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Abstract

In preprocessing tensor-valued data, e.g., images and videos, a common procedure is to vectorize the observations and
subject the resulting vectors to one of the many methods used for independent component analysis (ICA). However,
the tensor structure of the original data is lost in the vectorization and, as a more suitable alternative, we propose
the matrix- and tensor fourth order blind identification (MFOBI and TFOBI). In these tensorial extensions of the
classic fourth order blind identification (FOBI) we assume a Kronecker structure for the mixing and perform FOBI
simultaneously on each direction of the observed tensors. We discuss the theory and assumptions behind MFOBI
and TFOBI and provide two different algorithms and related estimates of the unmixing matrices along with their
asymptotic properties. Finally, simulations are used to compare the method’s performance with that of classical FOBI
for vectorized data and we end with a real data clustering example.
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1. Introduction

1.1. Review of matrix-valued data with the Kronecker structure

In this paper we develop the theory and algorithms for independent component analysis (ICA) for tensor-valued
data. As the main ideas are best illustrated in the special case where the observations are matrix-valued, we be-
gin by considering the following location-scatter model incorporating Kronecker structure for matrix-valued random
elements:

X = µ +ΩLZΩ>R , (1)

where X ∈ Rp×q is the observed matrix, µ ∈ Rp×q is a location center, ΩL ∈ Rp×p and ΩR ∈ Rq×q are mixing matrices
that specify linear row and column dependencies, respectively, and Z ∈ Rp×q is a matrix of standardized uncorrelated
random variables, E {vec(Z)} = 0pq and cov {vec(Z)} = Ipq.5

It follows that E {vec(X)} = vec(µ) and the covariance matrix of the vectorized observation has the Kronecker
covariance structure,

cov {vec(X)} = ΣR ⊗ ΣL,

with ΣR = ΩRΩ
>
R and ΣL = ΩLΩ

>
L . Note that the structured cov {vec(X)} has p(p + 1)/2 + q(q + 1)/2 − 1 parameters

while the number of parameters in the general unstructured case is as large as pq(pq + 1)/2.
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Many examples of matrix-valued data with Kronecker structure exist. For example, in the case of clustered
multivariate data the iid observations X1, . . . ,Xn represent the n clusters with q individuals in each cluster and p
variables measured on each individual, whereas in repeated measures analysis one considers n individuals X1, . . . ,Xn10

with p measured variables and q repetitions on each individual. If the columns of X are exchangeable random vectors,
as is the case with clustered data, then ΣR has the intraclass correlation structure, ΣR ∝ (1−ρ)Iq+ρ1q1>q . In applications
of matrix or tensor-valued data such as channel modeling for multiple-input multiple-output (MIMO) communication,
analysis of spatio-temporal EEG (electroencephalography) data, fMRI (functional Magnetic Resonance Imaging)
data, or general image or video clip data, for example, the problem itself often suggests Kronecker structure [51].15

Consider next applying distributional assumptions for Z in the model (1). The (parametric) multivariate Normal
model or the wider (semiparametric) elliptical model are obtained if one assumes that vec(Z) ∼ Npq(0pq, Ipq) or
that the distribution of vec(Z) is spherically symmetric, respectively. In these models ΩL and ΩR are well-defined
only up to postmultiplication by orthogonal matrices and the number of free mixing parameters is therefore p(p +

1)/2 + q(q + 1)/2 − 1. See, e.g., [8] for an overview of matrix-valued distributions. In this paper we assume that the20

pq components of vec(Z) are mutually independent. This semiparametric model, called the independent component
model, provides an alternative extension of the multivariate Normal model. In this caseΩL andΩR are well-defined up
to permutations and signs of their columns making the number of free mixing parameters p2 + q2 − 1. In independent
component analysis for matrix-valued data, the objective is then to use the realizations X1, . . . ,Xn of the model (1) to
estimate unmixing matrices ΓL ∈ Rp×p and ΓR ∈ Rq×q such that ΓLXΓ>R has mutually independent components.25

In the multivariate Normal case, Srivastava et al. [41] introduced a likelihood ratio test for the null hypothesis
of Kronecker covariance structure and used the so-called flip-flop algorithm to find maximum likelihood estimates of
ΣL and ΣR under the null hypothesis. For another approach to this estimation problem, see [38, 52]. Srivastava et al.
[41] also tested the hypothesis that ΣR is an identity matrix, a diagonal matrix or of intraclass correlation structure,
see their paper for further references. Sun et al. [42] considered robust estimation of a structured covariance matrix,30

including Kronecker covariance structure, under heavy-tailed elliptical distributions and [7] modeled the covariance
matrix of spatio-temporal data as a sum of low-rank Kronecker products and a sparse matrix.

1.2. Review of methods for general tensor-valued data

Like matrices, tensor-valued observations have become a prevalent form of modern data and some fields of appli-
cation include psychometrics, chemometrics and computer vision; see [17, 22] along with the references therein for35

more examples. For modeling tensor data, e.g., the tensor Normal distribution has been proposed; see [23, 31]. Also
a general location-scatter model and an independent component model for tensor-valued data are easily defined; see
Section 5. In both cases, for a tensor-valued random element X ∈ Rp1×···×pr , the covariance matrix of the vectorized
observation again exhibits a Kronecker structure, viz. cov {vec(X)} = Σr ⊗ · · · ⊗ Σ1.

Tensor-based methods have a long history in, e.g., signal processing in the form of different tensor decompositions.40

The two most prevalent ones are CP-decomposition and the Tucker decomposition which provide tensor analogies
for singular value decomposition and principal component analysis, respectively. Both are thoroughly discussed in
[17], where a review of numerous other tensor decompositions is also given. See also Beckmann and Smith [1], who
introduce tensor PICA, an independent component analysis method for fMRI data based on the CP-decomposition and
Kim et al. [15], who present various robust and sparse tensor decompositions for coping with outliers and sparsity.45

In recent years, methods for tensor-valued observations have also been increasingly discussed in the statistical
literature. For example, Li et al. [19] expanded the sliced inverse regression methodology developed in [20] to create
dimension folding, a supervised dimension reduction method for matrix and tensor-valued predictors. Sufficient
dimension reduction for longitudinal predictors was considered in [34], logistic regression and generalized linear
models for tensor-valued predictors were developed in [9, 59], and regularized linear regression and generalized50

linear models for tensor-valued predictors were addressed in [56, 58]. Ding and Cook [4] discussed matrix versions
of principal component analysis and principal fitted components (PFC). Xue and Yin [53] introduced central mean
dimension folding subspace and proposed several methods to estimate it. Ding and Cook [6] further developed
tensor-valued sliced inverse regression. An alternative perspective for sufficient dimension reduction for tensors was
considered in [5, 57]; see also [10, 40, 54].55

High dimensionality is common to modern, naturally tensor-valued data sets and in many cases the number of
variables further exceeds the number of observations, preventing the use of vector-valued methods. In such cases
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tensorial methods of dimension reduction, such as those listed above, provide an especially attractive course of action,
allowing the reduction of the data while taking into account its special tensor structure; see [47, 50]. In this paper we
tackle this problem from the viewpoint of independent component analysis.60

1.3. Independent component analysis for tensor-valued data
Extending independent component analysis to tensors has also attracted some attention but, to our knowledge, no

model-based treatise has been given. The ICA problem for tensor data is discussed in [44, 55], where it is proposed
to unmix each of the modes separately by m-flattening the data tensor and subjecting the matrix of m-mode vectors to
standard ICA methods. However, this approach discards all the information on the structural dependence present in65

the tensors. Our proposed method, TFOBI, a tensor analogy for a popular independent component analysis method
called fourth order blind identification (FOBI) [2], also considers each mode separately, but instead takes advantage
of this structural information in estimating the independent components.

In the classic independent component analysis for vector-valued data, it is assumed that the observations x ∈ Rp

obey the model

x = µ +Ωz, (2)

where µ ∈ Rp is the location center, Ω ∈ Rp×p is the so-called mixing matrix and z ∈ Rp is a vector of standard-
ized, mutually independent components. The goal is, given the iid observations x1, . . . , xn, to find an estimate of an70

unmixing matrix Γ ∈ Rp×p such that Γx has mutually independent components. Numerous methods for solving the
vector-valued independent component problem can be found in the literature, the most popular ones including FOBI,
JADE (joint approximate diagonalization of eigen-matrices) and FastICA; see, e.g., [11, 27].

FOBI is based on the fact that in the independent component model (2), both

E(zz>) = Ip and E(zz>zz>) = E(‖z‖2zz>)

are diagonal matrices. In a similar way our extension of FOBI for matrix-valued observations, called matrix fourth or-75

der blind identification (MFOBI), makes use of the fact that the matrices E(ZZ>) = qIp, E(Z>Z) = pIq, E(ZZ>ZZ>),
E(Z>ZZ>Z), E(‖Z‖2FZZ>) and E(‖Z‖2FZ>Z) are all diagonal. Here ‖ · ‖F is the Frobenius norm. Similar constructs for
tensor-valued data are discussed in Section 5.

This paper is structured as follows. We start with some notation and important concepts in Section 2. In Section 3
we review the classic independent component model for vector-valued observations and then extend the model for80

matrix-valued data. The identifiability constraints and assumptions regarding both models are also discussed. Next, in
Section 4, we first review the basic steps — standardization and rotation — of finding the classical FOBI solution and
then by analogy find the MFOBI solution by double standardization and double rotation. Furthermore, we provide
two different ways for estimating the double rotation and then show that the MFOBI estimate is Fisher consistent. In
Section 5 we further extend the method to tensor-valued data and obtain the general TFOBI method. In Section 685

we provide the asymptotic behavior for the extended FOBI procedures in the case of identity mixing. Orthogonal
equivariance of TFOBI implies that the asymptotic variances derived for both versions allow comparisons with FOBI
also for any orthogonal mixing matrices. In Section 7 we use simulations to compare TFOBI with vectorizing and
using FOBI in both the general case of estimating the correct unmixing matrix and blind classification. Also a real
data example is included. Finally, in Section 8 we close with some conclusions and prospective ideas.90

Our route of exposition from MFOBI to TFOBI is not the most parsimonious one, as MFOBI is logically a special
case of TFOBI. We choose this path not only because the core ideas are best explained in the matrix setting; they
would be hard to discern among the complicated tensor manipulations, but also because the asymptotic behavior of
TFOBI reverts to that of MFOBI for tensors of all orders.

2. Notation95

2.1. Some moments and cross-moments
Next, we define some particular moments and expressions based on the moments of the elements of the iid random

vectors z1, . . . , zn from the distribution of z ∈ Rp and iid random matrices Z1, . . . ,Zn from the distribution of Z ∈ Rp×q.
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The components of z and Z are mutually independent and standardized to have zero mean and unit variance. Beginning
with the marginal moments of the vectors we write, for each k ∈ {1, . . . , p},100

γk = E(z3
k), βk = E(z4

k), and ωk = var(z3
k).

For the matrix version we require the same moments and thus define, for all k ∈ {1, . . . , p} and ` ∈ {1, . . . , q},

γk` = E(z3
k`), βk` = E(z4

k`), ωk` = var(z3
k`).

Interestingly, MFOBI involves the row and column means of the previously defined moments and we use the
notation ᾱk· to denote taking the average over the values of the bulleted index, e.g., ω̄k· =

∑
` ωk`/q. Additionally, we

are going to need the covariance of two rows of kurtoses and define δkk′ =
∑
` βk`βk′`/q − β̄k·β̄k′·.

For the asymptotic behavior of FOBI we require the following cross-moment estimates for distinct k, k′,m ∈
{1, . . . , p}:

ŝkk′ =
1
n

n∑
i=1

zi,kzi,k′ , q̂kk′ =
1
n

n∑
i=1

(z3
i,k − γk)zi,k′ q̂mkk′ =

1
n

n∑
i=1

z2
i,mzi,kzi,k′ .

For their matrix counterparts, we need both the “left” and “right” versions, e.g.,

s̄L
kk′ =

1
q

q∑
`=1

1
n

n∑
i=1

zi,k`zi,k′`

 , s̄R
``′ =

1
p

p∑
k=1

1
n

n∑
i=1

zi,k`zi,k`′

 ,
where a bar (ā instead of â) is used to emphasize the taking of the mean and to avoid confusion with ŝkk′ . Notice
also how s̄L

kk′ and s̄R
``′ are again the row and column averages of the corresponding vector quantities. We also see that

the right-hand side version of the quantity is obtained from the left-hand side version by simply reversing the roles
of rows and columns (or transposing the matrices Zi). Due to this connection, we next state only the left-hand side
versions of the remaining needed quantities, also omitting the superscript “L”:

q̄kk′ =
1
q

q∑
`=1

1
n

n∑
i=1

(z3
i,k` − γk`)zi,k′`

 , q̄mkk′ =
1
q

q∑
`=1

1
n

n∑
i=1

z2
i,m`zi,k`zi,k′`

 ,
and the following which lack a vector counterpart:

r̄kk′ =
1
q

q∑
`=1

q∑
`′=1, `′,`

1
n

n∑
i=1

z2
i,k`zi,k`′zi,k′`′

 , r̄0
mkk′ =

1
q

q∑
`=1

q∑
`′=1, `′,`

1
n

n∑
i=1

zi,k`zi,m`zi,m`′zi,k′`′

 and

r̄1
mkk′ =

1
q

q∑
`=1

q∑
`′=1, `′,`

1
n

n∑
i=1

z2
i,m`zi,k`′zi,k′`′

 .
Assuming that the eighth moments of Z exist, the joint limiting distribution of the above quantities can be shown to105

be multivariate Normal. Additional properties of the quantities are discussed in the proof of Theorem 5 in Section 6.
Furthermore, similar quantities could also be defined for random tensors, but they are not needed in the exposition as
it is later shown that the asymptotical behavior of TFOBI reduces to that of MFOBI.

2.2. Notations for matrices and sets of matrices
An inverse square root S−1/2 of a symmetric, positive definite matrix S ∈ Rp×p is any matrix G ∈ Rp×p satisfying110

GSG> = Ip. Given the eigendecomposition of the matrix S = UDU>, all possible inverse square root matrices of
S are of the form VD−1/2U>, where V ∈ Rp×p is an orthogonal matrix. If S has distinct eigenvalues, then a unique,
symmetric choice for S−1/2 is UD−1/2U>, see, e.g., [14].

For each k ∈ {1, . . . , p}, the p-vector ek is a vector with kth element 1 and other elements 0, and Ek` = eke>` is a
p × p matrix with (k, `)-element 1 and other elements 0, for k, ` ∈ {1, . . . , p}. Note that Ip =

∑p
k=1 Ekk and all diagonal115

matrices with diagonal elements c1, . . . , cp can be written as
∑p

k=1 ckEkk.
Table 1 lists some particular sets of (affine transformation) matrices used in the following sections. A permutation

matrix is obtained if we permute the rows and/or columns of an identity matrix. A heterogeneous sign-change matrix
is a diagonal matrix with diagonal entries ±1. A heterogeneous scaling matrix is a diagonal matrix with positive
diagonal entries.120
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Table 1: Some useful sets of square matrices
Set Description

Ar The set of all r × r non-singular matrices.
Ur The set of all r × r orthogonal matrices.
Pr The set of all r × r permutation matrices.
J r The set of all r × r heterogeneous sign-change matrices.
Dr The set of all r × r heterogeneous scaling matrices.
Cr The set of all matrices PJD, where P ∈ Pr, J ∈ J r and D ∈ Dr.

3. Independent component models

In this section we derive the basic model behind MFOBI by expanding the classic independent component model
from vector-valued to matrix-valued observations.

3.1. Vector-valued independent component model
Definition 1. The vector-valued independent component model assumes that the variables x1, . . . , xn ∈ Rp are iid125

realizations of a random vector x satisfying x = µ+Ωz, where µ ∈ Rp,Ω ∈ Ap and the random vector z ∈ Rp satisfies
Assumptions V1 and V2 below.

Assumption V1. The components zk of z are mutually independent and standardized in the sense that E(zk) = 0 and
var(zk) = 1.

Assumption V2. At most one of the components zk of z is normally distributed.130

Without Assumption V1 the model itself in Definition 1 is not well-defined in the sense that replacing Ω and z
with Ω∗ = ΩC and z∗ = C−1z, for some C ∈ Cp, yields exactly the same model for x. The standardization part of
Assumption V1 can thus be regarded as an identification constraint that removes some of the ambiguity present in
the formulation of the model by fixing the locations and scales of the components of z. As for Assumption V2, it
is required by the rotational invariance of the multivariate Gaussian distribution. Namely, assume, e.g., that the first135

two components of z are Gaussian. Then the corresponding subvector is distributionally invariant under rotations and
the first two columns of Ω could be identified only up to a 2 × 2 rotation. Thus only a single normally distributed
component is allowed. Given Assumptions V1 and V2, we are then left with ambiguity regarding the signs and the
order of the independent components which is satisfactory in most applications.

3.2. Matrix-valued independent component model140

The matrix-valued independent component model is now obtained simply by adding right-hand side mixing to the
vector-valued independent component model.

Definition 2. The matrix-valued independent component model assumes that the variables X1, . . . ,Xn ∈ Rp×q are iid
realizations of a random matrix X satisfying X = µ +ΩLZΩ>R , where µ ∈ Rp×q,ΩL ∈ A

p, ΩR ∈ A
q and the random

matrix Zi ∈ Rp×q satisfies Assumptions M1 and M2 below.145

Assumption M1. The components zk` of Z are mutually independent and standardized in the sense that E(zk`) = 0
and var(zk`) = 1.

Assumption M2. At most one row of Z consists entirely of Gaussian components and at most one column of Z consists
entirely of Gaussian components.

The assumptions now guarantee that ΩL and ΩR are well-defined up to postmultiplication by any matrices PJ,150

P ∈ Pp, J ∈ J p or P ∈ Pq, J ∈ Jq, respectively. Thus the first assumption serves again to remove the ambiguity
concerning the location of Z and the scales of the columns of ΩL and ΩR, leaving us with the acceptable uncertainty
of the signs and order. Again without assumption M2, if, e.g., the first two rows of Z were Gaussian then the first
two columns of ΩL could be identified only up to a 2 × 2 rotation. Note that we could still estimate those columns
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of ΩL that correspond to non-Gaussian rows of Z but the successful use of such a method in practice would require155

some way of estimating or testing for the number of non-Gaussian rows in Z. Such a problem is considered for
vector-valued ICA in [29, 30] and extending the method to matrix and tensor observations constitutes an interesting
future challenge. Given these assumptions, there is still ambiguity in the proportional sizes of the mixing matrices as
the transformations ΩL → cΩL and ΩR → c−1ΩR, c , 0, do not change the distribution of X. The number of free
mixing parameters is therefore p2 + q2 − 1.160

4. From FOBI to MFOBI

Taking the same approach as with the independent component models in the previous section, we first review the
steps of the classic FOBI procedure, i.e., standardization and rotation, for vector-valued data and then suggest a similar
procedure for matrix-valued data, called MFOBI, using similar but separate steps from both sides of the matrices.

4.1. Fourth order blind identification (FOBI)165

Without loss of generality, we assume in the following that the random vector x ∈ Rp has zero mean, i.e., µ = 0p

in the model of Definition 1. Note that the following exposition is not the standard way to approach FOBI. However,
presenting it this way makes the formulation of MFOBI more intuitive.

We piece together the FOBI-solution by considering the singular value decomposition of the mixing matrix Ω =

UDV>, where U,V ∈ Up and D ∈ Dp (the diagonal elements of D can be chosen to be positive as the matrix Ω was170

assumed to have full rank). The model then has the form x = UDV>z. In this form it is easy to break down the steps
in which we gradually “lose” the independence of the components of z and move towards the observed x.

Step 0. The vector of independent components z has independent components and unit component variances:
cov(z) = Ip.

Step 1. The vector of standardized components xst = V>z has uncorrelated components and unit component175

variances: cov(xst) = Ip.

Step 2. The vector of uncorrelated components xun = Dxst has uncorrelated components: cov(xun) = D2.

Step 3. The observed vector x = Uxun has (generally) correlated components: cov(x) = UD2U>.

That is, in Step 1 we lose independence, in the second step the unit variances, and finally in the third step the uncor-
relatedness. For the solution we then hope to carry out these steps in the reversed order.180

4.1.1. Standardization
The first step in FOBI consists of standardizing x with an inverse square root of its covariance matrix cov(x) =

S. As S = UD2U> one can choose any matrix of the form S−1/2 = MD−1U>, where M ∈ Up. This yields the
transformation

x 7→ S−1/2x = Mxst = Wz, (3)

where W = MV> ∈ Up. Thus the standardization part moves us directly from x to a standardized random vector and
leaves us a rotation away from the independent components.

4.1.2. Rotation
To estimate the orthogonal matrix W> that rotates the standardized observation in (3) to the vector of independent185

components, we use the so-called FOBI-matrix functional, B(x) = E(xx>xx>). Plugging the standardized vector in,
we have

B = B(Wz) = WB(z)W>

where

B(z) = E(zz>zz>) =

p∑
k=1

(βk + p − 1)Ekk
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is a diagonal matrix. Therefore, the orthogonal matrix W can be found from the eigendecomposition of the matrix
B. However, for the eigenbasis of B to be identifiable, we must make the following assumption that can be seen as a190

stronger version of Assumption V2.

Assumption V3. The kurtosis values β1, . . . , βp of the components of z are distinct.

The recovering of the independent components by FOBI is then captured by the following formula:

x 7→W>S−1/2x.

This process consisting of standardization and rotation will next be translated for matrix-valued observations in an
intuitively appealing manner.195

4.2. Matrix fourth order blind identification (MFOBI)
Without loss of generality, assume that the random matrix X ∈ Rp×q has zero mean, i.e., µ = 0p×q in the model of

Definition 2. Resorting again to the singular value decompositions of the full-rank mixing matrices ΩL and ΩR, the
model in Definition 2 takes the form

X = ΩLZΩ>R = ULDLV>L ZVRDRU>R .

Again the diagonal elements of DL and DR can be chosen to be positive.
We then apply a similar analysis for the double mixing process of Z as was done with FOBI previously.

Step 0. The random matrix Z has independent components and unit component variances: cov{vec(Z)} = Ipq.

Step 1. The matrix of standardized components Xst = V>L ZVR has uncorrelated components and unit component200

variances: cov{vec(Xst)} = Ipq.

Step 2. The matrix of uncorrelated components Xun = DLXstDR has uncorrelated components: cov{vec(Xun)} =

(D2
R ⊗ D2

L).

Step 3. The observed matrix X = ULXunU>R has (generally) correlated components: cov{vec(X)} = (URD2
RU>R )⊗

(ULD2
LU>L ).205

We see that the observed matrix X is built from the matrix of independent components Z in three steps exactly
corresponding to the likewise process on random vectors outlined in the section before. Again our objective is to
reverse this process.

4.2.1. Double standardization
We begin by finding a matrix counterpart for the standardization that provides the first step in FOBI. The presence210

of a double-sided mixing makes it clear that the standardization has to be performed on X from both left and right.
Define the left and right covariance matrices of a zero-mean random matrix X ∈ Rp×q as

covL(X) =
1
q

E(XX>) and covR(X) =
1
p

E(X>X),

The use of covL and covR for matrix observations has been considered already in [41]. Consider then the left covari-
ance matrix of X in the matrix independent component model of Definition 2,

SL = covL(X) =
1
q

E(XX>) =
1
q

ULE{Xun(Xun)>}U>L , (4)

where straightforward calculations show that E
{
Xun(Xun)>

}
= tr(D2

R)D2
L. Thus (4) provides the eigendecomposition

of SL and all of its inverse square roots are precisely of the form
√

q ‖DR‖
−1
F MLD−1

L U>L , where ML ∈ U
p and ‖ · ‖F

denotes the Frobenius norm. The exact same procedure for the right covariance matrix of X yields

SR = covR(X) =
1
p

E(X>X) =
1
p

URE{(Xun)>Xun}U>R ,
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where E
{
(Xun)>Xun} = tr(D2

L)D2
R and the inverse square roots of SR are precisely of the form

√
p ‖DL‖

−1
F MRD−1

R U>R ,
where MR ∈ U

q.
Using then the inverse square roots of SL and SR to doubly standardize the data, we obtain the transformation215

X 7→ S−1/2
L X(S−1/2

R )> =
√

pq ‖DL‖
−1
F ‖DR‖

−1
F MLV>L ZVRM>

R .

Denoting WL = MLV>L ∈ Up and WR = MRV>R ∈ Uq, we have the following theorem.

Theorem 1. Denote by S−1/2
L and S−1/2

R any inverse square roots of the matrices covL(X) and covR(X), respectively.
Then, under the matrix independent component model of Definition 2, S−1/2

L X(S−1/2
R )> ∝ WLZW>R , where WL ∈ U

p

and WR ∈ U
q.

Theorem 1 thus says that the double standardization by S−1/2
L and S−1/2

R is a natural counterpart of the standardiza-220

tion of a random vector z by S−1/2, again leaving us only a (double) rotation away from independent components.

4.2.2. Double rotation
We next approach the rotation part with the same mindset. First, notice that we have two logical matrix counter-

parts for the FOBI functional B(x), namely

B0(X) = E(XX>XX>) and B1(X) = E(‖X‖2FXX>),

both reducing to the ordinary FOBI-matrix functional B(x) if X has only one column. For finding the rotations we
then use either the pair

B0
L =

1
q

B0{S−1/2
L X(S−1/2

R )>} and B0
R =

1
p

B0{S−1/2
R X>(S−1/2

L )>},

or the pair

B1
L =

1
q

B1{S−1/2
L X(S−1/2

R )>} and B1
R =

1
p

B1{S−1/2
R X>(S−1/2

L )>}.

Write next τ =
√

pq ‖DL‖
−1
F ‖DR‖

−1
F , a0 = (p − 1) + (q − 1) and a1 = pq − 1. Plugging in the standardized matrix

S−1/2
L X(S−1/2

R )> = τWLZW>
R we obtain, for N ∈ {0, 1},

BN
L = τ4WL

aNIp +

p∑
k=1

β̄k·E
kk

 W>
L and BN

R = τ4WR

aNIq +

q∑
`=1

β̄·`E
``

 W>
R , (5)

which are precisely the eigendecompositions of the matrices BN
L and BN

R , giving us a way of finding the missing
double rotation by W>

L and W>
R . To identify the needed eigenbases, the matrix counterpart for Assumption V3 is then

as follows.225

Assumption M3. Both the row averages β̄1·, . . . , β̄p· and the column averages β̄·1, . . . , β̄·q of the kurtosis values of
zk` are distinct.

Interestingly, the number of constraints on the distinctness of the kurtoses of the components does not grow
linearly with the number of components but is rather proportional to its square root (assuming the number of rows and
the number of columns grow linearly). In a sense MFOBI thus allows for more freedom for the individual marginal230

distributions. Note that for q = 1 Assumption M3 reduces to Assumption V3.

4.2.3. The method in total
The similarity between FOBI and MFOBI is now particularly easy to see if we first write the formula for FOBI as

z = W>S−1/2x,
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where W has the eigenvectors of B as its columns and the equality sign means equality up to sign-change and permu-
tation. Compare then the above to the same expression for MFOBI:235

Z ∝ (W>
L S−1/2

L )X(W>
R S−1/2

R )>,

where WL and WR have respectively the eigenvectors of BL and BR as their columns and the proportionality is up to
permutation and sign-change from both left and right. Seen this way, MFOBI can simply be regarded as FOBI applied
from both sides simultaneously. Recovering the matrix Z only up to proportionality is not a problem as we can always
estimate the constant of proportionality using the assumption that cov {vec(Z)} = Ipq.

5. Extension to tensor-valued data240

In this section we further extend FOBI to tensor-valued data, producing a method we refer to as TFOBI. To
handle summations over multiple indices we use Einstein’s summation convention [24]; i.e., whenever an index
appears twice, summation over that index is implied. For example, for a 4-dimensional tensor A = {ai jk`}, the symbol
aab jkacd jk stands for ∑

j
∑

kaab jkacd jk.

That is, {aab jkacd jk} is a 4-dimensional tensor, the (a, b, c, d)th entry of which is given above.

5.1. Tensor independent component model
Let X be a random element in Rp1×···×pr , i.e., a random tensor of order r. Following [18], for a given tensor

A ∈ Rp1×···×pr , we call any pm-vector obtained by letting im vary over {1, . . . , pm} while fixing all the other indices an
m-mode vector. For each m ∈ {1, . . . , r}, the term mth mode (or “m-mode”) refers to the mth direction of a tensor of245

order r. In some sense the opposite operation, fixing a value of one of the indices, im ∈ {1, . . . , pm}, while varying the
others produces what we call the m-mode faces of a tensor. For any given m ∈ {1, . . . , r}, a tensor A ∈ Rp1×···×pr thus
has in total pm m-mode faces of size p1 × · · · × pm−1 × pm+1 × · · · × pr. Notice that for each im ∈ {1, . . . , pm}, the set of
imth elements of all m-mode vectors of a tensor A contains the same elements as the imth m-mode face of A.

To work with tensors we next introduce a product operation between a tensor and a matrix that provides a higher
order generalization of a linear transformation of a vector by matrix. Following again [18], for A ∈ Rp1×···×pr and
B ∈ Rqm×pm , let A �m B be the p1 × · · · × pm−1 × qm × pm+1 × · · · × pr dimensional tensor whose (i1, . . . , jm, . . . , ir)th
entry is

(A �m B)i1... jm...ir = ai1...im...ir b jmim . (6)

Let B1 ∈ Rq1×p1 , . . . , Br ∈ Rqr×pr . We use the notation A �1 B1 � · · · �r Br to abbreviate the tensor

(. . . (A �1 B1) �2 B2 . . .) �r Br) = {a j1... jr bi1 j1 . . . bir jr }.

It is easy to see that for a vector a ∈ Rp1 we have (a�1B1) = B1a and for a matrix A ∈ Rp1×p2 similarly (A�1B1) = B1A250

and (A�2B2) = AB>2 , assuming B1 and B2 are of appropriate size. Thus �m can be seen as a linear transformation from
the direction of the mth mode. Using m-mode vectors the multiplication has also a second interpretation; (A �m Bm)
applies the linear transformation given by Bm individually to each m-mode vector of A.

The previous multiplication operation is also commutative in the sense that for distinct values of m, the order we
apply the multiplications �m has no effect on the outcome. If we want to multiply multiple times from the direction255

of the same mode commutativity fails and we instead have the following lemma.

Lemma 1. For any A ∈ Rp1×···×pr , B1 ∈ Rp1×p1 , . . . , Br ∈ Rpr×pr , C1 ∈ Rp1×p1 , . . . ,Cr ∈ Rpr×pr , we have

A �1 (B1C1) � · · · �r (BrCr) = A �1 C1 � · · · �r Cr �1 B1 � · · · �r Br. (7)

Proof. By definition, the right-hand side is the tensor in Rp1×···×pr whose (i1 . . . ir)th entry is

ak1...kr b j1k1 . . . b jrkr ci1 j1 . . . cir jr = ak1...kr (ci1 j1 b j1k1 ) . . . (cir jr b jrkr ).

The right-hand side is precisely the (i1 . . . ir)th entry of the tensor on the left-hand side of (7).
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We now have sufficient tools to define the independent component model for tensors.

Definition 3. The tensor-valued independent component model assumes that the tensors X1, . . . , Xn ∈ Rp1×···×pr are
iid realizations of a random tensor X satisfying

X = µ + Z �1 Ω1 � · · · �r Ωr. (8)

where µ ∈ Rp1×···×pr , Ω1 ∈ A
p1 , . . . ,Ωr ∈ A

pr , and Z ∈ Rp1×···×pr satisfies Assumptions T1 and T2 below.

Assumption T1. The components zk1...kr of Z are mutually independent and standardized in the sense that E(zk1...kr ) = 0260

and var(zk1...kr ) = 1.

Assumption T2. For each m ∈ {1, . . . , r}, at most one m-mode face of Z consists entirely of Gaussian components.

The above assumptions serve the same purpose as the corresponding assumptions of the vector and matrix in-
dependent component models in Section 3. The need for Assumption T2 can be seen by considering the product
operation �mΩm as a linear transformation of the m-mode vectors by Ωm and observing that if two or more m-mode265

faces had only Gaussian components, the corresponding columns of Ωm would be rotationally invariant.

5.2. The m-mode moment matrices of a random tensor

The matrix unmixing procedure described in Section 4 involves left and right standardization and then left and
right rotation. We need to generalize these to m-mode standardization and m-mode rotation. We first define the m-
mode product between two tensors: for A, B ∈ Rp1×···×pr , the m-mode product, A �−m B, is the pm × pm matrix, the
(s, t)th entry of which is

(A �−m B)st = ai1...im−1 s im+1...ir bi1...im−1 t im+1...ir .

In some sense the operation �−m is opposite to the operation �m in (6); whereas �m involves the sum over the mth
index of A, �−m involves the sum over all indices except the mth index of A and B.

We now extend moment matrices such as

cov (X) , cov(X>), E(XX>XX>) and E(X>XX>X)

to the tensor case. Again, for convenience and without loss of generality, assume that E(X) = 0. As in the matrix case,270

there are two generalizations of the FOBI functional.

Definition 4. The m-mode covariance and two types of m-mode FOBI functionals of a random tensor X ∈ Rp1×···×pr

are the following pm × pm matrices

cov(m)(X) =
(∏

s,m ps
)−1 E (X �−m X) , B0

(m)(X) =
(∏

s,m ps
)−1 E{(X �−m X)2}

and
B1

(m)(X) =
(∏

s,m ps
)−1 E{‖X‖2F(X �−m X)},

where ‖ · ‖2F is the squared Frobenius norm of a tensor (the sum of squared elements).

Define further

ρm =
∏

s,m ps. (9)

This proportionality constant reflects the fact that �−m involves the sum of ρm terms.
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5.3. The m-mode standardization
Similar to random matrix unmixing our idea of unmixing a random tensor also consists of two steps: standardiza-

tion and rotation, except now the two operations have to be performed on each of the m modes of the r-tensor. For
each m ∈ {1, . . . , r}, let

Ωm = Um DmV>m (10)

be the singular value decomposition of Ωm. The next theorem shows that we can recover ΩmΩ
>
m (up to a proportion-275

ality constant) from the m-mode covariance matrix of X.

Lemma 2. Under the tensor IC model in Definition 3 we have

cov(m)(X) = ρ−1
m (

∏
s,m‖Ds‖

2
F)Um D2

mU>m. (11)

Proof. Without loss of generality, assume m = 1. By definition, the (a, b)th entry of the matrix E(X �−1 X) is

E(xai2...ir xbi2...ir ). (12)

By the tensor IC model (8) we have

xi1...ir = ω(r)
ir jr
. . . ω(1)

i1 j1
z j1... jr

where ω(m)
i j are the entries of Ωm. Hence (12) can be rewritten as

E(ω(r)
ir jr
. . . ω(1)

a j1
z j1... jrω

(r)
irkr

. . . ω(1)
bk1

zk1...kr ) = ω(r)
ir jr
. . . ω(1)

a j1
ω(r)

irkr
. . . ω(1)

bk1
δ j1k1 . . . δ jrkr .

By the properties of the Kronecker delta, we can express the above as

ω(r)
ir jr
. . . ω(1)

a j1
ω(r)

ir jr
. . . ω(1)

b j1
= (ω(2)

i2 j2
ω(2)

i2 j2
) . . . (ω(r)

ir jr
ω(r)

ir jr
)(ω(1)

a j1
ω(1)

b j1
)

which is the (a, b)th entry of the matrix (
∏

s,1‖Ωs‖
2
F)Ω1Ω

>
1 . Now the assertion of the theorem follows from the

singular value decomposition (10).

Let Sm = cov(m)(X). Relation (11) means that

ρ−1
m (

∏
s,m‖Ds‖

2
F)Um D2

mU>m
is in fact the eigendecomposition of Sm. Thus, all inverse square roots of Sm are of the form

(
∏

s,m p1/2
s ‖Ds‖

−1
F )Mm D−1

m U>m,

where Mm ∈ U
pm . We can use these square roots to recover a rotated version of Z, as indicated by the next theorem.

Theorem 2. Let Sm be as defined in the last paragraph. Then, under the tensor independent component model of
Definition 3,

X �1 S−1/2
1 � · · · �r S−1/2

r = τZ �1 W1 � · · · �r Wr, (13)

where, for m ∈ {1, . . . , r},

Wm = MmV>m ∈ U
pm , τ = (

∏r
m=1

∏
s,m p1/2

s ‖Ds‖
−1
F ). (14)

Proof. By Lemma 1,

X �1 S−1/2
1 � · · · �r S−1/2

r = Z �1 Ω1 � · · · �r Ωr �1 S−1/2
1 � · · · �r S−1/2

r

= Z �1 S−1/2
1 Ω1 � · · · �r S−1/2

r Ωr. (15)

However, we note that

S−1/2
m Ωm = (

∏
s,m p1/2

s ‖Ds‖
−1
F )Mm D−1

m U>mUm DmV>m = (
∏

s,m p1/2
s ‖Ds‖

−1
F )Wm,

where Wm = MmV>m ∈ Upm . Substitute the above into (15) to prove the desired equality.280

The tensor on the right-hand side of (13) is only a rotation away from the independent component tensor Z, a step
we carry out in the next subsection.
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5.4. The m-mode rotation
Let

B0
m = ρ−1

m B0
(m)(X �1 S−1/2

1 � · · · �r S−1/2
r ) and B1

m = ρ−1
m B1

(m)(X �1 S−1/2
1 � · · · �r S−1/2

r ), (16)

where B0
(m) and B1

(m) are the FOBI functionals in Definition 4. In order to manipulate them, we need the following
lemma.285

Lemma 3. Let A, B ∈ Rp1×···×pr , U1 ∈ U
p1 , . . . ,Ur ∈ U

pr . Then

(A �1 U1 � · · · �r Ur) �−m (B �1 U1 � · · · �r Ur) = Um(A �−m B)U>m. (17)

Proof. Without loss of generality assume that m = 1. The (a, b)th entry of the matrix on the left-hand side of (17) is

(A �1 U1 � · · · �r Ur)a i2...ir (B �1 U1 � · · · �r Ur)b i2...ir = a j1... jr u
(1)
a j1

u(2)
i2 j2

. . . u(r)
ir jr

bk1...kr u
(1)
b k1

u(2)
i2 k2

. . . u(r)
irkr

= a j1... jr bk1...kr (u
(2)
i2 j2

u(2)
i2 k2

) . . . (u(r)
ir jr

u(r)
irkr

)u(1)
a j1

u(1)
b k1

= a j1... jr bk1...krδ j2k2 . . . δ jrkr u
(1)
a j1

u(1)
b k1
.

The above reduces to a j1 j2... jr bk1 j2... jr u
(1)
a j1

u(1)
b k1

, which is the (a, b)th entry of the matrix on the right-hand side of (17).
This completes the argument.

Define the m-flattening, or m-unfolding, of a tensor A ∈ Rp1×···×pr to be the matrix A(m) ∈ Rpm×ρm obtained by
taking all the m-mode vectors of A and stacking them horizontally into a matrix. As for the order of stacking we
choose to use the cyclical unfolding described in [18]. Then, for A∗ = A �1 B1 � · · · �r Br, we have

A∗(m) = BmA(m) (Bm+1 ⊗ · · · ⊗ Br ⊗ B1 ⊗ · · · ⊗ Bm−1) . (18)

Flattening can also be used to express the m-mode product of a tensor with itself with means of ordinary matrix
multiplication. Namely,

A �−m A = A(m) A>(m). (19)

For a tensor A ∈ Rp1×···×pr let Ā−m be the pm-vector whose imth element is the mean of the ρm elements of the imth
m-mode face of A with im ∈ {1, . . . , pm}. Expressed via the previously defined m-flattening Ā−m thus contains the row
means of A(m).290

The next theorem shows that the rotations Wm can be recovered from the eigendecompositions of B0
m and B1

m.

Theorem 3. Let ρm, Wm, τ, B0
m and B1

m be as defined in (9), (14), and (16). Let β ∈ Rp1×···×pr be the tensor with the
entries E(z4

i1...ir
). Then

B0
m = τ4Wm{(pm − 1 + ρm − 1)Ipm + diag(β̄−m)}W>m, B1

m = τ4Wm{(pmρm − 1)Ipm + diag(β̄−m)}W>m,

where diag(β̄−m) is the diagonal matrix having the elements of β̄−m ∈ Rpm on its diagonal.

Proof. Again, without loss of generality, assume m = 1. By definition,

B0
1 = ρ−1

1 E
[{

(X �1 S−1/2
1 � · · · �r S−1/2

r ) �−1 (X �1 S−1/2
1 � · · · �r S−1/2

r )
}2
]
.

By Theorem 2, the right-hand side is

ρ−1
1 τ4E

[
{(Z �1 W1 � · · · �r Wr) �−1 (Z �1 W1 � · · · �r Wr)}2

]
.

By Lemma 3, this is ρ−1
1 τ4W1E{(Z �−1 Z)2}W>

1 and by (19) the expectation can be expressed as E{(Z �−1 Z)2} =

E(Z(1)Z>(1)Z(1)Z>(1)). Now applying the matrix identities in (5) completes the proof for B0
m. The proof for B1

m is carried
out similarly by reducing the matter into the matrix case.295
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Theorem 3 says that Wm has the eigenvectors of B0
m and B1

m as its columns. In other words, we can recover the
orthogonal matrices Wm from the eigendecompositions of B0

m or B1
m for each m ∈ {1, . . . , r}. Again, to identify the

eigenbases we need the following assumption.

Assumption T3. For each m ∈ {1, . . . , r}, the components of β̄−m are distinct.

The next corollary puts the m-mode standardizations and rotations together to recover the independent components300

from a random tensor X.

Corollary 1. For each m ∈ {1, . . . , r}, let S−1/2
m be any square root of Sm and let Wm have the eigenvectors of either

B0
m or B1

m as its columns. Then, under Assumptions T1 and T3, we have

X �1 (W>
1 S−1/2

1 ) � · · · �r (W>
r S−1/2

r ) = τZ.

Proof. Multiply both sides of the equation (13) from the right by �1W>
1 � · · · �r W>

r and evoke tensor-matrix product
rule in Lemma 1 to prove the result.

6. Limiting distributions

In this section we pursue the asymptotic distributions of the unmixing estimates given by the extended ICA pro-305

cedures in the previous sections. We will focus primarily on MFOBI because the corresponding results for TFOBI
follow directly from the results for MFOBI, as detailed in Remark 1. However, we first discuss the important concept
of equivariance.

6.1. Equivariance and independent component functionals
In the vector-valued case for example [25] state that an unmixing functional Γ must satisfy the following two310

conditions:

(i) For a distribution of z ∈ Rp with standardized and mutually independent components, Γ(z) = Ip.

(ii) For the distribution of any x ∈ Rp, it holds that Γ(Ax) = Γ(x)A−1, for all A ∈ Ap.

In both conditions the equalities are understood up to permutation and sign changes of the rows. The second condi-
tion means that the functional is equivariant under affine transformations and Γ(x)x is thus independent of the used315

coordinate system. Theoretical derivations can then be limited to the case Ω = Ip.
Consider next the unmixing matrix functionals in the tensor case and for each m ∈ {1, . . . , r}, write Γ(m)(X) =

W>
mS−1/2

m for the m-mode unmixing matrix functional. The functional Γ(m) is said to be (fully) affine equivariant if, for
all X ∈ Rp1×···×pr and all A1 ∈ A

p1 , . . . ,Ar ∈ A
pr ,

Γ(m)(X �1 A1 � · · · �r Ar) = Γ(m)(X)A−1
m .

This is however true for our unmixing matrix functionals only if A1, . . . ,Ar are all orthogonal. The TFOBI unmixing320

matrix functionals Γ(m) are thus orthogonally equivariant. Also the weaker marginal affine equivariance

Γ(m)(X �m Am) = Γ(m)(X)A−1
m ,

for some fixed m ∈ {1, . . . , r}, holds only if all As, s , m are orthogonal. The reason why both of these conditions fail
in the general case is that the m-mode covariance functionals are not fully affine equivariant in the sense that, for all
X ∈ Rp1×···×pr , all A1 ∈ A

p1 , . . . ,Ar ∈ A
pr and all m ∈ {1, . . . , r},

cov(m)(X �1 A1 � · · · �r Ar) = Amcov(m)(X)A>m. (20)

The condition (20) also holds only if A1, . . . ,Ar are all orthogonal, leading then into the orthogonal equivariance and
marginal orthogonal equivariance of Γ(m). In fact, (20) in general seems such strict a requirement that we conjecture
that no functional satisfying it exists. This would then imply also that no fully affine equivariant tensor unmixing
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matrix functionals based on separate standardization and rotation steps exist. Note however, that marginally affine325

equivariant Γ(m) for a single direction can be obtained if cov(m) and then B0
(m) or B1

(m) are applied separately for each
direction.

The lack of full affine equivariance means that the asymptotic results for the unmixing matrix estimates for general
ΩL andΩR no longer follow from the results in the simple case,ΩL = Ip,ΩR = Iq, and thus the comparison of different
estimates becomes difficult. In the following, we find the limiting distributions of the FOBI estimate Γ̂ and the MFOBI330

estimates Γ̂L and Γ̂R under the assumptions thatΩ = Ip (FOBI) and thatΩL = Ip andΩR = Iq (MFOBI). The estimates
are obtained by applying the functionals to empirical distributions of sample size n.

6.2. Limiting distribution of the FOBI estimate

The asymptotic behavior of the classic FOBI was first derived in [12] and requires Assumption V3 on the distinct
kurtosis values of the components. The following results are however in the form of [27], see their Theorem 8 and335

Corollary 3.

Theorem 4. Let z1, . . . , zn be a random sample from a p-variate distribution having finite eighth moments and satis-
fying assumptions V1 and V3. Assume further that Ω = Ip and that the standardization functional Ŝ−1/2 is chosen to
be symmetric. Then there exists a sequence of FOBI estimates such that Γ̂→P Ip and

√
n (γ̂kk − 1) = −

1
2
√

n(ŝkk − 1) + oP(1),
√

n γ̂kk′ =

√
nQ̂ − (βk + p + 1)

√
nŝkk′

βk − βk′
+ oP(1),

where Q̂ = q̂kk′ + q̂k′k +
∑

m,k,k′ q̂mkk′ and k , k′.

Based on Theorem 4 we can then compute the asymptotic variances of the elements of the estimated unmixing
matrix Γ̂.

Corollary 2. Under the assumptions of Theorem 4 the limiting distribution of
√

n vec(Γ̂ − Ip) is multivariate Normal
with mean vector 0p2 and the following asymptotic variances.

AS V(γ̂kk) =
βk − 1

4
, AS V(γ̂kk′ ) =

ωk + ωk′ − β
2
k − 6βk′ + 9 +

∑
m,k,k′ (βm − 1)

(βk − βk′ )2 , k , k′.

As Corollary 2 shows, the asymptotic variance of any off-diagonal element γ̂kk′ of the unmixing matrix depends340

also on components other than zk and zk′ (via their kurtoses). Of the commonly used independent component analysis
methods, FastICA, FOBI and JADE, FOBI is unique in this sense, partly explaining its inferiority to the other methods.

6.3. Limiting distribution of the MFOBI estimate

We provide the asymptotic properties of only the left-hand side unmixing matrix estimate Γ̂ = Γ̂L, the right-hand
side version being again easily obtained by reversing the roles of rows and columns. Here N = 0 or N = 1 depending345

on the choice of the FOBI functional and the sample left and right covariance matrices are denoted by S̄L = (s̄L
kk′ ) and

S̄R = (s̄R
kk′ ), respectively.

Theorem 5. Let Z1, . . . ,Zn be a random sample from a distribution of a matrix-valued Z ∈ Rp×q having finite eighth
moments and satisfying assumptions M1 and M3. Assume further that ΩL = Ip and ΩR = Iq, and that the left and
right standardization functionals, S̄−1/2

L and S̄−1/2
R , are chosen to be symmetric. Then there exists a sequence of left

MFOBI estimates such that Γ̂→P Ip and

√
n (γ̂kk − 1) = −

1
2
√

n(s̄kk − 1) + oP(1),
√

nγ̂kk′ =

√
nQ̄ +

√
nR̄N − (β̄k· + bN)

√
ns̄kk′

(β̄k· − β̄k′·)
+ oP(1), k , k′,

where Q̄ = q̄kk′ + q̄k′k +
∑

m,k,k′ q̄mkk′ , R̄N = r̄kk′ + r̄k′k +
∑

m,k,k′ r̄N
mkk′ , b0 = 2q + p − 1 and b1 = qp + 1.
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Corollary 3. i) Under the assumptions of Theorem 5 the limiting distribution of
√

n vec(Γ̂−Ip) is multivariate Normal
with mean vector 0p2 and the following asymptotic variances:

AS V (γ̂kk) =
β̄k· − 1

4q
,

AS V(γ̂kk′ ) =
ω̄k· + ω̄k′· − β̄

2
k· + 2δkk′ + (q − 1)β̄k· + (q − 7)β̄k′· + cN

q(β̄k· − β̄k′·)
2

, k , k′,

where c0 =
∑

m,kk′ β̄m· + pq − 2p − 4q + 15 and c1 = q
∑

m,kk′ β̄m· − pq + 11.

Proof. The proof for the consistency of the estimator is obtained similarly as in the proof of Theorem 5.1.1 in [48].350

Write then

L̄ = ( ¯̀kk′ ) = S̄−1/2
L →P Ip, L̄∗ = L̄>L̄→P Ip, R̄ = (r̄``′ ) = S̄−1/2

R →P Iq, R̄∗ = R̄>R̄→P Iq.

Limiting Normal distributions of the components of the sample covariance functionals imply that
√

n (S̄L−Ip) = OP(1)
and
√

n (S̄R−Iq) = OP(1) and the following two asymptotic expansions are then easy to prove using Slutsky’s theorem:

√
n (L̄ − Ip) = −

1
2
√

n (S̄L − Ip) + oP(1),
√

n (L̄>L̄ − Ip) =
√

n (L̄ − Ip) +
√

n (L̄> − Ip) + oP(1).

see, e.g., the supplementary material to [48].
The estimated left unmixing functional is then Γ̂ = Ŵ>

L L̄, where Ŵ>
L is obtained from the eigendecomposition

of the sample left FOBI functional B̄N
L = (b̄N

kk′ ) = ŴLΛ̂
N
L Ŵ>

L , where Λ̂N
L →P Λ

N
L . The asymptotic behavior of

the diagonal elements
√

nγ̂kk of the estimated left unmixing functional can be derived similarly as in the proof of
Theorem 4.1.2 of [48]. For the off-diagonal elements, using Slutsky’s theorem and the fact that Λ̂N

L is diagonal, it is
straightforward to show that we have for an arbitrary (k, k′)-element of the estimated left unmixing functional

√
nγ̂kk′ =

√
nb̄N

kk′ + (β̄k· − β̄k′·)
√

n ¯̀kk′

β̄k· − β̄k′·
+ oP(1), k , k′. (21)

The problem lies then in finding the asymptotic behavior of an arbitrary off-diagonal element
√

nb̂N
kk′ . Consider

first the case N = 0 and write B̄0
L open according to its definition:

√
n (B̄0

L − Λ
0
L) = L̄

√n
1
n

n∑
i=1

Z̃iR̄∗Z̃>i L̄∗Z̃iR̄∗Z̃>i

 L̄> −
√

nΛ0
L,

where Z̃i = Zi − Z̄. Inspecting a single off-diagonal element yields

√
n b̄0

kk′ =
1
q

∑
de f gstuv

√n ¯̀kd r̄∗e f
¯̀∗
gsr̄
∗
tu

¯̀k′v
1
n

n∑
i=1

z̃i,dez̃i,g f z̃i,st z̃i,vu

 .
Next, expand each of the covariance terms one-by-one starting with

√
n ¯̀kd =

√
n ( ¯̀kd − δkd) +

√
n δkd. After each355

expansion, the first term has a multiplicand that is OP(1) and Slutsky’s theorem guarantees the convergence of the
corresponding product. Note also that

1
n

n∑
i=1

z̃i,dez̃i,g f z̃i,st z̃i,vu →P E(zdezg f zstzvu).

The number of sums decreases at each step finally resulting into

√
n b̄0

kk′ = (2q + p − 1 + β̄k′·)
√

n ˆ̀kk′ + (2q + p − 1 + β̄k·)
√

n ˆ̀k′k +
∑
egt

√
n

1
n

n∑
i=1

z̃i,kez̃i,gez̃i,gt z̃i,k′t + oP(1),
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the last proper term of which partitions into the quantities defined in Section 2 as

√
n q̄kk′ +

√
n q̄k′k +

∑
m,k,k′

√
n q̄mkk′ +

√
n r̄kk′ +

√
n r̄k′k +

∑
m,k,k′

√
n r̄0

mkk′ ,

after which plugging everything into expression (21) gives the desired result.
The proof for the case N = 1 is almost similar, only the starting expression is somewhat different:360

√
n b̄1

kk′ =
1
q

∑
de f ghstuv

√
n ¯̀kd r̄∗e f

¯̀k′g ¯̀hsr̄∗tu ¯̀hv
1
n

n∑
i=1

z̃i,dez̃i,g f z̃i,st z̃i,vu.

For both choices of N the asymptotic variances of Corollary 3 are then straightforward, albeit a bit tedious, to compute
using both Tables 2 and 3 containing covariances between the different terms in addition to the following covariances
not fitting into the tables: nq × cov(q̄mkk′ , q̄m′kk′ ) = 1, nq × cov(q̄mkk′ , r̄0

m′kk′ ) = 0, nq × cov(q̄mkk′ , r̄1
m′kk′ ) = q∗, nq ×

cov(r̄0
mkk′ , r̄

0
m′kk′ ) = 0 and nq × cov(r̄1

mkk′ , r̄
1
m′kk′ ) = q∗2, where m , m′ and q∗ = q − 1.

Table 2: Covariances of
√

nq times the row and column quantities, k , k′ , m.

q̄kk′ q̄k′k q̄mkk′

q̄kk′ ω̄k· δkk′ + β̄k·β̄k′· β̄k·
q̄k′k − ω̄k′· β̄k′·
q̄mkk′ − − β̄m·

Table 3: Covariances of
√

nq times the row and column quantities, k , k′ , m and q∗ = q − 1.

r̄kk′ r̄k′k r̄0
mkk′ r̄1

mkk′ s̄kk′

q̄kk′ q∗β̄k· q∗β̄k· 0 q∗β̄k· β̄k·
q̄k′k q∗β̄k′· q∗β̄k′· 0 q∗β̄k′· β̄k′·
q̄mkk′ q∗ q∗ 0 q∗ 1
r̄kk′ q∗(q − 2 + β̄k·) q∗2 0 q∗2 q∗

r̄k′k − q∗(q − 2 + β̄k′·) 0 q∗2 q∗

r̄0
mkk′ − − q∗ − 0

r̄1
mkk′ − − − q∗(q − 2 + β̄m·) q∗

s̄kk′ − − − − 1

365

Remark 1. The limiting distributions of the TFOBI estimates, Γ̂m = Ŵ>
mŜ−1/2

m with m ∈ {1, . . . , r}, follow straight-
forwardly from the results of the matrix case; using the m-flattening of tensors from Section 5 we can express the
m-mode tensor product as Z �−m Z = Z(m)Z>(m), where the matrices Z(1), . . . , Z(r) obey the matrix independent compo-
nent model and have distinct kurtosis row means. Thus the task of finding the mth rotation in TFOBI reduces to that of
finding the left rotation in MFOBI. Additionally, (18) shows that the standardization matrices of modes other than m370

are in the m-flattening of the standardized observations collected to the multiple Kronecker product on the right-hand
side both satisfying the assumption R̂ →P I and contributing nothing to the asymptotics of mode m, as shown in the
proof of Theorem 5. The limiting distributions for Γ̂m are thus obtained by applying Theorem 5 into the empirical
distributions of Z(1), . . . , Z(r).
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Comparison of the expressions for the two choices of N in Corollary 3 immediately yields the following result.375

Corollary 4. Assume q > 1 and denote by Zkk′ the matrix obtained by dropping rows k and k′ from Z, k , k′. Then,
for p > 2, the choice N = 1 is asymptotically superior to the choice N = 0 in estimating γ̂kk′ if and only if the average
kurtosis of the elements of Zkk′ is smaller than 2, i.e., when

1
p − 2

∑
m,k,k′

β̄m· < 2.

If p = 2 then the methods are asymptotically equivalent regardless of the distribution of Z.

According to Corollary 4, to justify the use of the normed version (N = 1) one would have to assume not only one,380

but several elements of Z to have kurtosis values below 2. To gain some insight on the strictness of the inequality in
Corollary 4, we use the moment inequality of [16] stating that for unimodal distributions with finite fourth moments
we have

γ2 ≤ β −
189
125

.

Combining this bound with Corollary 4 then reveals that a necessary condition for the superiority of the normed
version is that most elements of Z must be multimodal or almost symmetric (average squared skewness has to be385

smaller than 0.488). In the second simulation study of Section 7, we will conduct a comparison of the two versions
under different settings but as the condition in Corollary 4 is in general very restrictive and unrealistic the other
simulation studies are done using the non-normed versions of MFOBI and TFOBI.

To provide more insight into the second part of Corollary 4 where p = 2, recall that the Cayley–Hamilton theorem
states that every square matrix A ∈ Rp×p is annihilated by its characteristic polynomial [37]. For p = 2 this takes the390

simple form
A2 − tr(A)A + det(A)I2 = 0.

Assume now that X1, . . . ,Xn is a sample of tensors of the same size and that the mth mode of X1 has length two. Then,
Xi �−m Xi is of size 2 × 2 for all i ∈ {1, . . . , n} and we have

(Xi �−m Xi)2 = ‖Xi‖
2
F(Xi �−m Xi) − det(Xi �−m Xi)I2,

where we have utilized the m-flattening, tr(Xi �−m Xi) = tr(Xi(m)X>i(m)) = ‖Xi(m)‖
2
F = ‖Xi‖

2
F . Consequently, the sample

estimates of B0
(m) and B1

(m) in Definition 4 have a difference proportional to the identity matrix, implying that they have395

the same sets of eigenvectors. Thus for modes of length two the performances of the normed and non-normed version
are not only equivalent in the limit, but equivalent for finite samples as well.

6.4. Comparing the limiting efficiencies of the FOBI and TFOBI estimates
As the asymptotic variances in Corollaries 2 and 3 are rather complicated and each of them relates only to a single

element of a single matrix, to compare them as a whole a more concise measure of asymptotic accuracy is desired.400

For this we first review the minimum distance index (MDI) [13] computed as

D̂m = D(Γ̂(m),Ωm) =
1√

pm − 1
inf

C∈Cpm
‖CΓ̂(m)Ωm − Ipm‖F ,

where Ωm ∈ Rpm×pm is the true m-mode mixing matrix and Γ̂(m) is the m-mode unmixing matrix estimate. The
minimum distance index is a measure of how far away the matrix Γ̂(m)Ωm is from the identity matrix, invariant to
order, scales and signs of rows. The index satisfies 0 ≤ D̂ ≤ 1 with the value 0 indicating that Γ̂(m) = Ω−1 up to
permutation, scaling and sign-change of its rows. The index further obeys the limit result n(pm−1)D̂2

m →d Dm, where
Dm is a distribution with the expected value

Em =

pm−1∑
k=1

pm∑
k′=k+1

{
AS V(γ̂(m)

kk′ ) + AS V(γ̂(m)
k′k )

}
, (22)
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where γ̂(m)
kk′ is the (k, k′) element of Γ̂(m). Consequently Em, the sum of asymptotic variances of the off-diagonal

elements of Γ̂(m), provides a single-number measure of the asymptotic performance of TFOBI in the mth mode.
However, as FOBI produces only a single number E1 and TFOBI one for each mode, E1, . . . , Er, we still need to

somehow combine the latter to allow comparisons between FOBI and TFOBI. Both the FOBI unmixing estimate Γ̂405

and the Kronecker product Γ̂(r) ⊗ · · · ⊗ Γ̂(1) of the TFOBI unmixing estimates estimate the inverse of the same matrix
Ω = Ωr ⊗ · · · ⊗Ω1 and thus the comparison should be done between them. A link connecting the minimum distance
indices of the Kronecker product Γ̂(r) ⊗ · · · ⊗ Γ̂(1) and its component matrices is given next.

Theorem 6. Let the sample X1, . . . ,Xn ∈ Rp1×···×pr be generated by the tensor-valued independent component model
(8) with identity mixing, Ωm = Ipm for each m ∈ {1, . . . , r} (in our case also orthogonal mixing suffices, see below).410

Assume that the unmixing estimates have the limiting Normal distributions
√

n vec(Γ̂(m)−Ipm ) N(0,Σm) and denote
p = p1 · · · pr. Then we have

n(p − 1)D̂2(Γ̂(r) ⊗ · · · ⊗ Γ̂(1), Ip) =

r∑
m=1

p
pm

n(pm − 1)D̂2(Γ̂(m), Ipm ) + oP(1).

Proof. By Theorem 1 in [13] the left-hand side of the claim equals

n‖off(Γ̂(r) ⊗ · · · ⊗ Γ̂(1))‖2F + oP(1) = n ‖Γ̂(r) ⊗ · · · ⊗ Γ̂(1)‖
2
F − n ‖diag(Γ̂(r) ⊗ · · · ⊗ Γ̂(1))‖2F + oP(1)

= n
r∏

m=1

‖Γ̂(m)‖
2
F − n

r∏
m=1

‖diag(Γ̂(m))‖2F + oP(1)

= n
r∏

m=1

‖Γ̂(m)‖
2
F − n

r∏
m=1

(
‖Γ̂(m)‖

2
F − ‖off(Γ̂(m))‖2F

)
+ oP(1).

Focus next on the second product. We have n ‖off(Γ̂(m))‖2F = OP(1), ‖off(Γ̂(m))‖2F = oP(1) and ‖Γ̂(m)‖
2
F = pm + oP(1),

meaning that when the product is opened the terms with more than one ‖off(·)‖2F-term are oP(1). We are thus left with

r∑
m=1

n ‖off(Γ̂(m))‖2F
r∏

s,m

ps

 + oP(1),

and using Theorem 1 in [13] in the other direction, n‖off(Γ̂(m))‖2F = n(pm−1)D̂2(Γ̂(m), Ipm )+oP(1) gives the claim.

Corollary 5. Under the assumptions of Theorem 6 the expected value of the limiting distribution of n(p− 1)D̂2(Γ̂(r) ⊗

· · · ⊗ Γ̂(1), Ip) is
∑r

m=1(p/pm)Em, where Em is as in (22).415

Corollary 5 implies that the comparison between FOBI and TFOBI should be done by comparing the values of E∗1
and

∑r
m=1(p/pm)Em where E∗1 is the value of (22) for FOBI. These values will later be plotted in the simulations where

the orthogonal equivariance of TFOBI guarantees that Corollary 5 holds also when the mixing is orthogonal. Finally,
Theorem 6 also provides insight into the general comparison of two arbitrary (transformed) MDI-values, n(q1 − 1)D2

1
and n(q2 − 1)D2

2. If the respective mixing matrices are of the size q1 × q1 and q2 × q2 then the quantities nq2(q1 − 1)D2
1420

and nq1(q2 − 1)D2
2 are on the same “scale”.

7. Simulation studies and a real data example

7.1. On computational issues
Before the simulations we compare the assumptions between MFOBI and first vectorizing and then using FOBI,

hereafter referred to just as FOBI. The difference clearly lies in Assumptions V3 and M3, which simply state that425

MFOBI makes much less assumptions on the kurtosis values. For reasonably large square p× p matrices, vectorizing
and using FOBI roughly squares the amount of constraints needed for MFOBI (2p vs. p2). However, one has to bear
in mind that the nature of the constraints also changes, MFOBI being concerned with the row and column means of
kurtoses and FOBI with the individual values.
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Table 4: The distributions of the elements of Zi in the first simulation. U(a, b) denotes the continuous uniform distribution from a to b, Tri(a, b, c)
the triangular distribution from a to b with the apex located at c, G(α, β) the Gamma distribution with shape α and rate β, E(β) the exponential
distribution with rate β and IG(µ, λ) the inverse Gaussian distribution with mean µ and shape λ.

U(−
√

3,
√

3) t10 χ2
3 χ2

1.5
Tri(−

√
6,
√

6, 0) G(3,
√

3) G(1.2,
√

1.2) χ2
1.2

N(0, 1) Laplace(0, 1/
√

2) E(1) IG(1, 1)

Second, the most computationally intensive parts in both FOBI and MFOBI are the eigendecompositions, the430

computational complexity of finding the eigendecomposition of a p × p matrix being roughly O(p3) [32]. Thus
assuming again observations of size p × p, MFOBI requires four O(p3) operations while FOBI needs two O(p6)
operations, a considerable difference with large p. And thirdly, the numbers of estimable parameters are for MFOBI
and FOBI 2p2 − 1 and p4, respectively (assuming again that p = q).

All the previous issues become even more serious when comparing TFOBI and FOBI: the number of components435

in FOBI grows exponentially with the order of the tensor while in general TFOBI just has to perform a few more
eigendecompositions of much smaller matrices.

All following computations have been made in R [36], especially using the packages abind [35], ICS [28], JADE
[26], MASS [45] and tensor [39]. The implementation of TFOBI and several other tensor methods can be found in
the package tensorBSS [49].440

7.2. Separation performance comparison
In our first simulation we compared the abilities of MFOBI and FOBI to estimate the unmixing matrix and separate

the sources. As our setting we chose samples of independent 3 × 4 observations Zi, the 12 components of which,
depicted in Table 4, were standardized to have zero mean and unit variance. Starting from the top left corner and
moving down and right, the kurtoses of the components are 1.8, 2.4, 3, 4, 5, 6, 7, 8, 9, 11, 13 and 18. The sample445

sizes considered were n = 1000, 2000, 4000, 8000, . . . , 256000. Furthermore, we considered three types of double
mixings, Zi 7→ Xi = Ω1ZiΩ

>
2 , namely (i) Normal distribution, (ii) uniform distribution and (iii) orthogonal matrices

uniform with respect to the Haar measure. In the first two cases appropriate square matrices were created having
random elements from N(0, 1) orU(−1, 1) respectively.

We did a total of 2000 replications per setting and as our performance criteria we used the transformed minimum450

distance indices discussed in the end of Section 6, n(p1 p2−1)D(Γ̂(2)⊗ Γ̂(1),Ω2⊗Ω1) and n(p1 p2−1)D(Γ̂
∗

(1),Ω2⊗Ω1),
where Γ̂

∗

(1) is the FOBI unmixing estimate. The two values directly measure the accuracies of the methods’ separation
abilities (lower is better) and under orthogonal mixing (under all mixings for the affine equivariant FOBI), when n
grows their means will converge to

∑2
m=1(p1 p2/pm)Em and E∗1, respectively; see (22) and Corollary 5. The mean

values of the criteria and their limit values are plotted in Figure 1 and we make the following observations.455

Contrary to FOBI, the performance of MFOBI indeed depends on the mixing matrix as is shown by the three
distinct lines in Figure 1. The separation is easiest for MFOBI when the mixing is orthogonal (because of its orthog-
onal equivariance orthogonal mixing is equivalent to no mixing at all) and between normal and uniform mixing the
separation is slightly easier under the latter. FOBI, while affine equivariant and independent of the choice of mixing,
is clearly inferior to MFOBI both with finite samples (the solid lines) and in the limit (the dashed lines). Both curves460

under orthogonal mixing approach the corresponding limit values, MFOBI faster than FOBI, giving empirical proof
on the correctness of the results of Section 6.

7.3. Comparison between the normed and non-normed versions
Our next simulation study compares the two choices of TFOBI functionals, N ∈ {0, 1}. By Corollary 4 the value of

N makes no difference in modes of length two and, guided by the condition in Corollary 4, we consider two settings,465

both random samples of independent and identically distributed 3 × 3 matrices, with the elements
N(0, 1) B(−1, 1) B(−1, 1)
B(−1, 1) U(−

√
3,
√

3) B(−1, 1)
B(−1, 1) B(−1, 1) B(−1, 1)

 and


B(−1, 1) N(0, 1) N(0, 1)
N(0, 1) U(−

√
3,
√

3) N(0, 1)
N(0, 1) N(0, 1) N(0, 1)

 ,
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Figure 1: The plot of sample size versus the mean transformed MDI-value with different combinations of method and mixing. The dashed lines
give the values of

∑2
m=1(p1 p2/pm)Em and E∗1 towards which the means under orthogonal mixing theoretically converge.

whereN(0, 1) is the standardized Normal distribution,U(−
√

3,
√

3) is the continuous uniform distribution from −
√

3
to
√

3 and B(−1, 1) is the two-point probability distribution taking equally likely each of the values, −1 and 1. The
distributions have the respective kurtoses 3, 1.8 and 1 and consequently the condition of Corollary 4 is satisfied for
every off-diagonal element in the first setting and is not satisfied for any off-diagonal element in the second setting.470

Asymptotically the choice N = 1 is superior to N = 0 in the first setting and vice versa for the second one. To investi-
gate whether this holds also for finite samples, we simulated samples of size n = 1000, 2000, 4000, 8000, . . . , 256000
from the above distributions and applied MFOBI to them in four different forms: using the pairs (BL

0 ; BR
0 ), (BL

1 ; BR
1 )

and the mixed pairs (BL
0 ; BR

1 ) or (BL
1 ; BR

0 ). Intuitively, the performances of the latter two should fall somewhere be-
tween those of the former two. To be able to utilize our asymptotic results we did not mix the observations (which is475

equivalent to using orthogonal mixing).
We again used the minimum distance index as a criterion and the resulting mean transformed MD-indices over

2000 replications are shown in Figure 2. The dashed lines in the plot indicate the limiting expected values computed
using the results of Section 6, toward which the solid lines theoretically converge. We have not visually distinguished
the limit lines from each other as their order is the same as the order of the empirical lines. The symmetry of the480

simulated matrices causes the two mixed MFOBI-functionals to have the same limiting values and similar behavior is
also visible in the corresponding two empirical lines matching each other closely. Further observations include: The
empirical lines approach the limits rather nicely, with some swaying in the setting where the condition is not satisfied.
The setting where the condition is satisfied is overall more easily separated (the lines are lower in the plot). Finally,
the ordering between the methods is consistent throughout the study and under both settings the two mixed cases are485

located almost halfway between the non-mixed cases. Despite the success of the choice N = 1 here, based on the
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Figure 2: The plot of sample size versus the mean transformed MDI-value with different combinations of setting and N ∈ {0, 1}. The value of
“Normed” tells which value of N was used for the left and right unmixing matrices, e.g., 1 0 means that the left unmixing matrix used the normed
version but the right one did not. The dashed lines give the values of

∑2
m=1(p1 p2/pm)Em towards which the means theoretically converge.

extreme measures that were required to create a setting where the condition of Corollary 4 is satisfied (we needed to
resort to the transformed Bernoulli-distributionB(−1, 1), the probability distribution with the lowest possible kurtosis)
we still choose to advocate using primarily the case N = 0.

7.4. FOBI and TFOBI in classification490

Traditionally, although not consistent with the model assumptions, ICA methods are often used as a preprocessing
step for classification as linear combinations of the variables with high or low kurtosis are often the most informative
in this sense. Peña et al. [33], for example, used FOBI to reveal cluster structures in the data. Also, Tyler et al.
[43] showed that two scatter matrices can be combined to estimate Fisher’s linear subspace in the case of mixtures of
elliptical distributions with proportional covariance matrices. Following the interpretation of FOBI and TFOBI as a495

combination of different scatters we compare in this section FOBI and TFOBI for the purposes of classification.
The comparison was done in the following set-up. For each replication we simulated 500 observations of 5 ×

5 × 5 tensors Xi belonging to one of two groups. In Group 1 all elements of the observations Xi are sampled from
independent N(0, 1)-distributions, while in Group 2 the front upper left 2 × 2 × 2 corner has elements sampled from
independent N(2, 1)-distributions (and the rest of the elements from N(0, 1)). A proportion π of all observations500

belonged to Group 2.
We did 2000 replications for each of the values π ∈ {0.10, 0.15, . . . , 0.50} and for each replication we mixed the

observations from all three m-modes using the same three types of mixing matrices as in the previous section. Next,
we divided the transformed data randomly into training and test sets, with the respective sizes of 400 and 100. Both
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Figure 3: Proportions of correct classifications as a function of proportion π with FOBI and TFOBI as pre-steps and with three types of random
mixing matrices.

TFOBI and FOBI were then carried out for the training data and linear discriminant analysis (LDA) was used to create505

classification rules based on certain selected components. For TFOBI we chose these to be the corner components
z1,1,1 and z5,5,5 and the components having the highest and lowest kurtoses. For FOBI we simply chose the first two
and the last two components (ordered according to kurtosis). As a reference, we also created a classification rule with
LDA using all the original components. The means of the proportions of correct predictions in the test set for each of
the rules are plotted in Figure 3. The reference value is included as the line “NONE”.510

LDA uses the training set group proportions as a prior and a “baseline” proportion of correct predictions is thus
1 − π, corresponding to classifying all test observations to the dominant group. The plot indicates that FOBI cannot
find the direction separating the groups in any systematic way and is actually no better than the baseline. TFOBI, in
contrast, is in every case better than FOBI and performs very nicely under all mixings (especially orthogonal). Under
orthogonal mixing and for π larger than or equal to 0.20 TFOBI, being able to filter out the noise, is also slightly better515

than using all the original components. The simulation thus implies that TFOBI provides a reliable way of extracting
the separating variables from tensor-valued data.

7.5. Real data example
To see how MFOBI works with real data we use the semeion1 data set available from the UCI Machine Learning

Repository [21]. The data consist of 1593 scanned handwritten digits written by 80 persons represented as binary520

1Semeion Research Center of Sciences of Communication, via Sersale 117, 00128 Rome, Italy; Tattile Via Gaetano Donizetti, 1-3-5,25030
Mairano (Brescia), Italy.
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Figure 4: The figure on the left-hand side shows the scatter plot of the two independent components having the lowest and highest kurtoses,
dividing the data nicely into two groups. The separation is also visible on the right-hand side in the rug and the bimodal kernel density estimate of
the component with the lowest kurtosis.

16 × 16 matrices. For our analysis we picked only the images of the visually similar digits 3 and 8 hoping to find a
direction separating the two digits. The number of observations is then n = 314 with almost equal number of threes
and eights (159 and 155, respectively).

The results of MFOBI are shown in Figure 4. The scatter plot on the left shows the distributions of the components
having the highest and lowest kurtoses (z1,2 and z16,16, respectively), with the individual images as plotting markers,525

along with the decision boundary given by quadratic discriminant analysis. Although the two groups of digits overlap
a bit the separation is still very clear, as is evidenced also by the kernel density estimate of the minimal kurtosis
component on the right-hand side of Figure 4. We also see that the hand-writing is slanting more and more to the right
with increasing values of z16,16 and that the variable z1,2 with highest kurtosis can be used in search for outliers.

For comparison, we also tried applying regular FOBI to the vectorized data with somewhat disappointing results;530

the covariance matrix of the full data was not invertible and when trying with some subsets of the data, FOBI succeeded
only in finding a few outliers.

8. Concluding remarks

In this paper, we presented methods of independent component analysis for matrix- and tensor-valued observations
called MFOBI and TFOBI. The total procedure can be seen as a simultaneous application of the classic FOBI on all535

m-modes of the observed tensors.
Apart from the algorithms and two different ways of estimating the unmixing matrix, we provided the asymptotic

variances of the elements of the unmixing matrix estimates in the case of orthogonal mixing. The variance expres-
sions then show that using the non-normed version of TFOBI is in most cases the preferable approach. Regarding the
comparison of TFOBI with the often used combination of vectorizing and FOBI, we first stated that the numbers of540

estimable parameters and assumptions required are of much smaller order in MFOBI and TFOBI. This is because they
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are able to exploit the possible tensor structure in the estimation. Next, simulations were used to show TFOBI’s supe-
riority to FOBI also in practice, both in estimating the unmixing matrix and as a preprocessing step for discriminant
analysis.

With MFOBI and TFOBI being derivatives of FOBI a reasonable conjecture is that, instead of relying on the545

kurtosis matrices BN , extending some other standard ICA techniques like projection pursuit or JADE [3] into the
tensor case would lead into better estimates. [46] showed that this holds for JADE and some preliminary investigation
shows that this is indeed the case for projection pursuit as well and such a take on the problem can then be seen as a
tensor version of FastICA [11]. The resulting concept of tensorial projection pursuit will be addressed in future work.

Nevertheless, compared with other perhaps more sophisticated routes of generalization, the FOBI-type extensions550

enjoy a particularly simple structure for high-dimensional tensors: the higher moment tensors decompose neatly to
matrices of reasonably low dimensions. As a result the eigendecompositions only need to be performed on pm × pm

matrices individually. This feature makes MFOBI and TFOBI especially attractive when applied on a large scale.
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