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Aim: DNA methylation is a key epigenetic mechanism regulating gene expression. Identifying differen-
tially methylated regions is integral to DNA methylation analysis and there is a need for robust tools reli-
ably detecting regions with significant differences in their methylation status. Materials & methods: We
present here a reproducibility-optimized test statistic (ROTS) for detection of differential DNA methylation
from high-throughput sequencing or array-based data. Results: Using both simulated and real data, we
demonstrate the ability of ROTS to identify differential methylation between sample groups. Conclusion:
Compared with state-of-the-art methods, ROTS shows competitive sensitivity and specificity in detecting
consistently differentially methylated regions.
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DNA methylation is a major epigenetic mechanism that plays a central role in gene regulation. It affects a
wide spectrum of biological states from normal development and aging to complex diseases such as cancer [1,2]

and diabetes [3,4]. Among the available platforms for DNA methylation detection, methods based on bisulfite
conversion are the most popular, including both microarray- and high-throughput sequencing-based techniques [5].
For methylation microarray data, Illumina Infinium platform has been widely used, including for instance more than
10,000 samples in the Cancer Genome Atlas (TCGA) and around 40,000 human samples in the Gene Expression
Omnibus [6]. With high-throughput sequencing techniques, whole-genome bisulfite sequencing provides whole-
genome coverage with single-base resolution, whereas reduced representation bisulfite sequencing (RRBS) is a
cost-effective alternative, covering genomic areas enriched with a high CpG content (∼85% of the CpG islands in
the human genome) [7,8].

The primary goal of DNA methylation analysis is to identify systematic differences between groups of samples,
such as cases versus controls. To enable reliable detection of differentially methylated regions (DMRs) for further
validation and interpretation, robust tools are needed to rank DMRs on the basis of their significance. Although
computational tools have already been developed for differential methylation analysis [9–13], the field lacks consensus
on the best tools. While a recent comparison highlighted the differences between the methods, none of the compared
methods could be considered as a generally applicable leading methodology [14].

To address the need for a method enabling robust identification of DMRs, we demonstrate here the utility
of our reproducibility-optimized test statistic (ROTS) [15] for differential DNA methylation analysis. ROTS was
originally designed for differential gene expression analysis and its good performance has been shown in a number
of gene and protein expression studies [15–18]. Here, we adapted ROTS to DNA methylation studies and showed
its benefits in both sequencing- and array-based DNA methylation data.

Materials & methods
Sequencing datasets & preprocessing
Simulated DNA methylation sequencing data were generated as described in [14] using dataSim2.R downloaded
from the online repository containing the source code and additional resources for the article. The read coverage

Epigenomics (Epub ahead of print) ISSN 1750-191110.2217/epi-2019-0289 C© 2020 Laura Elo

https://orcid.org/0000-0003-3754-5584


Methodology Suni, Seyednasrollah, Ghimire, Junttila, Laiho & Elo

of the simulated data was modeled by a binomial distribution and the methylation background followed beta
distribution [14]. A total of 12 different simulation scenarios were considered, including methylation change of 10,
15 or 25%, number of sites of 5000 or 50,000 and proportion of true positives of 5 or 20%. Five samples were
simulated in the control group and five samples in the case group.

The real DNA methylation sequencing data were from a previous RRBS study on human pluripotent stem
cells [19]. The data included six samples before and six samples after spontaneous transformation to abnormal
karyotypes, referred to as normal and abnormal samples, respectively. The DNA libraries were sequenced using 50
bp reads on the Illumina HiSeq2000 or HiSeq2500 platform. The data were downloaded from www.ncbi.nlm.nih
.gov/bioproject under the accession number PRJNA310646.

The quality control and preprocessing of the sequenced reads were performed using Trim Galore! 0.4.1 along
with Cutadapt 1.9.dev. The nondefault Trim Galore! parameters used were –stringency = 3 (to remove adapter
parts overlapping with three or more bases) and –rrbs (to remove filled-in cytosines). The preprocessed reads were
mapped to the hg19 reference genome using Bismark version 0.10 [20] with Bowtie 2 version 2.0.5 [21] using
default parameters. The methylation calling was performed using the Bismark methylation extractor module in
default mode, resulting in base-level methylation values representing the proportion of methylation in range 0–100.
Only CpG sites with a methylation coverage of at least ten reads were used in the downstream analysis. Base-pair
resolution cytosine methylation levels were further summarized to 100 bp windows by taking the median across
the base-level methylation level values within each window.

For statistical testing, we required that a feature (single site or window) had at least three nonmissing values in
both sample groups. Additionally, features with a constant value across all samples when binarized (values below
50 converted to zero and values above or equal to 50–100) were excluded, leaving 33,282 single sites or 18,238
windows for statistical testing.

Array-based dataset & preprocessing
The array-based DNA methylation data were downloaded from TCGA database via the National Cancer In-
stitute (NCI) Genomic Data Commons data portal under the project named TCGA Kidney Renal Clear Cell
Carcinoma (TCGA-KIRC). The data included baseline tumor samples from 398 patients diagnosed with clear cell
renal cell carcinoma (ccRCC) together with clinical information, involving 132 metastatic and 266 nonmetastatic
patients. Two Illumina Infinium DNA methylation platforms, HumanMethylation27 (HM27) BeadChip and
HumanMethylation450 (HM450) BeadChip, were used to obtain the methylation profiles [6].

The microarray data were preprocessed by TCGA using the R package methylumi version 2.22.0 [22]. Briefly, the
DNA methylation level for each CpG locus was summarized as a beta value ranging from zero to one, representing
the proportion of methylation. Probes corresponding to loci having nonsignificant quality values (p > 0.05) were
filtered out, leaving 21,073 probes for statistical testing.

ROTS
The ROTS is a data adaptive approach. Instead of making any a priori assumptions about the characteristics of
the data, ROTS utilizes a family of t-type statistics (dα) to optimize the reproducibility Rk(dα) of the k top-ranked
features in pairs of bootstrapped datasets [16]. More specifically, ROTS maximizes the reproducibility z-statistic
Zk(dα):

Zk(dα) =
Rk (dα) − R0

k (dα)
s k (dα)

over parameters α and the top list size k. Here, Rk(dα) and R0
k (dα) denote the reproducibility of the bootstrapped

and randomized data, respectively, and sk(dα) is the estimated standard deviation of the bootstrap distribution.
The reproducibility Rk(dα) is defined as the average overlap of the k top-ranked features over B pairs of bootstrap
datasets. For each pair b of bootstrap data matrices (D(b)

1 , D(b)
2 ) the reproducibility is calculated as

R (b)
k (dα) =

#
{

g |rg (α, D(b)
1 ) ≤ k, rg

(
α, D(b)

2

)
≤ k

}

k

where rg (α, D(b)
i ) denotes the rank of feature g in data D(b)

i with the statistic dα and #S is the cardinality of set S.
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The test statistics dα for a genomic feature of g (here DNA methylation region) is defined as

dα(g ) =
|x i

g − x j
g |

α1 + α2s g
,

where x i
g and x j

g are the average methylation levels of feature g in the experimental conditions i and j and sg
represents the estimated standard error and α1 ≥ 0 and α2 ∈ {0,1} are the parameters to be optimized.

As input data, ROTS requires a matrix of preprocessed and normalized data with columns representing the
samples and rows representing the methylation regions. The ROTS package and a detailed manual are freely
available through Bioconductor at http://bioconductor.org/packages/ROTS.

Differential methylation analysis of the sequencing data

Differential methylation analysis of the DNA methylation sequencing data was performed using ROTS, RnBeads
and MethylKit using the same input data.

For ROTS (version 1.5.4 on R 3.3.3), the methylation values in range 0–100 were scaled to range zero-to-one,
the number of bootstraps was set to B = 1000 and the maximum number of top-ranked features for reproducibility
optimization was set to K = 10,000. ROTS reports a top list size k, which gives the highest reproducibility Z-score.
If the reported k is close to the value of the parameter K, the maximum top list size might have been too small and
increasing it should be considered. It is recommended that the value of K should be considerably higher than the
number of features expected to be significantly different between the sample groups [15]. As the reported k was 480
and 525 for the human embryonic stem cell RRBS data and array-based methylation data, respectively, the selected
value of K was considerably larger than the reported k, as recommended.

For RnBeads (version 1.6.1 on R 3.3.3), the parameter exploratory.region.profiles was used to consider the pre-
filtered 100 bp windows as input. The following additional parameters were used: filtering.high.coverage.outliers
= TRUE, filtering.sex.chromosomes.removal = FALSE, filtering.coverage.threshold = 10, filtering.snp = ‘no’, differen-
tial.site.test.method = ‘limma’. RnBeads uses hierarchical linear models implemented in R package Limma to calculate
p-values, which are subjected to multiple-testing correction using the false discovery rate (FDR) method.

For MethylKit (version 1.1.7), its built-in function of tiling window analysis was used for the initial window-wise
analysis with win.size = 100 and step.size = 100. Bases having read coverage below ten and bases with more than
99.9th percentile of coverage in each sample were removed as a default procedure during the MethylKit run. The
window-wise results were then further filtered to cover the same regions that were used as input for the other
methods. MethylKit uses logistic regression to calculate p-values and sliding linear model method [23] to adjust the
p-values to q-values.

Regions with an FDR below 0.05 and a methylation change larger than 15% between the groups were considered
as significantly differentially methylated regions (DMRs). DMRs were ranked based on the p-values calculated
using the respective statistical test implemented in each of the tested tools.

Differential methylation analysis of the array-based data

Differential methylation analysis of the array-based DNA methylation data was performed using ROTS (version
1.5.4 on R 3.3.3) and Limma (version 3.32.5). The beta values were further transformed into so called M-
values (log2( beta

1−beta )), as suggested previously [24]. For ROTS, the number of bootstraps was set to B = 1000 and
the maximum number of top-ranked features for reproducibility optimization to K = 10,000. The differentially
methylated probes were ranked based on the p-values calculated using the respective statistical test implemented in
the tested tools.

Results
Simulated data

We first evaluated the performance of ROTS on simulated DNA methylation sequencing data, produced similarly
as in a previous simulation study [14] and compared it with two popular tools, MethylKit [9] and RnBeads [10]. The
simulated datasets consisted of five samples in case and control groups across either 5000 or 50,000 sites, of which
five or 20% were known to have a methylation change of 10, 15 or 25%.

As expected, the larger the methylation changes, the better all the methods performed. The receiver operating
characteristic curves showed that ROTS confidently assigned DMRs with higher sensitivity and specificity than
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Figure 1. Performance of reproducibility-optimized test statistic in simulated DNA methylation sequencing data.
ROC curves of ROTS, RnBeads and MethylKit were determined in simulated datasets consisting of five samples in case
and control groups across either 5000 or 50,000 sites, of which five or 20% were known to have a methylation change
of (A) 25, (B) 15 or (C) 10%. With each method, the differentially methylated regions were ranked on the basis of
their p-value.
ROC: Receiver operating characteristic; ROTS: Reproducibility-optimized test statistic.

both RnBeads and MethylKit; in 11 out of 12 simulation scenarios, the differences were statistically significant
(Figure 1; DeLong’s test p < 0.05, Supplementary Table 1).

Human embryonic stem cell RRBS data

Next, we used ROTS to reanalyze the previously published RRBS dataset on human embryonic stem cells, consisting
of six samples in the normal group and six samples in the abnormal group [19]. As the majority of DMRs reported
are in the range of several hundred to a few thousand bases [25], we focused here on 100 bp regions, but differential
methylation of single CpG cytosines was also analyzed (Supplementary Figure 1).

ROTS identified 291 DMRs between the normal and abnormal groups with a FDR <0.05 and an absolute
methylation change >15%. With MethylKit and RnBeads, the corresponding numbers were 6470 and 133,
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Figure 2. Performance of reproducibility-optimized test statistic in DNA methylation sequencing data on human embryonic stem cells.
(A) Overlaps of all statistically significantly differentially methylated 100 bp regions (DMRs) detected by MethylKit, RnBeads and ROTS at
false discovery rate of 0.05. (B) Overlaps of 100 top-ranked DMRs detected by MethylKit, RnBeads and ROTS. (C) Volcano plots showing
the relationship between the estimated methylation change (x-axis) and its significance (y-axis). The purple dots represent DMRs with a
p-value <0.05 and a methylation change >15%. (D) Heatmaps showing the 100 top-ranked DMRs identified by MethylKit, RnBeads or
ROTS. The colors indicate the methylation level (methylation percentage) of each DMR. Missing values are shown in white. The normal
and abnormal samples are marked in blue and white, respectively. (E–G) Representative examples of highly-ranked DMRs detected by (E)
ROTS and MethylKit but not by RnBeads, (F) by RnBeads but not by ROTS and (G) by MethylKit but not by ROTS or RnBeads. The six
abnormal (case, six upper tracks) and six normal (control, six lower tracks) samples are shown as separate tracks. The numbers of
bisulfite-converted (blue) and nonconverted (red) cytosines at CpG sites with at least ten reads coverage are shown. Similar plots for all
the 100 top-ranked DMRs with each method are shown in Supplementary files 2–4.
ROTS: Reproducibility-optimized test statistic.

respectively. All DMRs detected by ROTS were also detected by MethylKit, while only 18% of the ROTS-
identified DMRs were detected by RnBeads (Figure 2A). When looking only at the 100 top-ranked DMRs for
each method, the overlap of ROTS with MethylKit decreased to 38%, while the overlap of ROTS with RnBeads
remained at 18% (Figure 2B). All but one of the DMRs detected by RnBeads were also detected by MethylKit,
with the overlap decreasing to 18% when focusing on the 100 top-ranked DMRs. Analysis of single cytosine sites
showed similar performance with 365, 10,470 and 317 cytosines detected as differentially methylated by ROTS,
MethylKit and RnBeads, respectively (Supplementary Figure 1).

Investigation of the methylation change versus its significance suggested that the ideal ‘V’-shape of the volcano
plot was more prominent with ROTS than with the other tools (Figure 2C). Especially with RnBeads, the
relationship between the methylation change and its significance was considerably distorted. In line with this,
a heatmap visualization of the 100 top-ranked DMRs with each method revealed that ROTS had the clearest
separation between the sample groups (Figure 2D). Notably, eight out of the nine differentially methylated CpG
sites validated in the original study on the basis of their MethylKit analysis [19] were identified as significant at
FDR <0.1 with both ROTS and MethylKit, but only one with RnBeads (Supplementary Table 2). The one site
that was not detected by ROTS and MethylKit was filtered out due to its low read coverage.

To further explore the quality of the DMRs reported by the tools, we inspected the 100 top-ranked DMRs with
each method in detail (Figure 2E–G, Supplementary Figures 2–5, Supplementary files 2–4). The median rank of
the 100 top-ranked DMRs with ROTS was 343 and 154 with RnBeads and MethylKit, respectively, while the
median rank of the 100 top-ranked DMRs with MethylKit was 601 and 173 with RnBeads and ROTS, respectively
and with RnBeads 737 and 475 with MethylKit and ROTS, respectively.
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Figure 2. Performance of reproducibility-optimized test statistic in DNA methylation sequencing data on human embryonic stem cells
(cont.). (A) Overlaps of all statistically significantly differentially methylated 100 bp regions (DMRs) detected by MethylKit, RnBeads and
ROTS at false discovery rate of 0.05. (B) Overlaps of 100 top-ranked DMRs detected by MethylKit, RnBeads and ROTS. (C) Volcano plots
showing the relationship between the estimated methylation change (x-axis) and its significance (y-axis). The purple dots represent DMRs
with a p-value <0.05 and a methylation change >15%. (D) Heatmaps showing the 100 top-ranked DMRs identified by MethylKit, RnBeads
or ROTS. The colors indicate the methylation level (methylation percentage) of each DMR. Missing values are shown in white. The normal
and abnormal samples are marked in blue and white, respectively. (E–G) Representative examples of highly-ranked DMRs detected by (E)
ROTS and MethylKit but not by RnBeads, (F) by RnBeads but not by ROTS and (G) by MethylKit but not by ROTS or RnBeads. The six
abnormal (case, six upper tracks) and six normal (control, six lower tracks) samples are shown as separate tracks. The numbers of
bisulfite-converted (blue) and nonconverted (red) cytosines at CpG sites with at least ten reads coverage are shown. Similar plots for all
the 100 top-ranked DMRs with each method are shown in Supplementary files 2–4.
ROTS: Reproducibility-optimized test statistic.

Array-based DNA methylation data on renal cell carcinoma

After confirming the competitive performance of ROTS with the simulated DNA methylation sequencing data,
we assessed its utility in array-based DNA methylation data on ccRCC. Despite the emergence of the sequencing
techniques, array-based DNA methylation data still contribute a valuable source of information in the field. Here, we
used DNA methylation profiles of 398 ccRCC patients provided by the TCGA to detect DMRs between metastatic
and nonmetastatic patients [26]. To benchmark the performance of ROTS, the analysis results were compared with
those of Limma [27], which is part of the currently widely used DNA methylation analysis workflows [24,28].

Both ROTS and Limma detected a large number of DMRs at FDR <0.05 (7581 and 9431, respectively), but
overall, the methylation changes between the metastatic and nonmetastatic patients were small. Only 296 DMRs
had a methylation change of at least 10% and only 24 DMRs had at least 15%; both ROTS and Limma detected all
these DMRs as significant at FDR <0.05. When focusing only on 100 top-ranking DMRs with ROTS and Limma,
hierarchical clustering grouped the patients into two main clusters, one cluster comprising mainly of metastatic
patients and the other mainly of nonmetastatic patients (Supplementary Figure 6).

Runtime

The human embryonic stem cell RRBS dataset was used to study the differences in the runtime of the three
methods. The differential methylation analyses were performed with a standard Macintosh laptop computer with a
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2.9 GHz Intel Core i7 processor and 16 GB of RAM. MethylKit was the fastest method to run with the differential
methylation analysis taking 3 min and 17 s. RnBeads took 5 min and 29 s to run while ROTS’ runtime was 9 min
58 s. Although ROTS was the slowest method to run, it should be noted that the preprocessing of sequencing
data (including alignment to the reference genome and extraction of the methylation values) is a much more
time-consuming and computationally demanding step in the overall analysis than the differential methylation
analysis where the differences in runtime between the methods are relatively small.

Discussion
Here, we have studied the suitability of ROTS to differential methylation analysis using simulated and real data
and have compared its performance with that of widely-used differential methylation analysis tools. Our results
show that ROTS works well with different types of methylation data and they support the conclusion that ROTS
is able to robustly identify DMRs between conditions.

In the differential methylation analysis of the RRBS data, MethylKit identified a considerably higher number of
DMRs than either ROTS or RnBeads (Figure 2A). Similar behavior has been detected in a previous study, where
nine methods for differential methylation analysis were compared with MethylKit identifying over 10,000 DMRs
whereas most of the other methods identified 5000 or less DMRs [29]. In concordance with these results, MethylKit
DMR detection has been found to have high sensitivity but low specificity [14].

The top 100 DMRs detected by ROTS distinctly separated the normal and abnormal samples, while the
results suggest that MethylKit and RnBeads allowed more variation between the replicates compared with ROTS
(Figure 2D). Similarly, a detailed inspection of the 100 top-ranked DMRs in each method supported that the
DMRs detected by ROTS had high agreement between the biological replicates (Figure 2E, Supplementary file
2). These DMRs were also relatively highly ranked according to RnBeads and MethylKit (median rank 343 and
154, respectively). The top DMRs identified only by MethylKit or RnBeads, instead, tended to show considerable
variation between the biological replicates (Figure 2F–G, Supplementary files 3–4).

In the array-based data, both ROTS and Limma reported a large number of DMRs and the differences in
methylation between the nonmetastatic and metastatic patients were small. Notably, in the hierarchical clustering
of the 100 top-ranking DMRs, ROTS grouped only 23% of the metastatic patients in the nonmetastatic cluster,
compared with 34% with Limma. Overall, ROTS suggested a somewhat larger number of patients into the
metastatic cluster than Limma (175 and 133 patients with ROTS and Limma, respectively). It should be noted
that the original study had some limitations in determining the status of clinical metastasis at the time of the
nephrectomy [26] and, hence, some of the patients defined as nonmetastatic may actually have been metastatic
or later developed metastatic disease. This can potentially explain also the relatively small methylation changes
observed between the groups.

ROTS was originally designed for differential expression analysis of gene expression microarray data and it has
previously been shown in an independent study to work well with RNA-sequencing data [30]. The present results
show that it performs well also with sequencing- and array-based methylation data. Similarly, previous comparison
studies have concluded that methods designed originally for microarray data, such as Limma, are suitable also for
sequencing data and often work at least as well as methods developed specifically for sequencing data [31,32]. Among
the methods compared in this study, the differential methylation analysis in RnBeads uses Limma, while MethylKit
is developed specifically for differential methylation analysis of sequencing data. Limma and ROTS are based on
moderated t-statistics whereas MethylKit does not have any distributional assumptions about the normality of the
data, but regardless, performs worse. Notably, ROTS p-values are not directly based on any parametric assumptions
about the distribution of the data, but they are estimated by permutation.

Conclusion
Our results showed the benefits and versatility of ROTS for effective detection of DNA methylation changes between
sample groups. The method is applicable to both high-throughput sequencing and array-based DNA methylation
data. Thanks to its data-adaptive approach, ROTS was able to detect accurately group-specific DMRs with high
consistency across replicates, as compared with state-of-the-art methods. This is crucial to ensure reproducible
findings.
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Summary points

• DNA methylation is a key epigenetic mechanism that has been shown to play a role in common diseases like
cancer and diabetes.

• Accurate detection of differentially methylated regions is still a major challenge in DNA methylation analysis.
• There is a need for a robust tool that reliably detects significantly differentially methylated regions between

sample groups.
• Reproducibility-optimized test statistic (ROTS) is a data-adaptive approach that has previously been shown to

yield reliable results in several gene and protein expression studies.
• We demonstrated the applicability of ROTS to differential methylation analysis using both simulated and real

data sets.
• ROTS showed good performance with sequencing- as well as array-based methylation data.
• Compared to popular methylation analysis methods ROTS accurately identified differentially methylated regions

with high consistency across replicates.
• We believe that ROTS will provide researchers an accurate, reliable and easy-to-use tool for differential

methylation analysis.
• ROTS is implemented as an R package and freely available through Bioconductor (www.bioconductor.org).

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.futuremedicine.com/doi/sup

pl/10.2217/epi-2019-0289
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Table S1. Performance of ROTS on simulated DNA methylation sequencing data. Areas
under the receiver operating characteristic curves (AUC) of ROTS, RnBeads and MethylKit
were determined in simulated datasets consisting of five samples in case and control
groups across either 5,000 or 50,000 sites, of which 5% or 20% were known to have a
methylation change of 25%, 15% or 10%. The differentially methylated regions were
ranked on the basis of their p-value. The highest AUC value in each data is highlighted.

Methylation
change

Total 
number of 
simulated

sites

% and 
number of 

methylated
sites

MethylKit RnBeads ROTS DeLong's test, p-value

AUC 95% Confidence
interval

AUC 95% Confidence
interval

AUC 95% Confidence
interval

ROTS vs
MethylKit

ROTS vs
RnBeads

25% 5,000 5%, 250 0.841 0.814-0.867 0.938 0.923-0.953 0.97 0.957-0.983 2.2 x 10-16 1.63 x 10-3

20%, 1,000 0.851 0.838-0.865 0.927 0.918-0.936 0.974 0.969-0.978 2.2 x 10-16 2.2 x 10-16

50,000 5%, 2,500 0.848 0.84-0.856 0.924 0.918-0.929 0.969 0.966-0.972 2.2 x 10-16 2.2 x 10-16

20%, 10,000 0.847 0.843-0.852 0.923 0.92-0.927 0.969 0.967-0.971 2.2 x 10-16 2.2 x 10-16

15% 5,000 5%, 250 0.756 0.727-0.785 0.805 0.775-0.834 0.867 0.859-0.885 5.83 x 10-14 1.27 x 10-3

20%, 1,000 0.741 0.724-0.758 0.837 0.823-0.852 0.872 0.843-0.891 2.2 x 10-16 4.79 x 10-4

50,000 5%, 2,500 0.742 0.733-0.752 0.818 0.809-0.828 0.86 0.852-0.868 2.2 x 10-16 5.47 x 10-11

20%, 10,000 0.751 0.746-0.756 0.827 0.822-0.831 0.866 0.862-0.87 2.2 x 10-16 2.2 x 10-16

10% 5,000 5%, 250 0.7 0.668-0.732 0.778 0.747-0.809 0.798 0.769-0.828 1.17 x 10-7 0.344

20%, 1,000 0.683 0.665-0.701 0.752 0.735-0.77 0.779 0.763-0.796 2.2 x 10-16 2.8 x 10-2

50,000 5%, 2,500 0.68 0.67-0.69 0.747 0.736-0.757 0.773 0.762-0.783 2.2 x 10-16 4.63 x 10-4

20%, 10,000 0.683 0.677-0.688 0.748 0.743-0.754 0.774 0.769-0.779 2.2 x 10-16 6.56 x 10-11

Table S2. Performance of ROTS on DNA methylation sequencing data of human
embryonic stem cells in terms of the nine differentially methylated CpG sites validated
in the original study [19]. The differentially methylated sites and 100 bp regions were
ranked on the basis of their p-value. The third site was filtered out due to its low read
coverage across the samples.

Diff. methylated sites Diff. methylated 100 bp regions
MethylKit RnBeads ROTS

Rank FDR Rank FDR Rank FDR
1. chr1_243651100_243651199 88 2.99 x 10-75 160 0.064 89 0.017

1-2. chr1_243651142, 
chr1_243651149  

244
136

1.23 x 10-21

7.82 x 10-26

234
631

0.014
0.145

282
284

0.038
0.038

3. chr17_40824405
2. chr17_40824400_40824499

- - - - - -
3. chr11_34460500_34460599 109 1.55 x 10-68 695 0.419 43 0.013

4. chr11_34460572 416 3.53 x 10-17 1326 0.410 119 0.017
4. chr5_178487200_178487299 25 1.49 x 10-129 557 0.342 160 0.024

5-9. chr5_178487247, 
chr5_178487249, 
chr5_178487273, 
chr5_178487279, 
chr5_178487297  

306
394
443
374
375

1.64 x 10-19

1.38 x 10-17

7.10 x 10-17

6.56 x 10-18

6.56 x 10-18

708
2415
2439
1196
1197

0.182
0.767
0.774
0.362
0.362

227
521
755
647
648

0.031
0.069
0.099
0.088
0.088



Figure S1. Performance of ROTS on DNA methylation sequencing data of human
embryonic stem cells. (a) Overlaps of all statistically significantly differentially
methylated 1 bp sites detected by MethylKit, RnBeads and ROTS at false discovery
rate of 0.05. (b) Overlaps of 100 top-ranked sites detected by MethylKit, RnBeads and
ROTS.

Figure S2. Representative examples of the 100 top differentially methylated 100 bp
regions detected by MethylKit, RnBeads and ROTS presented in the RRBS human stem
cell dataset. The 12 samples are shown as separate tracks. The numbers of mapped
reads are denoted as stacked histograms; the size of the red bars reflects the number of
nonconverted cytosines, implying methylation, while the blue bars denote bisulfite
converted cytosines. CpG sites with less than 10 reads coverage are not shown.
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Figure S3. Representative examples of differentially methylated 100 bp regions detected
among top 100 only by (a) RnBeads, or (b) MethylKit. The 12 samples are shown as
separate tracks. The numbers of mapped reads are denoted as stacked histograms.
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Figure S4. Representative examples of differentially methylated 100 bp regions detected
among top 100 only by (a) ROTS and MethylKit, or (b) ROTS and RnBeads. The 12
samples are shown as separate tracks. The numbers of mapped reads are denoted as
stacked histograms.
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Figure S5. Representative examples of differentially methylated 100 bp regions detected
among top 100 only by (a) ROTS, or (b) MethylKit and RnBeads. The 12 samples are
shown as separate tracks. The numbers of mapped reads are denoted as stacked
histograms.



Figure S6. Performance of ROTS on the array-based DNA methylation study of clear
cell renal cell carcinoma (ccRCC) patients. (a) Volcano plots of methylation
difference levels (x-axis) versus their significance p-values (y-axis) for ROTS and
Limma. The purple dots represent 296 differentially methylated probes with p-
value < 0.05 and methylation change > 10%. (b) Hierarchical clustering of the
metastatic (n = 132) and non-metastatic (n = 266) ccRCC patients (columns) across
the top-ranking 100 differentially methylated probes (rows) with ROTS and Limma.
The colors indicate the methylation level of each probe: yellow is high, green is
intermediate, and blue is low methylation level. Metastatic patient samples are
marked in blue in the dendrogram, non-metastatic in white.
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