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A B S T R A C T   

This study quantifies the causal effect of birth weight on cardiovascular biomarkers in adulthood using the 
Cardiovascular Risk in Young Finns Study (YFS). We apply a multivariable Mendelian randomization (MVMR) 
method that provides a novel approach to improve inference in causal analysis based on a mediation framework. 
The results show that birth weight is linked to triglyceride levels (β = − 0.294; 95% CI [− 0.591, 0.003]) but not 
to low-density lipoprotein (LDL) cholesterol levels (β = 0.007; 95% CI [− 0.168, 0.183]). The total effect of birth 
weight on triglyceride levels is partly offset by a mediation pathway linking birth weight to adult BMI (β = 0.111; 
95% CI [− 0.013, 0.234]). The negative total effect is consistent with the fetal programming hypothesis. The 
positive indirect effect via adult BMI highlights the persistence of body weight throughout a person’s life and the 
adverse effects of high BMI on health. The results are consistent with previous findings that both low birth weight 
and weight gain increase health risks in adulthood.   

1. Introduction 

Prospective population studies on body weight and health have 
established two facts. First, overweight and obesity are linked to severe 
health risks.(Mendis et al., 2011; Reilly and Kelly, 2011; Twig et al., 
2016) The evidence based on observational data has gained support 
from state-of-the-art causal analyses confirming the effect of high body 
mass index (BMI) on cardiovascular biomarkers such as low-density li-
poprotein (LDL) cholesterol and triglycerides.(Bell et al., 2018; Hägg 
et al., 2015; Holmes et al., 2014) Second, the evidence links birth weight 
to body mass in childhood (Dubois et al., 2012; Geserick et al., 2018; 
Hayes et al., 2021) and shows that overweight and obese children are at 
an elevated risk for becoming overweight adults.(Buscot et al., 2018; 
Singh et al., 2008) Despite this, research that directly links birth weight 
to cardiovascular biomarkers in adulthood through adult weight is 
limited and non-conclusive.(Yu et al., 2011; Risnes et al., 2011) 

Identifying the impact of a birth-to-adulthood weight trajectory, or 

mediating pathways in general, on later-life health outcomes is not 
straightforward. The difficulties stem from two challenges. First, the 
effect of birth weight on health may be challenging to identify a priori. 
For example, the fetal programming hypothesis states that undernutri-
tion in the womb during pregnancy causes improper fetal growth. 
(Barker, 1995) Thus, low birth weight may be a risk for postnatal dis-
eases, and a child with a higher birth weight, owing to modifications in 
organs during intrauterine life, may be better adapted to risks of nutri-
tional abundance in adulthood.(Hales and Barker, 2013; Kwon and Kim, 
2017) On the other hand, traits inherited at birth are likely to be asso-
ciated with traits later in life; that is, there is a persistence of charac-
teristics over the lifespan.(Alves et al., 2019) Consequently, a higher 
birth weight is related to a higher adult weight and, therefore, to 
elevated health risks. Second, identifying causal pathways requires 
exogenous variation in both the exposure and mediator. However, 
randomized controlled trials, in which participants are given an inter-
vention that modifies both the exposure and potential mediators, are 
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financially expensive, ethnically challenging, and virtually impossible to 
conduct in practice. 

Our study contributes to the literature on two frontiers. First, ex-
amination of the causal effect of birth weight on later-life cardiovascular 
biomarkers through adult BMI combines two hypotheses—fetal pro-
gramming and BMI trajectory—into the same model. Second, we use a 
novel method—multivariable Mendelian randomization (MVMR)—that 
is based on genetic instruments for both the exposure and mediator in 
identifying causal pathways.(Carter et al., 2021; Sanderson et al., 2019; 
Zheng et al., 2017) We are not aware of any prior studies that jointly 
examine these hypotheses in a causal setting. 

Our empirical analysis uses a genotyped longitudinal survey from 
Finland (the Cardiovascular Risk in Young Finns Study (YFS)) linked to 
the administrative registers of Statistics Finland. Two well-established 
cardiovascular biomarkers—triglycerides and LDL cholesterol—are 
examined.(Mendis et al., 2011; Juonala et al., 2011) 

2. Methods 

2.1. Study sample 

The YFS is a population-based prospective cohort that commenced in 
1980 and consists of randomly chosen children (N = 3596) from five 
university hospital districts and their rural surroundings in six age co-
horts (aged 3, 6, 9, 12, 15, and 18 years in 1980). Although the YFS is not 
nationally representative of Finland’s total population, it is representa-
tive of the six selected age cohorts in the selected geographical areas. 
(Raitakari et al., 2008; Raitakari et al., 2003) 

In 2009, 2442 YFS participants (1123 males and 1319 females) were 
genotyped. The genotypes were obtained using the Illumina clustering 
algorithm.(Teo et al., 2007) Quality control was performed using the 
Sanger genotyping QC pipeline, and individuals with possible related-
ness were removed. Genotype imputation was conducted with the 
SHAPEIT v1 and IMPUTE 2 software,(Delaneau et al., 2012) and the 
1000 Genomes Phase I Integrated Release v3 (March 2012 haplotypes) 
was used as a reference panel.(Howie et al., 2009; Altshuler et al., 2010) 

In 2013, data on YFS participants were linked to longitudinal pop-
ulation census (LPC) data of Statistics Finland (permission TK-53-673- 
13). In 2019, data on several polygenic scores (PGSs) of 2442 YFS par-
ticipants were added into the database. Supplementary Appendix A re-
ports the summary statistics (Table 1), comparison of the total linked 
sample to the genotyped subsample (Table 2), and comparison of the 
genotyped sample to the study sample (Table 3). Supplementary Fig. 1 
presents the flowchart of the study sample. In brief, the study sample (N 
= 1239) is representative of the original YFS sample. 

2.2. Variables 

2.2.1. Birth weight, adult BMI, and health biomarkers in adulthood 
Information on the YFS participants’ birth weight (kg) was based on 

parent-reported measurements over the period 1962–1977. The mea-
surement is very likely to be accurate because all parents of a new-born 
child receive a complete birth certificate at the maternity hospital and a 
child health clinic card at the child health center containing a measure 
for birth in kilograms. Adult BMI (weight (kg)/height squared (m2)) was 
measured in 2001 by healthcare professionals, which eliminates self- 
reporting bias. As blood-based biomarkers of health, we used triglyc-
eride and LDL cholesterol levels obtained in 2011 when the YFS par-
ticipants were between 34 and 49 years of age. 

2.2.2. Genetic instruments 
The PGSs used as instruments are calculated as a weighted sum of 

several genetic variants (single nucleotide polymorphisms (SNPs)) that 
are related to the phenotype (for polygenic score calculation, see Võsa 
et al. (2021)). The PGS for birth weight (PGSBW) is based on the genome- 
wide association study (GWAS) of Horikoshi et al.,(Horikoshi et al., 

2016) and the PGS for BMI (PGSBMI) is based on the GWAS of Locke et al. 
(Locke et al., 2015) To maximize the strength of the instruments, we 
utilize PGSs obtained using a lenient significance threshold (p < 0.01). 
As additional covariates, we use a PGS for waist-to-hip ratio (PGSWHR) 
based on the GWAS of Shungin et al.(Shungin et al., 2015) and a PGS for 
triglycerides (PGSTRI) based on the GWAS of Willer et al.(Willer et al., 
2013) 

2.2.3. Covariates 
To account for parental background (socioeconomic status, SES), we 

use variables from the LPC in 1980. The controls include mother’s years 
of education, father’s years of education, an interaction term (mother’s 
years of education × father’s years of education), and the logarithm of 
family income in euros. Using YFS, we also controlled for the region of 
residence in 1980 via four regional indicators. 

2.3. Statistical methods 

Fig. 1 depicts the MVMR mediation model. (Carter et al., 2021; 
Burgess et al., 2015; von Hinke et al., 2016) We used PGSs to estimate 
the causal links, depicted by solid straight lines. The dashed lines 
represent the contribution of possible confounders and Mendelian 
randomization (MR) assumptions. We decompose the total effect of birth 
weight on a health biomarker into an indirect effect (αMβM) that ac-
counts for the mediated pathway via BMI and a controlled direct effect 
(βD). 

The MR analysis is based on three key assumptions.(Davies et al., 
2018) First, genetic instruments are robustly related to the exposure (the 
relevance assumption). Second, genetic instruments are not associated 
with any confounders of the exposure–outcome relationship (the inde-
pendence assumption). This assumption could be violated owing to pop-
ulation stratification (the allele frequencies differ between population 
subgroups), genetic nurturing (the parental genotype indirectly affects 
offspring’s phenotype by influencing parent’s phenotype), or assortative 
mating (the selection of partners based on phenotype).(Brumpton et al., 
2020) Third, genetic instruments should affect the outcome only via the 
exposure (the exclusion restriction assumption). This assumption could be 
violated if genetic instruments affect the outcome via multiple pathways 
or if they are in linkage disequilibrium (co-inherited) with other genetic 
variants that affect the outcome via other pathways.(von Hinke et al., 
2016; Hemani et al., 2018) 

Our research design, based on PGSs instead of individual SNPs, the 
use of MVMR modeling, and anthropometric measures (birth weight and 
BMI) obtained by health care professionals mitigates the potential 
problems of MR in two ways. First, PGSs enhance the strength of the 
instruments, thus limiting the finite sample bias toward the observa-
tional estimate.(Hemani et al., 2018) A strong instrument may also 
decrease biases stemming from violations of other MR assumptions. 
(Belsky and Israel, 2014) Second, an anthropometric mediator may be 
less vulnerable to gene–environmental confounding than educational 
attainment or health behavior.(McMartin and Conley, 2020; Mills and 
Tropf, 2020) 

Following Sanderson et al.(Sanderson et al., 2019) and Carter et al., 
(Carter et al., 2021) we examine the causal links in each step of the 
mediation path. We provide evidence for the link between birth weight 
and BMI and then between BMI, LDL cholesterol, and triglycerides. The 
baseline model is augmented with indicator variables for sex, cohort, 
region of residence in 1980, and parental background. The cohort in-
dicators account for any cohort differences, and regional indicators ac-
count for the possibility that genetic variation is clustered by 
geographical areas. The covariates for family income, parental years of 
education, and their interactions control for economic resources in 
childhood and assortative mating.(Brumpton et al., 2020) Next, we 
apply MVMR to obtain estimates for the indirect and direct effects and 
report estimates for the total effect. Because the number of observations 
in our data is limited, the risk of type II error increases. Therefore, we 
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interpret results with p < 0.10 as suggestive evidence for statistical 
significance. Finally, we conduct robustness analyses. 

3. Results 

3.1. MR estimates 

The MR estimates in Table 1 (panel A, column 1) show that a higher 
birth weight is related to higher adult BMI (β = 0.111; p < 0.05). The 
inclusion of the SES and regional controls (column 2) leaves the estimate 
intact (β = 0.112; p < 0.05). The standard F-statistics (F = 421.93 and F 
= 409.07) for instrument strength are well above the rule of thumb cut- 
off of 10 as well as the more conservative cut-off of 100 for genetic in-
struments proposed by Lee et al.(Staiger and Stock, 1997; Lee et al., 
2020) 

The MR estimates in panel B (columns 3–6) show that the BMI 
mediator is causally linked to triglycerides (β = 0.986; p < 0.01) but not 
to LDL cholesterol (β = 0.173; p > 0.10). As in panel A, the estimates are 
based on strong instruments (highest F = 204.42; lowest F = 196.22), 
and the inclusion of the SES and regional controls leaves the estimates 
intact. In brief, the MR estimates show evidence for the causal link be-
tween birth weight and BMI and between BMI and triglycerides but not 
between BMI and LDL cholesterol. 

3.2. MVMR estimates of the direct and indirect effects 

The F-statistics in Table 2 show that the instruments strongly predict 
both the exposure and mediator (F = 204.60 for PGSBW and F = 100.28 
for PGSBMI). The Sanderson–Windmeijer (S–W) multivariate F-test 
further shows that the instruments have sufficient strength to jointly 
predict the exposure and mediator. The MVMR estimation increased the 
strength of the instruments (S-W = 374.84 for birth weight and S-W =
191.95 for BMI). 

Birth weight is causally associated with the BMI mediator (β = 0.111; 
p < 0.05 in column 1; β = 0.112; p < 0.05 in column 2), and the BMI 
mediator is causally associated with triglycerides (β = 0.986; p < 0.01) 
but not with LDL cholesterol (β = 0.159; p > 0.10). Consequently, we 
observe a statistically significant indirect effect of birth weight through 
the mediator for triglycerides (β = 0.111; p < 0.10) but not for LDL 
cholesterol (β = 0.018; p > 0.10). 

The estimates of the total effect (β = − 0.294; p < 0.10) and 
controlled direct effect (β = − 0.404; p < 0.01) for triglycerides support 
the fetal programming hypothesis: a lower birth weight is a health risk. 
This link is partly offset by mediation via BMI: high birth weight tends to 
increase adult BMI, and high adult BMI is linked to higher adult tri-
glyceride levels. The absence of the total effect of birth weight on LDL 
cholesterol (β = 0.007; p > 0.10) and of the controlled direct effect (β =
− 0.011; p > 0.10) is consistent with the MVMR estimate of no indirect 
effect via BMI (β = 0.018; p > 0.10). 

In brief, birth weight is causally linked to triglycerides but not to LDL 

Fig. 1. Mediation of the effect of birth weight (BW) through BMI. 
Notes: The indirect effect of BW on the outcome via BMI is obtained by αMβM, and the controlled direct effect is given by βD. 

Table 1 
MR estimates. The effect of BW on BMI and the effect of BMI on LDL cholesterol and triglycerides.   

Panel A Panel B 

The effect of BW on BMI The effect of BMI on biomarkers  

BMI LDL cholesterol Triglycerides  

(1) (2) (3) (4) (5) (6) 

Estimate 0.111** 0.112** 0.173 0.158 0.986*** 0.953*** 
(0.056) (0.056) (0.127) (0.126) (0.200) (0.203) 
[p = 0.048] [p = 0.047] [p = 0.171] [p = 0.211] [p = 0.000] [p = 0.000] 

First-stage 421.93 409.07 204.42 196.22 204.42 196.22 
F-statistics 
Covariates Cohort, sex Cohort, sex Cohort, sex Cohort, sex Cohort, sex Cohort, sex 

SES, region SES, region SES, region 

Notes: N = 1239. The table reports two-stage least squares regression coefficients, standard errors in parenthesis, and p-values in square brackets. Significance at the 
***p < 0.01, **p < 0.05, and *p < 0.10 levels. BW and BMI were log transformed. Instruments are PGSBW (panel A) and PGSBMI (panel B). SES consists of log of family 
income in 1980, mother’s years of education in 1980, father’s years of education in 1980, and interaction term (mother’s years of education × father’s years of 
education). Region refers to the region of residence in 1980 (four indicators). 
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cholesterol, and there is mediation via adult BMI for triglycerides. The 
MVMR estimates are consistent with the univariable MR analysis and 
show that a 10% increase in birth weight leads to a 1.12% higher adult 
BMI, which translates into an increase of 1.10% in triglycerides. 

3.3. Robustness of the MVMR estimates 

The MVMR estimates in Table 2 showed evidence that higher birth 
weight is linked to lower triglyceride levels. Consequently, the robust-
ness analyses in Table 3 focused only on this biomarker. Specification 1 
shows the baseline results. Specification 2 augments the model with an 
indicator for the use of medication designed to lower triglyceride levels. 
This provides evidence for whether the baseline estimates reflect un-
accounted selection in terms of precautionary medical treatment. 
Specification 3 augments the model with a PGS for triglycerides (PGSTRI) 
and specification 4 with a PGS for the waist-to-hip ratio (PGSHWR). The 

former sheds light on possible pleiotropy in the estimates, whereas the 
latter controls for the possibility that the risks of a high BMI on bio-
markers may be modified by the distribution of fat in the body.(Bell 
et al., 2018; Alves et al., 2019) Specifications 5 and 6 augment the model 
with indicators for premature infants and low birth weight, respectively. 
Specification 7 uses inverse probability weights to account for possible 
non-random attrition bias in the sample study; see Supplementary Ap-
pendix B for the construction of the inverse probability weights. 

The robustness checks in Table 3 confirm the main findings. In 
addition, we examined the exclusion restriction by regressing the BMI 
mediator on the PGS for birth weight, conditioning on birth weight and 
all baseline covariates, and triglyceride outcome on the PGSs for adult 
BMI and birth weight, conditioning on BMI, birth weight, and all base-
line covariates. The PGSs did not significantly enter into these models (p 
= 0.211 for PGSBW in the first model; p = 0.276 for PGSBMI and 0.460 for 
PGSBW in the second model). Thus, the SNPs included in the instruments 
for the exposure and mediator seem to be independent; therefore, the 
change in the controlled direct effect, compared with the total effect, 
describes causal mediation and is not attributable to pleiotropy.(Carter 
et al., 2021) 

4. Discussion and conclusions 

4.1. Key strengths and results 

Our research design has two strengths. First, the analyses combined 
two hypotheses—fetal programming and BMI trajectory—into the same 
model. Second, we used the MVMR approach for assessing causal 
pathway and mediation.(Carter et al., 2021; Sanderson et al., 2019; 
Zheng et al., 2017; Burgess et al., 2015) 

We found statistically significant and negative total effect of birth 
weight on triglycerides. This result is consistent with Barker’s hypoth-
esis that low birth weight increases health risks in adulthood.(Zeng and 
Zhou, 2019) Moreover, the finding that there is no significant total effect 
of birth weight on LDL cholesterol is consistent with research suggesting 
that impaired fetal growth does not have effects on cholesterol levels 
that would have a meaningful impact on the risk of vascular diseases; see 
Huxley et al.(Huxley et al., 2004) and Knop et al.(Knop et al., 2018) for a 
meta-analysis. Ramadhani et al.,(Ramadhani et al., 2006) using a sam-
ple of young adults in the Netherlands, reported similar results: higher 
birth weight predicts lower health risk through lower triglycerides, 

Table 2 
MVMR estimates. The effect of BW on LDL cholesterol and triglycerides via BMI.   

LDL cholesterol Triglycerides  

(1) (2) 

(1) BW on BMI 0.111** 0.112** 
(0.056) (0.056) 

(2) BMI on biomarker 0.159 0.986*** 
(0.127) (0.206) 

(3) Indirect effect via BMI 0.018 0.111* 
(0.019) (0.062) 
[p = 0.356] [p = 0.077] 

(4) Controlled direct effect − 0.011 − 0.404*** 
(0.091) (0.148) 
[p = 0.908] [p = 0.006] 

(5) Total effect 0.007 − 0.294* 
(0.090) (0.152) 
[p = 0.935] [p = 0.053] 

Covariates Cohort, sex Cohort, sex 
SES, region SES, region 

F- statistics (BW/BMI) 204.60/100.28 
S–W statistics (BW/BMI) 374.84/191.95 

Notes: N = 1239. See Table 1 for definitions. BW and BMI were log transformed. 
The total effect is calculated from an MR regression, where the triglyceride level 
is regressed on BW, which is instrumented with PGSBW. Indirect effects are 
calculated as a product of coefficients, and their standard errors are based on 
bootstrapping with 1000 replications. 

Table 3 
The effect of BW on triglycerides via BMI: robustness analyses.   

MVMR estimates  

Baseline Medication 
added 

PGS TRI 

added 
PGSWHR 

added 
Indicator premature 
infants 

Indicator < 2,5 kg 
BW 

Inverse probability 
weights  

(1) (2) (3) (4) (5) (6) (7) 

(1) BW on BMI 0.112** 0.112** 0.110** 0.120** 0.126** 0.126** 0.121** 
(0.056) (0.056) (0.056) (0.054) (0.063) (0.061) (0.055) 

(2) BMI on triglycerides 0.986*** 0.979*** 0.828*** 0.747*** 1.048*** 0.997*** 1.003*** 
(0.206) (0.206) (0.143) (0.241) (0.200) (0.209) (0.216) 

(3) Indirect effect via 
BMI 

0.111* 0.110* 0.091* 0.089* 0.132* 0.126* 0.121* 
(0.062) (0.063) (0.054) (0.051) (0.073) (0.070) (0.062) 
[p = 0.077] [p = 0.063] [p = 0.094] [p = 0.080] [p = 0.075] [p = 0.060] [p = 0.052] 

(4) Controlled direct 
effect 

− 0.404*** − 0.418*** − 0.319** − 0.367** − 0.403** − 0.417** − 0.410*** 
(0.148) (0.147) (0.143) (0.148) (0.152) (0.163) (0.152) 

(5) Total effect − 0.294* − 0.313** − 0.228 − 0.278* − 0.271* − 0.292* − 0.289* 
(0.152) (0.150) (0.147) (0.149) (0.168) (0.165) (0.155) 
[p = 0.053] [p = 0.037] [p = 0.121] [p = 0.062] [p = 0.107] [p = 0.078] [p = 0.062] 

F-statistics (BW/BMI) 204.60/ 204.44/ 203.81/ 203.61/ 186.85/ 247.38/ 185.80/ 
100.28 99.49 102.01 75.64 103.81 99.72 93.19 

S–W statistics (BW/BMI) 374.84/ 376.32/ 376.66/ 341.47/ 354.78/ 426.07/ 343.99/ 
191.95 191.11 195.89 142.90 199.31 186.50 178.16 

Notes: N = 1239 (in column 5, N = 1210). See Table 1 for definitions. BW and BMI were log transformed. Covariates consist of cohort, sex, region, and SES. Indirect 
effects are calculated as the product of coefficients, and their standard errors are based on bootstrapping with 1000 replications. The total effect is calculated using two- 
stage least squares regression, where the biomarker is regressed on BW, which is instrumented with PGSBW. 
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whereas there is no association between birth weight and LDL choles-
terol. However, contradictory findings also exist. Using the UK Biobank 
data, Zanetti et al.(Zanetti et al., 2018) found that birth weight is 
inversely related to later-life LDL cholesterol but not to triglycerides. 

Higher birth weight was linked to higher triglyceride levels via high 
BMI. This result on the tracking of body weight over an individual’s 
lifespan is consistent with evidence based on observational data,(Bell 
et al., 2018; Hayes et al., 2021) genotyped data,(Khera et al., 2019; Gill 
et al., 2021) and YFS data.(Smith et al., 2020) Our estimates show that a 
10% increase in birth weight leads to a 1.12% higher adult BMI, which 
translates into a 1.10% increase in triglycerides. A 10% increase in birth 
weight, holding adult BMI constant, leads to a 4.0% decrease in tri-
glycerides. Thus, part of the negative total effect of birth weight on 
triglycerides is offset by an opposing indirect effect via BMI, reflecting 
the adverse effects of high BMI on health. Although our results support 
both the fetal programming and BMI trajectory hypotheses, the former 
mechanism seems to dominate, as the total effect of birth weight on 
triglycerides is negative. However, the overall importance of weight 
gain over the lifespan on triglycerides is noteworthy: a 10% increase in 
adult BMI leads to a 9.8% higher triglyceride level. 

4.2. Possible limitations 

This study has five possible concerns. First is the possibility of recall 
errors in the birth weight measure, although parents receive a birth 
weight certificate at the maternity hospital and birth weight is recorded 
in the child health clinic card. Second, the identification strategy was 
based on genetic variation. Variations owing to other factors may have 
different implications. Third, the analyses assumed that the instruments 
are valid. The PGSs were based on a lenient significance threshold (p <
0.01), which increases the risk of pleiotropy. It is not possible to prove 
instrument validity, although the use of strong instruments decreases 
biases stemming from violations of other MR assumptions and the 
robustness checks were consistent with instrument validity. Fourth, the 
analyses were based on a sample of unrelated individuals; recent 
research suggests that MR may be most effectively applied within the 
family unit.(Brumpton et al., 2020) However, this limitation applies to 
almost all MR studies, and, for example, a recent study by Cawley et al. 
(Cawley et al., 2019) on peer effects in BMI showed no evidence of ge-
netic nurture within families. Finally, it is possible that the importance 
of the indirect effect relative to the direct effect has increased owing to 
lifestyle changes over time, reflecting possible gene–environment in-
teractions.(Qi and Cho, 2008) Owing to the relatively small study 
sample, we were unable to test this hypothesis, but further studies could 
shed light on Barker’s hypothesis in this regard. 
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