23.7 125700 23.7

ATGC082 Clostridium 3655 5993 5993 0 Open Open

ATGC089 Burkholderia 5707 13381 13546 165 Open Open

ATGC090 Burkholderia 6428 14540 14659 119 Open Open

ATGC094 Sulfolobus 2638 4471 4479 8 Open Open

ATGC105 Bifidobacterium 1952 4352 4986 634 11174 ± 829 5.7 11174 5.7

ATGC106 Bifidobacterium 1568 2018 2087 69 4631 ± 1020 3.0 5619 3.6

ATGC109 Listeria 2843 5834 7588 1754 8207 ± 210 2.9 11712 4.1

ATGC121 Shewanella 4166 8090 9427 1337 15597 ± 633 3.7 15929 3.8

ATGC128 Yersinia 3934 8287 9406 1119 16479 ± 778 4.2 20747 5.3

ATGC135 Xanthomonas 4204 9814 9876 62 Open Open

ATGC137 Brucella–Ochrobactrum 3212 6012 7213 1201 9376 ± 343 2.9 11086 3.5

ATGC138 Neisseria 1937 4344 4840 496 8395 ± 670 4.3 8395 4.3

ATGC139 Francisella 1613 3247 3426 179 8801 ± 1360 5.5 8801 5.5

ATGC144 Campylobacter 1650 2637 3101 464 3811 ± 179 2.3 3811 2.3

ATGC153 Acinetobacter 3517 6455 6497 42 Open Open

ATGC163 Propionibacterium 2270 3485 3488 3 Open Open

ATGC186 Legionella 3038 4587 4587 0 Open Open

a, number of gene families in the estimated supergenome; b, supergenome size in genome units (ratio of the estimated number of families in the supergenome
to the median number of families in a genome given by F); F, median number of gene families per genome; K, total number of gene family gains; M, number of
multiple gene family gains; P, pangenome size (sum total of the gene families); S, supergenome size (estimated under the uniform and power law models; see
text for details).
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observed distribution of gene frequencies in the analyzed
set of genomes.
A comparison of the published estimates with those

obtained in this work (Additional file 4: Table S3) shows
that our estimates are consistently higher than those ob-
tained with the models that assume that genomes are
random independent collections of genes. The likely ex-
planation is that the independence assumption inherent
in these models leads to overestimates of the number of
multiple gene gains by counting such gains for a family
found in each genome within a clade, whereas the most
likely scenario is that this family had been gained only
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once. Overestimation of the number of multiple gains
necessarily leads to underestimation of the supergenome
size. The estimates based on sampling curves yield
open supergenomes for the majority of microbial groups.
These approaches attempt to derive the exponent of the
approximating power functions from the limited avail-
able samples, leading to much uncertainty. The fact that
the infinitely many genes model could not be rejected,
even in a tree-based analysis [44], might indicate that
many microbial supergenomes are close to the closed/
open boundary. Thus, it appears possible that neither
the sampling curves nor the distributions of gene fre-
quencies contain sufficient information to produce ro-
bust supergenome estimates. The approach employed
here used the number of multiple gene gains directly in-
ferred from the superposition of phyletic patterns of
genes over a phylogenetic tree and, being independent of
the assumptions of other models, could potentially im-
prove the reliability of supergenome estimates, compat-
ible with the narrow confidence intervals (Table 2).

Discussion
The rapid dynamics of prokaryotic genome evolution
The analysis of prokaryotic genome dynamics described
here unequivocally shows that rapid gene flux involving
extensive loss of genes and families, partially balanced
by gain of new gene families via HGT, is the principal
mode of microbial evolution. Indeed, the estimated rates
of gene family gain and loss in some groups of bacteria
are such that multiple genes appear to come and go over
the time required for a single nucleotide substitution to
occur in an evolving gene. These findings are compatible
with experimental results demonstrating bacterial gen-
ome contraction in real time [73].
Given that the great majority (typically, around 90%) of

nucleotide substitutions in evolving microbial genomes
are silent [64,74], and even among those that affect protein
sequences many are effectively neutral, it seems indisput-
able that rapid gene flux is the most important route of
change in prokaryotic evolution. Notably, the present re-
sults show substantially greater rates of gene family loss
and gain compared to family contraction and expansion
rates. Thus, the gene flux is not only rapid and extensive
but often leads to qualitative changes in the gene reper-
toires. In general terms, these results emphasize that pro-
karyotic evolution is largely driven not by small variations,
such as single nucleotide substitutions, but by much more
dramatic changes brought about by HGTand gene loss.
In agreement with previous observations made for lar-

ger evolutionary scales [19,21], we found that on the



Figure 11 Distribution of the median genome, pangenome and estimated supergenome sizes over the evolutionary tree of prokaryotes.
The tree is from MicrobesOnline [73]. Areas of the circles are proportional to the number of genes in the respective genomes (median), pangenome,
a006Ed supergenome. FHA, facultative host-associated; FL, free-living; O, open supergenome; P, obligate intracellular parasite.
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microevolutionary perspective that is provided by the
ATGC analysis, gene family loss prevails over gain, and
the difference between the rates of loss and gain is often
substantial. Why, then, do prokaryotic genomes not shrink
out of existence? The answer is likely to be twofold. Some
of the bacteria actually might be headed towards extinc-
tion as observed for the tiny genomes of some intracellular
parasites [7,26,27]. However, the more common scenario
would involve evolving prokaryotic lineages going through
long phases of genome contraction, and our analysis
caught most of them, punctuated by shorter bursts of ex-
tensive gene gain, which we detected in a few groups and
which compensate for the gradual gene loss. The non-
clock like character of gene gain inferred on a longer time-
scale [19] implies that such periods could be short but
would involve massive amounts of genetic material, mak-
ing detection of such episodes through comparative ana-
lysis of tight groups of microbes unlikely.
The median relative and to a large extent even absolute
(per nucleotide substitution) rates of loss, gain, reduction
and expansion are highly consistent between the major
bacterial phyla, surprisingly do not depend on the ATGC-
wide dN/dS estimates, and only weakly depend on the life-
style (parasitic vs independent). However, these rates
showed a clear link to gene function, in a good agreement
with prediction made from the long-term conservation of
different functional classes of prokaryotic genes.
The variation in the GDE rates among individual

ATGCs is substantial, spanning nearly two orders of
magnitude (Table 1). At present, it is unclear why some
genomes rotate genes fast and others slowly, apparently
irrespective of the size of the gene pools that are avail-
able for HGT. The weakness of taxonomic coherence
and connection to the microbial lifestyle imply that the
defining factors have to do with specific, local aspects
of microbial ecology. Identification of these factors is a



Puigbò et al. BMC Biology 2014, 12:66 Page 15 of 19
http://www.biomedcentral.com/1741-7007/12/66
major challenge for future comparative genomic and ex-
perimental studies.
A limitation of the evolutionary reconstructions re-

ported here is that the ML approach implemented in
Count [22,75] takes as input the gene family membership
matrix, without explicitly exploiting information on the
level of sequence similarity and phylogenetic relationships
within individual families. In principle, more precise re-
constructions taking into account this additional informa-
tion are possible through the use of tree reconciliation
approaches that compare gene trees to species trees [76-
78]. Most of the available tree reconciliation algorithms
are computationally prohibitive but recently, efficient, fast
methods have been reported [79,80]. Nevertheless, appli-
cation of even this promising approach on the scale ad-
dressed in this work and statistical assessment of the
results remain challenges for future studies. In practice, it
appears that tree reconciliation has the potential to un-
cover cases where a gene in a particular lineage, although
included in a COG, shows a phylogenetic position signifi-
cantly different from that in the species tree, and hence
could actually have been acquired via HGT. Such cryptic
HGT events could be of two kinds: (i) displacement of an
existing family member by a xenolog, i.e. a homolog from
a distant lineage, known as xenologous gene displacement
and (ii) acquisition of a ‘pseudoparalog’, i.e. an additional
family member, again from a distant source [18]. Import-
antly, only events within families would be involved and
the family gain estimates would remain unaffected. The
findings of this work indicate that the contribution of
pseudoparalog acquisition is small, given that the esti-
mated family expansion rates are about an order of magni-
tude lower than the gain rates. The extent of xenologous
gene displacement is unknown and remains an interesting
target for further analysis. Regardless, it should be empha-
sized that the refinement of the GDE rate estimates that
potentially could be obtained through tree reconciliation,
can only lead to an upward reassessment of the rate of
HGT. Thus, taking into account also the apparent under-
estimation by Count of events at deeper branches of the
ATGC trees (see Discussion above and Figure 4), the GDE
rates obtained here, even if strikingly high, should be con-
sidered as lower bound estimates.

The supergenomes
The supergenome size estimates from the rates of re-
peated gene gain showed, in a broad agreement with
previous observations, that some of the microbes possess
well-defined closed supergenomes whereas other super-
genomes appeared to be open. The typical closed super-
genome size was estimated to be about tenfold larger
than the characteristic genome size in the respective
ATGC, indicating a large but clearly limited gene pool
available to genome dynamics. The supergenome size
does not show significant correlation with the overall gene
dynamics, but seems to be associated with the phylogen-
etic depth of the ATGC tree and with the lifestyle, as open
supergenomes are substantially more common among
free-living compared to host-associated microbes. The ac-
celerating sequencing of microbial genomes will put these
estimates to test without much delay.

Conclusions
The reconstruction of short-term GDEs shows that micro-
bial genomes exist in a state of perennial flux, gaining, los-
ing, expanding and contracting gene families. Typically,
genome dynamics processes are rapid, with gains and
losses of multiple gene families occurring within the time
frame of a single nucleotide substitution per gene. Thus,
gene flux is the dominant mode in microbial evolution
such that microbes primarily differ from each other on the
scale from static to highly dynamic. The rates of gene fam-
ily gain and loss in most microbial groups are approxi-
mately an order of magnitude greater than the rates of
expansion and contraction of pre-existing families, indi-
cating that HGT is the principal source of new genes in
prokaryote evolution. Overall, gene family loss notably
prevails over gain, i.e. evolving genomes appear to spend
more time contracting than expanding. It seems most
likely that the gradual gene loss is compensated for by epi-
sodes of rapid gene gain; most such bursts are outside the
evolutionary scale accessible through ATGCs although a
few were detected. The absolute as well as relative rates of
GDEs show remarkable variance among bacteria, span-
ning almost two orders of magnitude, and do not signifi-
cantly depend on the ATGC-wide dN/dS estimates, the
taxonomic affinity of microbes or their lifestyle. Conceiv-
ably, genome dynamics is highly sensitive to local eco-
logical factors, the exact nature of which remains to be
elucidated. The analysis of genome dynamics allowed us
to estimate the size of microbial supergenomes, which in
the majority of the analyzed microbial groups turned out
to be large but closed, exceeding the characteristic genome
size by about an order of magnitude, but for a minority of
microbes appeared to be open.

Methods
The extended ATGC dataset
Genomic data was obtained from an updated version of
the ATGC database [81] containing data from >4.5 mil-
lion proteins present in >1,500 genomes of prokaryotes
(approximately 60% of proteins and 62% of genomes
from RefSeq as of June 2013) that met the same criteria
as in the original ATGCs [58]. Specifically, these criteria
include having at least 85% conserved synteny across
any pair of genomes (alignable), and having synonymous
substitution rate <1.5 (tight). Aside from the increase in
the number and size of ATGCs due to the inclusion of
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new genomes of bacteria and archaea, the major differ-
ence between this and previous ATGC versions was the
exclusion of lower-quality drafts of incomplete genomes.
In addition, the pangenome of each ATGC is now repre-
sented by automatically derived COGs [67,68,82].
The COG construction was performed in two stages.

First, COGs were constructed as clusters of bidirectional
best-matching proteins, with the threshold e-value 1 × 10−5

and protein coverage of 75% [82]. Second, proteins un-
assigned in the first stage were added to the cluster that
they match best using the COGNITOR method [83], with
the stringent threshold e-value 1 × 10−20 and protein
coverage of 75%.
The ATGCs also include pre-calculated dN/dS values

[84] for all orthologous gene pairs from each pair of ge-
nomes. We analyzed 35 of the largest ATGCs (34 bacterial
and one archaeal genomic cluster) that contained ten or
more genomes (up to a maximum of 109; Additional file 2:
Figures S1 and S15, Additional file 1: Table S1 and
Additional file 3: Table S2). These selected ATGCs en-
compass many universal genes, i.e., genes that are present
in all genomes within the ATGC.

Species trees
First, a concatenated alignment of all universal genes
with conserved synteny among species was constructed
for each ATGC from the alignments of the respective
protein sequences that were generated using MUSCLE
[85] and converted back to the alignments of the re-
spective nucleotide sequences using an in-house script.
The concatenated alignments were used to reconstruct a
species tree for each ATGC using the program FastTree
[86] under the General Time Reversible (GTR) nucleo-
tide substitution model [87]. The program Count that
was employed for evolutionary reconstruction as de-
scribed below [22], requires rooted phylogenetic trees as
an input. Accordingly, all trees were rooted using the
least-squares modification of the mid-point method [88].

Phylogenetic birth-and-death analysis
The rates of gain, loss, expansion and reduction were es-
timated using the program Count [22]. This program re-
quires two inputs, namely a matrix that contains the
number of gene copies in each species and a rooted spe-
cies tree, to calculate gain, loss, expansion and reduction
rates. Count calculates these rates using a phylogenetic
birth-and-death model that requires the following pa-
rameters: κ (rate of gene gain), λ (individual gene dupli-
cation rate) and μ (individual gene loss rate) (Additional
file 2: Figure S16). Thus, a gene family of size n de-
creases at a rate nμ and increases at a rate (κ + nλ). The
parameters (κ,λ,μ) are different for each gene family and
across edges of the species tree. These parameters are
computed by Count using ML optimization [75]. It is
recommended that the parameters are optimized itera-
tively, in several rounds of increasing computational
complexity, such that in each round the rates from the
previous round are used as the starting point [22]. We
optimized the parameters through 11 rounds of increas-
ing complexity. The first two rounds started with uni-
form rates of gain and expansion and in the subsequent
rounds the number of discrete categories for the gamma
distribution (for gain, loss and expansion) increased
from one to two for each type of event (Additional file 5:
Table S4). The parameter values obtained in the final
round were used to estimate the numbers of gains,
losses, expansions and reductions for all gene families at
different branches of the species tree. This final analysis
was performed using the ‘posteriors’ option of Count,
which analyzes and integrates several phylogenetic sce-
narios and calculates rates of gain, loss, expansion and
reduction across all branches. The sum across all
branches and across all families is taken as the estimate
of the number of events across the entire history of a
given group of organisms.

Estimates of the supergenome size
Supergenome size was estimated using two different
methods. We implemented the currently widely adopted
binomial mixture method as well as the capture/recapture
method [41]. We also utilized the posterior gain probabil-
ities computed by Count to estimate the size of the reser-
voir (supergenome) from which gains originate. Only
gains of non-ancestral families were included in the ana-
lysis. A family was designated as ancestral if the posterior
probability of this family being present in the root node
genome (the ancestor of the analyzed group) was above
0.5. The number of these ancestral families was added to
the estimate of the supergenome size with the implicit as-
sumption that they were gained before the common an-
cestor of the group came into existence.
The simplest procedure for estimating the superge-

nome size is to assume that every time a family is
gained, it is drawn at random from a well-mixed reser-
voir of size S and maximize the probability

L ¼ CP
S

SK
ð1Þ

that P distinct families are discovered as a result of K
random independent samples from the reservoir, with
respect to S. Here CP

S is a binomial coefficient. The total
number of gains K is estimated as the sum of Count re-
ported gain probabilities over all branches and families
plus the sum of the probabilities of presence at the root
node. Having an exact expression for the probability
allows one to estimate the confidence region of the
estimated supergenome size S. In reality acquisitions of
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genes from the supergenome are not random uncorre-
lated events. The effect of these correlations on the
supergenome size estimates is likely to be complex and
even its sign cannot be determined a priori. In the ab-
sence of ancillary information on gene gain correlations,
the assumption of random independent gains provides a
useful null model.
An alternative, more complex model of the reservoir

posits that the probability pi of gaining a family i can
vary with i. The exact probability of observing P distinct
families from K samples can no longer be computed
explicitly. However, if we introduce the number Xm of
families gained exactly m times, we can compute its
expectation.

gm ¼ Xm ¼ Cm
K

XS
i¼1

pmi 1−pið ÞK−m ð2Þ

where Cm
K is a binomial coefficient. Assuming that Xm is

composed of a large number of independent binomials,
it has a Poisson distribution. Therefore if the empirically
observed number of families gained m times is Om, the
log likelihood of observing O1, O2, etc. is

ln L e
XK
m¼1

−gm þ Om lngm
� �

; ð3Þ

where gm is computed via Equation 2. The gain probabil-
ities pi are parameterized using a power law distribution:

pi ¼
A
iα

; i ¼ 1; …; S;

where A is a normalization constant that ensures that
XS
i¼1

pi ¼ 1 . The power law above is the simplest non-

trivial one-parameter distribution with a broad range of
gain probabilities. The maximization of the approximate
likelihood in Equation 3 with respect to S and α yields
the estimate of the supergenome size S and the gain
probability distribution in the supergenome character-
ized by α. The observed numbers Om of multiple gains
are computed by binning the total gain probabilities (in-
cluding the ancestral branch gain probability), i.e. if the
total Count reported gain probability for some family is
between m − 0.5 and m + 0.5 for some integer m, Om is
incremented.

Statistical analysis
Statistical analysis was performed in the R environment.
Spearman rank correlations are reported. P values were
obtained by a permutations test with 100,000 rounds of
reshuffling. The input variables for the PCA were the
total number of gains, losses, expansions and reductions
per unit branch length in each ATGC (Table 1). These
values were transformed into the logarithmic scale prior
to the analysis. PCA was performed using the function
princomp from the R statistical package. The sign of
principal component 1 was inverted.

Synteny distance
Within each ATGC, the pairwise synteny distance (dY)
between genomes is defined as 1 – Fs where Fs is the
fraction of orthologs in syntenic genome segments [64].
Linear regression with a double logarithmic scale be-
tween pairwise synteny distance and nucleotide substitu-
tion distance was used to estimate the shuffling rate,
which was reported for the nucleotide distance of 0.01
substitution/site.

Bootstrap analysis of the genome dynamics event rates
The robustness of the median estimated GDE rates was
assessed using bootstrap sampling of the estimated
values of each type of GDE for the 35 ATGCs. Median
values of 1,000 replicates of all distributions were col-
lected and plotted in Additional file 2: Figure S3. The
probability density of each distribution was calculated
using the function density of the R statistical package.

Additional files

Additional file 1: Table S1. List of ATGCs and genomes.

Additional file 2: Figure S1. Scheme of the pipeline used in this study.
We analyzed all ATGCs with ten or more species. The species tree was
reconstructed with FastTree [87] from the concatenated alignment of
universal COGs and rooted using the least-squares variation of the mid-point
rooting [88]. The species tree and the phyletic distribution of COGs were used
to calculate rates of genome dynamics with Count. Figure S2. Positive
significant correlation of branch length (BL) with the number of (a) gains,
(b) losses, (c) expansions and (b) reductions in individual tree branches.
Figure S3. Distributions of the genome dynamics rates across the ATGCs
and bootstrap analysis for (a) gains, (b) losses, (c) expansions and
(b) reductions. Figure S4. Correlation of the rates of the four classes of GDE
with the number of species in ATGCs. Figure S5. Relative genome dynamics
by phylogenetic depth. Figure S6. Distributions of the genome dynamics
rates across ATGCs. (a) Rates of gain, loss, expansion and reduction. (b) Rates
of gain, loss, expansion and reduction considering only shallow branches
(phylogenetic depth < 0.05). (c) Comparison of gain rates in all branches (solid
green line) and in shallow branches only (dashed black line). (d) Comparison
of loss rates in all branches (solid red line) and in shallow branches only
(dashed black line). (e) Comparison of expansion rates in all branches (dashed
green line) and in shallow branches only (dashed black line). (f) Comparison
of reduction based in branches (dashed red line) and in shallow branches only
(dashed black line). Figure S7. Correlation of overall genome dynamics with
ATGC tree depth. Figure S8. Correlation of dN/dS and (a) gain, (b) loss,
(c) expansion and (d) reduction rates in ATGCs. Figure S9. Correlation of GC
content and (a) gain, (b) loss, (c) expansion and (d) reduction rates in ATGCs.
Figure S10. Correlation of genome shuffling rate (dY) and (a) gain, (b) loss, (c)
expansion and (d) reduction rates in ATGCs. Figure S11. Principal components
analysis (PCA). (a) Values of the first and second components in the PCA across
all ATGCs. (b) PCA loads. (c) Cumulative variance of the four components.
Figure S12. Correlation of median number of protein coding genes (genome
size) and (a) gain, (b) loss, (c) expansion and (d) reduction rates in ATGCs.
Figure S13. Correlation of the estimated supergenome size (uniform model)
and gene flux rates in ATGCs. (a) Supergenome size vs flux rate (all GDEs).
(b) Supergenome size vs gain rate. (c) Supergenome size vs loss rate.
(d) Supergenome size vs expansion rate. (e) Supergenome size vs reduction
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rate. Figure S14. Correlations between the estimated supergenome size
(uniform model), dN/dS ratio, tree depth and average genome size in ATGCs.
(a) Supergenome size vs tree depth. (b) Supergenome size vs dN/dS.
(c) Tree depth vs dN/dS. (d) Genome size vs dN/dS. Figure S15. Frequency
distribution of ATGCs by the number of species. Figure S16. Schematic
representation of gains, losses, expansions and reductions. (a) Phylogenetic
birth-and-death ML model used in Count. (b) Simple example to show that
expansions and gains account for two possible evolutionary scenarios.

Additional file 3: Table S2. Characteristics of ATGCs.

Additional file 4: Table S3. Comparison of the present supergenome
size estimates with previously published estimates.

Additional file 5: Table S4. Parameters used in the Count analysis.
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