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Abstract

Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect
of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated.
Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly
due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection
for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the
rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 °C. The
findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods.
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Background
Zinc oxide (ZnO) is a versatile, multipurpose oxide
semiconductor with applications ranging from paints
and sunscreens to thin-film transistors and gas sensors
[1–3]. Small-scale ZnO structures, such as nanorods,
nanorings, and nanowires, are of special interest, since
ZnO is known to exhibit a particularly rich spectrum of
such morphologies [4, 5]. This abundance of nanostruc-
tures creates a wide range of possibilities for ZnO-based
devices. ZnO is biocompatible, which extends its possi-
bilities into biological applications [6]. As an example,
ZnO nanorods have been utilized to manufacture biosen-
sors for glucose detection [7]. Considerable interest has
also arisen as a result of reports on room-temperature
ferromagnetism in doped ZnO, as predicted by Dietl et al.
[8] for Mn-doped ZnO and observed by several research
groups, first using metallic dopants and later even with
nonmetallic ones, especially carbon [9–11].
As a direct bandgap compound semiconductor, ZnO is

of considerable interest in the field of optoelectronics
[4]. Like any semiconductor material, the photolumines-
cence properties of ZnO are directly linked to its energy

level structure. Thus, changes in the photoluminescence
emissions resulting from treatments provide a way of
evaluating how these treatments could be used to mod-
ify and improve the photoelectric performance of ZnO-
based devices. They may also be of importance when
considering light-based sensor applications for the
material. One way to modify the photoelectric properties
of the material is doping using different materials. As
mentioned, carbon doping has previously been pursued
as a method to promote ferromagnetism in ZnO. Under-
standing the effects of carbon doping is important not
only in order to understand the magnetic phenomena
but also because of the popularity of organic chemical
methods, which allow the synthesis of nanostructures in
low temperatures [12–14]. Such methods naturally
involve the possibility of residual organic impurities in
the resulting materials.
Many carbon doping schemes involve a solid-state step

resulting in carbon-doped bulk ZnO (usually powder)
[15–17]. However, this approach can be problematic when
creating ZnO nanostructures, because it involves applying
an additional reactant in the process which may interfere
with the formation of nanostructures. In an earlier paper,
we reported room-temperature ferromagnetism in ZnO
nanorods manufactured using a chemical bath depos-
ition method and subsequently thermally treated using
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acetylene gas [18]. Using this method, the fabrication of
nanorods and carbon doping are separated into two dif-
ferent processes, increasing the versatility of the ZnO
nanostructure synthesis process.
In the current study, ZnO nanorods were grown using

the aqueous chemical growth (ACG) method introduced
by Vayssieres in order to elucidate the effect of the
growth method on the properties of acetylene-treated
ZnO [19]. Low-temperature chemical methods are
widely used to synthesize ZnO nanostructures and thin
films thanks to their ease of use and generally benign
chemicals involved [20–24]. The ACG process applied
here is especially attractive thanks to it being both inex-
pensive and easily scaled to industrial levels [25]. The
treated nanorods have been investigated using various
methods to gain insight on the optical properties of the
material and the changes induced by the treatment.

Methods
A chemical method to manufacture ZnO nanorods,
based on Vayssieres’ ACG method [26], was used. To
synthesize ZnO nanorods, an equimolar aqueous solu-
tion of zinc nitrate (Zn(NO3)2⋅6H2O, Sigma-Aldrich)
and hexamethylenetetramine (HMT, (CH2)6N4, Merck)
was prepared. Deionized (DI) water (MilliQ, 18.2 MΩ cm)
was utilized as a solvent. All chemicals were analytical
grade and used without further purification. After testing
molar concentrations between 0.001–0.5 M, most sam-
ples were made using 0.005 M and 0.01 M solutions, as
this molar range was found to provide the most uniform
and reproducible layers of rods. Substrates of p-type
<100 > silicon (Si) wafers (Siegert Wafer, resistivity 0.01–
0.02 Ω cm) were cleaned and placed in the solution. The
cleaning process consisted of sonication of the Si sub-
strates first in DI water and then in acetone for 280 s.
The substrates were placed polished side facing upwards
in 20 ml glass ampoules filled with the solution and put
in an oven at a temperature of 95 °C overnight (20 h).
This time was found to be optimal for producing high-
quality layers of rods. After treatment, the substrates
were cleaned with copious amounts of DI water to re-
move the excess solution and trace substances. Cleaned
samples were allowed to dry in air.
The treatment of samples was done using acetylene gas,

and the method is also described in detail in [18]. In the
current work, the samples were placed in a quartz tube and
flushed with 1 l/min nitrogen gas in room temperature.
Next, a 14 min 45 s acetylene/nitrogen flush (2 l/min, 1:1
by volume) at room temperature was used. Acetylene flow
was cut, and after allowing for excess acetylene to clear for
15 s, a 10-min thermal treatment in a tube furnace under
1 l/min N2 flow was performed. For reference, some sam-
ples were thermally annealed, using the same process flow
but without adding acetylene.

The samples were investigated with scanning (SEM, FEI
Quanta 250 operated at 10 kV) and transmission electron
microscopes (TEM, JEM-1400 Plus). For TEM and elec-
tron diffraction studies, the ZnO rods were dispersed on
holey carbon support films and imaged with a TEM oper-
ated at 120 kV. Diffraction patterns were indexed using
simulations from WebEMAPS software [27]. Additional
TEM and high-resolution TEM (HRTEM) images were
recorded on a CM30 Philips system operating at 300 kV.
X-ray diffraction (XRD) measurements were done using

a Philips (currently Panalytical B.V., Almelo, Netherlands)
X’Pert Pro X goniometer equipped with a θ/2θ diffractom-
eter and a proportional counter detector. Cu Kα radiation
was used, with the X-ray tube run at 40 kV/50 mA. The
incident beam optics comprised of a 0.04-rad Soller slit, a
15-mm mask and a (1/4)° divergence slit. The diffracted
beam optics consisted of another 0.04-rad Soller slit and a
Panalytical Pixcel 1D multichannel detector with a nickel
filter. Diffraction results were fitted using the MAUD soft-
ware version 2.43 [28].
X-ray spectroscopy (XPS) measurements were per-

formed using a PHI 5400 ESCA spectrometer (Perkin
Elmer, USA) with a monochromatic Al Kα X-ray source
(1486.7 eV). Survey spectra were collected using the pass
energy of 89.45 eV and high-energy multiplex spectra of
the main elements (C 1 s, O 1 s, Si 2p, and Zn 2p3) with
the pass energy of 71.55 eV. Fitting was made using the
XPSPEAK 4.1 software using 100 % Gaussian peak shape
and increasing the number of peaks until χ2 values were
less than 2⋅10-3.
Absorption spectra were recorded in the wavelength

range 400–800 nm using a Perkin Elmer Lambda UV/
Vis 950 spectrophotometer in polystyrene cuvettes with
an optical path of 10 mm. The reflectance spectra were
recorded using the Angle Absolute Universal Reflectance
Accessory (URA) purchased from Perkin Elmer.
Photoluminescence spectra of the ZnO rods were

studied in the wavelength range from 350 to 800 nm
at room temperature using laser excitation and simul-
taneous detection of emitted light. An Oriel MS257
monochromator (with spectral resolution better than
1.3 nm in this spectral range), a NL100 nitrogen
pulse laser with a wavelength of 337.1 nm (3.68 eV,
3.4 mW average power) and Hamamatsu R943-02
photomultiplier were used for measurements. For the
steady-state measurements, an SRS 250 Boxcar Avera-
ger was used to integrate the response of the photo-
multiplier tube in a 9-μs range with a 1-μs delay after
each laser pulse.
Excitation spectra were recorded using a Varian Cary

Eclipse spectrophotometer. A xenon flash lamp was used
for excitation, and the device was operated in simultan-
eous emission/measurement mode. A 5-nm excitation
and a 10-nm emission slit were used.
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Micro Raman spectroscopy measurements were con-
ducted using a visible Labram HR spectrometer and a
UV Labram HR (Horiba). In the visible range, the
Raman backscattering was excited with an excitation
wavelength of 532 nm. The beam was focused on the
sample surface through an optical objective (6100, 0.9
NA) with a lateral resolution (XY) of less than 1 mm.
For UV Raman analysis, the Raman backscattering was
exited with a 266-nm laser line. A 680 (0.55 NA) object-
ive was used that allowed to reach a measured lateral
resolution (XY) of 0.5 mm. The spectral resolution was
better than 2 cm−1 in both cases.

Results and Discussion
Electron Microscopy and Selected Area Diffraction
SEM images of the investigated ZnO rods are shown in
Fig. 1. It can be seen that the rods are arranged into
clusters, with individual rods having a hexagonal shape,
indicative of wurtzite ZnO [29]. In the absence of a seed
layer on the substrate, the rods align randomly, and the
smaller rods tend to form star-like clusters. Judging from
the SEM images, the rods are between 500 nm and
1 μm in thickness and, on average, around 10 μm in
length, although some longer rods are as long as 20 μm.
The N2-annealed (annealing temperature 925 °C) rods,
as shown in Fig. 1a, can be seen to have a smooth
surface, which is the case in untreated rods as well. In
contrast, the acetylene-treated rods (Fig. 1b) have a
rougher surface, and the treatment creates some holes
and grooves in them. However, unlike in the previous
work, the rods are not completely eroded [18]. The
grooves seem to preferentially run along the rods.
The length and diameter of the obtained rods agree

with those reported by Vayssieres [26], though ours are
not preferentially aligned perpendicular to the sub-
strate. This may be due to different orientation or pre-
processing of the Si surface (not divulged in [26]).

Better alignment could be obtained by utilizing a ZnO
seed layer [14, 30, 31].
TEM micrographs of the rods are shown in Fig. 2. A

clear difference between untreated (Fig. 2a) and
acetylene-treated (Fig. 2b) rods can be observed. Large
zones of low contrast, as seen in the latter picture, could
be seen in acetylene-treated rods. We could not find
such zones among the untreated rods. Together with
SEM observations, we assume these zones to represent
eroded areas of the ZnO nanorods. Some N2-annealed
rods had similar zones but in very rare cases. Even when
such zones were observed, the zones were distinctively
smaller than in any of the acetylene-treated rods. A
close-up look in the TEM image (Fig. 2c, taken with
CM30 Philips) shows that the surfaces of the rods are
made up of small nanoparticles, around 6–8 nm in
diameter. Judging from the overall shape of the rods and
the sharpness and intensity ratios of the observed XRD
peaks (XRD results discussed later), it seems likely that
the rods still contain a single-crystal core, as a rod made
up entirely of smaller particles would be unlikely to
retain the characteristic hexagonal shape.
In Fig. 3, we show the selected area electron diffraction

(SAED) patterns for untreated (a), N2-annealed (b), and
acetylene-treated (c) ZnO nanorods. As-grown and
nitrogen-annealed samples can be seen to display well re-
solved spots further confirming the existence of a crystal-
line wurtzite phase. The acetylene-treated samples display
somewhat broadened spots, which may be the result of
texturing and/or the increased roughness of the surface as
a result of the erosion seen in the micrographs.

X-ray Diffraction
XRD diffractograms of samples grown in a 20-h growth in
0.005 M solution are shown in Fig. 4. The treatment
temperature was 925 °C. The XRD patterns show only the
hexagonal wurtzite structure of ZnO identified through

Fig. 1 SEM micrographs of ZnO nanorods annealed in nitrogen (a) and treated with C2H2 (b)
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the characteristics peaks at 2θ angles of 31.4°, 34.1°, 35.9°,
and 47.4° [32]. No other phases apart from the Al peaks,
originating from the sample holder, are detected. In con-
trast to the ZnO rods investigated previously [18], neither
annealing nor treating with acetylene has a large effect on
the XRD patterns of the rods. No clear correlation be-
tween the treatment and the full width at half maximum
(FWHM) of ZnO-related peaks is observed.
In the aforementioned study, acetylene treatment at

925 °C resulted in a total loss of XRD peaks due to
erosion of the rods, which differs considerably from the
behavior of the rods studied here. Possible reasons for
this may lie either in differences in acetylene adsorption
dynamics or, alternatively, different defect densities in

the as-grown rods. The photoluminescence results (dis-
cussed later) show that the ACG rods contain signifi-
cantly larger amounts of defects, yet erode significantly
less than the earlier rods. While one might expect that
more numerous defects should lead to increased suscep-
tibility to acetylene-induced erosion, the results show
that the relation between defect density and reactivity
with acetylene is not straightforward. The results show
that the response of seemingly identical ZnO nanostruc-
tures to acetylene treatment is heavily dependent on the
synthesis method, which must be borne in mind when
considering possible applications.

X-ray Photoelectron Spectroscopy
The X-ray photoelectron spectroscopy (XPS) results from
three ZnO nanorod samples are displayed in Fig. 5, and
the concentrations of elements calculated from the spectra
are shown in the inset of Fig. 5. The intensities have been
shifted for clarity. There was no evidence of new peaks in
any of the samples as a result of the treatment. An
increase of 4.0 at.% in carbon concentration in the
acetylene-treated sample was detected, while a reduction
of 2.5 at.% in the N2-annealed sample was observed. One
must keep in mind that adventitious carbon makes direct
comparison of carbon concentrations measured by XPS
somewhat unreliable. The amount of carbon detected
in these measurements is roughly equivalent to that
observed in the as-grown samples in the previous study
[18, 33]. Part of the excess oxygen (in relation to zinc)
is likely to originate from adventitious carbon species,
but the contribution to the total amount of detected
oxygen should be much less than the fractional amount
of carbon detected, as adventitious carbon is generally
comprised of hydrocarbons with only some oxidization,
nor can the presence of silicon dioxide account for all
the excess oxygen detected [34]. We may thus conclude
that the surfaces of the rods contain at least some extra
oxygen compared to stoichiometric ZnO.
The XPS results support the view that the nanorods

investigated here behave very differently from the ones
grown by chemical bath deposition in our previous
study, where the C content in samples treated with
acetylene in 925 °C increased from 12.3 to 78.1 at.% and
the detected Zn content dropped from 43.3 at.% to zero
[18]. However, in the ACG samples studied here, the
changes are much more subtle. The ratio of zinc to oxy-
gen is less than 1:1 in all samples but clearly lowest in
the acetylene-treated sample. It is thus unlikely that zinc
interstitials or oxygen vacancies be present in the sam-
ples in great numbers, especially after annealing. We
also see no shifting in the Zn Auger peaks, ruling out
the formation of clusters of metallic zinc, which could
lead to ferromagnetism [35].

Fig. 2 TEM micrographs of untreated (a) and acetylene-treated (b, c)
ZnO nanorods. Scale bar 500 nm (a, b)/50 nm (c)
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Curves fitted to the C1s peak can be seen in Fig. 6.
Voigt profiles with 10 % Gaussian and 90 % Lorentzian
weights and a Tougaard background have been used.
The spectra have been calibrated by setting the promin-
ent adventitious carbon C-C peak to 284.8 eV. Four
peaks were fitted to the C1s feature: in addition to the
adventitious carbon peak, one around 283.6 eV that is
assigned to carbon bound to Zn, second near 286.5 eV
which is assigned to a zinc oxycarbide complex and a
fourth, clearly separate one around 288.8 eV that is

associated with C-O bonds [15]. The positions and rela-
tive areas (in relation to all peaks of the spectrum) are
presented in Table 1. The relative area of the C-C peak
varies between 7.6 % (N2-annealed sample) to 11.1 %
(acetylene-treated), giving an estimate of the effect of
adventitious carbon contamination. The Zn-C peak rela-
tive area increases from 0.2 % in the as-grown sample to
0.7 % in the nitrogen-annealed one and 2.2 % in the
acetylene-treated sample. The small increase with an-
nealing is likely due to organic impurities bonding with

Fig. 3 Selected area diffraction of untreated (a), N2-annealed (b), and acetylene-treated ZnO nanorods (c)
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zinc as a result of annealing, combined with a reduction
of 2.1 to 1.2 % in the C-O peak.
The O1s (see Additional file 1: Figures S1–S3) peak

could be fitted with three peaks, in a manner described
by Hsieh et al., with the highest energy (Oc) peak corre-
sponding to OH species on the surface [36]. While the
lowest energy peak, related to O2− ions in the wurtzite
structure, is most pronounced in the N2-annealed sam-
ple, all samples have an Oc peak with comparable size,
which makes it unlikely that the disappearance of the
visible luminescence could be mainly attributed to the
decomposition of Zn(OH)2 on the surface.

Optical Properties
Figure 7 shows the absorbance spectra measured from
ZnO samples along with their gap and Urbach energies,
calculated from Urbach fits to the absorption edge. It
can be seen that the as-grown sample displays an energy
gap over 0.1 eV larger than the thermally treated sam-
ples. The Urbach energy, 166.5 meV, is also much larger
than in the treated samples, which show Urbach
energies of 82.4 and 99.6 meV for the N2-annealed
and acetylene-treated samples, respectively. A larger
Urbach energy is associated with greater lattice dis-
order in the ZnO lattice, which is likely to be greater
in unannealed samples, thus leading to an increase in
the Urbach energy [37]. The as-grown sample shows

strong absorbance below the actual bandgap at 3.0 eV,
which we attribute to a large concentration of defects
present in the sample, evident from the luminescence
properties (discussed below), and possible trace
amounts of unreacted raw reagents on the surface of
the rods.
In Fig. 8, we show the photoluminescence (PL)

emission spectra from samples treated in various tem-
peratures, measured with 337.1-nm laser excitation.
The as-grown ZnO nanorods display no detectable
photoluminescence in the UV range but produce a
wide visible orange luminescence centered at 2.11 eV.
In contrast, the visible peak in all thermally annealed
samples is greatly diminished and the intensity of the UV
peak strengthened. The UV peak in these samples, around
3.22 eV, is some 40 meV lower than what has been
reported for free excitons, and may consist of excitonic
signals in conjunction with their phonon replicas [38].
Various explanations for the visible range emission in

ZnO have been proposed in the literature, though most
interest has been in the green luminescence of ZnO.
Considering the abundance of oxygen observed in our
samples, the assignment to a zinc vacancy related com-
plex (2.19 eV in [39]) seems most plausible. While
Zn(OH)2 on the surface of the nanoparticles could also
explain the quenching of the UV emission, we could not
detect major changes in the O1s peak (Supporting Infor-
mation), and thus do not believe that the dissociation of
possible Zn(OH)2 could play a major role [40].
The results mean that the treatment has significantly

reduced the amount of defects in the surface structure,
as these are commonly associated with visible range
photoluminescence emission [41]. The result is not
surprising, as all ZnO point defects are expected to be
mobile at the temperatures used in the treatments [42].
The inset of Fig. 8 shows the UV peak areas of the

samples with respect to the treatment temperature.
From here it can readily be seen that the acetylene-
treated samples consistently display a stronger UV
photoluminescence than those samples that were
annealed in N2 at the same temperature. A maximum
of difference can be seen at 825 °C treated samples, in
which the difference in photoluminescence intensity is
almost 2.5-fold. Compared to the untreated samples,
the difference is over 60-fold. The same temperature
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Table 1 XPS C1s fitted peak positions and relative areas

Peak 1 (C-O) 2 (oxycarb.) 3 (C-C) 4 (Zn-C)

Sample Position (eV) Relative area (%) Position (eV) Relative area (%) Position (eV) Relative area (%) Position (eV) Relative area (%)

As-grown 288.9 2.1 286.3 1.2 284.8 9.8 283.4 0.2

N2-annealed 289.0 1.2 286.4 1.3 284.8 7.6 283.6 0.7

Acet.-treat. 288.8 2.0 286.5 2.0 284.8 11.1 283.6 2.1
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also gives the strongest UV luminescence intensity for
both types of samples.
Figure 9 shows the excitation spectra of samples

treated in 825 °C for 410 nm emission. The spectra have
been normalized to the intensity of the smallest wave-
length maximum and shifted for clarity. No definite
differences between the N2-annealed and acetylene-
treated samples were observed, meaning that the ob-
served changes in UV emission intensity are not due to
differences in the above-bandgap absorption properties
of the material.

Raman Spectroscopy
Figure 10 shows the Raman spectra from three ZnO
samples. All samples show usual ZnO vibrational modes,
as indexed in Fig. 10. The absence of the localized vibra-
tional mode (LVM) band in 532 nm (Fig. 10a) excitation
spectra at around 270 cm−1 implies that there is no O-
substituted nitrogen in the samples, as this LVM band
has been attributed to such defects [43]. The FWHM
value of the E2 low peak is 8.3 cm−1 in the as-grown sam-
ple but is reduced to 7.2 and 7.4 cm−1 in the nitrogen-
annealed and acetylene-treated samples, respectively. This

Fig. 7 Absorbance (in reflectance mode) of ZnO rod samples. The gap and Urbach energies are shown
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shows that heat treatment reduces disorder in the zinc
sublattice, as may be expected. In addition, the surface op-
tical phonon mode (SOP), located at about 490 cm−1, is
more intense in the acetylene-treated sample, which im-
plies that the density of surface defects is bigger in the
acetylene-treated sample, even though PL results implicate
that the total number of defects, bulk included, must be
reduced [44, 45]. This observation corresponds with the
TEM images, which show a rougher surface in the sam-
ples treated with acetylene.
In the surface-sensitive 266-nm spectra (Fig. 10b), a

wide and weak E2 peak (characteristic of wurtzite
ZnO [15]) can be observed at 437.5 cm−1, as opposed
to the sharper features in the bulk-related 532-nm
spectra. This suggests the existence of surface dis-
order in the samples. The E2 high peak is associated
with the oxygen sublattice, so the results are indica-
tive of an oxygen-related disorder in all the rods
studied here. The signal is weaker in the acetylene-
treated rods compared to N2-annealed ones. This is

likely to result from the etching and additional dis-
order in the surface as seen in the SEM images, most
likely as the result of carbon incorporation into the
lattice. The presence of A1 and E1 longitudinal op-
tical (LO) optical modes, especially strong in the 266-
nm spectra, further hints at disorder in the surface
region [46].
The difference between the surface and bulk Raman

measurements shows that the surfaces of the rods
have more defects than the cores, which is likely
related to the particle-like surface structure. The
FWHM of the E2 low peak is 14.9 cm−1 in the as-
grown sample but is reduced to 9.67 cm−1 by N2 an-
nealing. In the acetylene-treated sample, the value is
between the two, 11.3 cm−1, showing that while heat
treatment eliminates disorder in the surface, add-
itional disorder results as a result of etching and car-
bon atoms on the surface. As this is not seen in the
532-nm spectra, it can be surmised that the changes
are concentrated on the surface of the rods.

Fig. 10 Raman spectra taken with excitation wavelengths of 532 nm (a) and 266 nm (b)
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Discussion
Unlike in the previous work [18], the acetylene treat-
ment was found to have only a limited effect on the
morphology of the ZnO rods. However, some etching
was still evident in the SEM images, and the effects of
the etching are likely to be more dominant should
smaller nanorods be used. To understand the differences
between different types of ZnO samples, we should con-
sider a possible mechanism for the etching.
It is known that ZnO can react with carbon in order

to produce zinc vapor. The reaction proceeds as

ZnO þ C→Zn þ CO ð1Þ
with decomposing C2H2 providing the carbon. A two-

step reaction consisting of the subreactions

ZnO þ CO→Zn þ CO2 ð2Þ
and

CO2 þ C→2CO ð3Þ
has also been considered, with direct oxidation of car-

bon monoxide to dioxide also possibly competing with
reaction (2) [47]. While the boiling point of zinc, 907 °C,
lies between the temperatures used in this study, any
liquid zinc is also likely to be quickly evaporated and
carried away by the gas flow due to the high tempera-
tures and minuscule amounts involved [48].
The latter mechanism requires oxygen for the forma-

tion of CO. In our experiments, the tube was flushed for
at least 20 min before treatment with N2, followed by
15-min flushing with 1:1 acetylene/N2. It seems unlikely
that an appreciable amount of residual oxygen could be
found in the tube after flushing. The oxygen for CO for-
mation would then most likely come from the surfaces
of the nanorods. In the temperature used, any excess
oxygen can easily migrate from the structure and come
in contact with adsorbed and/or decomposed C2H2 on
the surface to produce CO, and the etching is controlled
by the availability of oxygen. It must be noted, however,
that the detected Zn/O ratio is the smallest in acetylene-
treated samples. Additional CO reactions with the
remaining ZnO, as expected in some gas sensing studies
of ZnO, could be involved in the process, allowing one
oxygen atom to vaporize more than one zinc atom [49].
While one would normally associate the enhanced UV

luminescence found in the acetylene-treated rods to the
reduction of visible range emissions, as the two
processes compete with each other, it is insufficient to
explain the effect observed in our study, as the visible
range emission is already strongly reduced by the ther-
mal treatment, with no further reduction by the acetyl-
ene treatment observed. Thus, is seems likely that the
increased luminescence intensity is a result of a lowered

possibility of non-radiative, rather than radiative, visible
recombination of excitons in the acetylene-treated rods.
The nature of non-radiative traps in ZnO is not com-
pletely clear, but based on the Raman results, it seems
likely that changes in phonon dynamics in the oxygen
sublattice may be the cause for the enhancement. The
exact mechanism behind the phenomenon warrants fur-
ther study.

Conclusions
We have used the ACG process to produce ZnO nanorods
and studied the effect of a thermal acetylene treatment on
their structural and optical properties. The process was
found to erode the surfaces of the nanorods, likely
through a reaction of carbon from the acetylene and ZnO.
In contrast to previous studies, the erosion was found to
be limited, showing that the growth method has a great
impact on the results of the treatment.
Acetylene treatment was found to remarkably increase

the UV photoluminescence efficiency of the nanorods by
up to a factor of 2.5 compared to N2-annealed ones, and
with a 60-fold increase compared to as-grown rods. A
treatment temperature of 825 °C was optimal for maxi-
mizing the effect. The main cause is proposed to be the
suppression of non-radiative relaxation pathways on the
surface of the nanorods due to the disruption of the oxy-
gen sublattice by carbon species, rather than reduction
of defect states. The improvement of luminescence may
prove useful in future ZnO-related applications, such as
nanoscintillators.

Additional file

Additional file 1: Supporting information: XPS O1s peaks from ZnO
nanorod samples. (PDF 404 kb)
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