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1. Introduction

Let A denote the class of functions f(z) of the form:

f(z) = z + a2z
2 + a3z

3 + · · · , z ∈ Δ, (1.1)

which are analytic in the open unit disk Δ = {z ∈ C : |z| < 1}. The subclass of A consisting of all univalent 
functions f(z) in Δ will be denoted by U .

Following [4], for α ∈ R we consider the class G (α) consisting of locally univalent functions f ∈ A which 
satisfy the condition

Re
(

1 + zf ′′(z)
f ′(z)

)
< 1 + α

2 , z ∈ Δ. (1.2)

It is easy to see that the identity function satisfies the above inequality for α > 0, thus G (α) �= ∅ if 
α > 0, and we will make this assumption on α in the sequel. In [5], Ozaki introduced the class G ≡ G(1)
and proved that functions in G are univalent in Δ. In [11], Umezawa generalized Ozaki’s result for a version 
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of the class G (convex functions in one direction). It is also known that the functions in the class G (1) are 
starlike in Δ (see for example the particular case α = 1 of (16) in [8], or [9,10]).

Since G (α) ⊂ G (α′) whenever α < α′, it readily follows that the class G(α) is included in the class S of 
starlike functions in Δ whenever α ∈ (0, 1], which in particular shows that G (α) consists only of univalent 
functions for any α ∈ (0, 1]. In the present paper we will investigate the properties of the class G (α) (and of 
a certain subclass G∗ (α) of it), and then we will determine the best approximation of an analytic function by 
functions in the class G (α) in the sense of L2 norm. The method is based on solving a certain semi-infinite 
quadratic problem, in the spirit of [6] and [7].

The structure of the paper is the following. In Section 2 we introduce the subclass G∗ (α) ⊂ G (α), defined 
by a certain inequality in terms of the Taylor coefficients of the function. Next, we investigate the connection 
between the class G (α) (for various values of α > 0) and the classical classes of starlike and convex functions 
(Theorem 2.1).

As indicated above, it is an open problem whether G (α) ⊂ U for α > 1. In Theorem 2.2 we give a partial 
result for this problem, which shows that for α ∈ [1, 4.952) the radius of univalence of the class G (α) is 
at least 1/α. The section concludes with a result (Proposition 2.1) which shows that for certain values of 
α ∈ (0, 1] the class G∗ (α) interpolates between subclasses of starlike and convex functions, and that the 
result is sharp.

In order to investigate the problem of the best approximation of an analytic function by functions in 
the class G∗(α) (in the sense of L2 norm), in Section 3 we introduce and solve a semi-infinite quadratic 
programming problem, which may be of independent interest (Theorem 3.2). The paper concludes with 
Section 4, in which we apply the results of the previous section in order to settle the problem of the best 
approximation of an analytic function by functions in the class G∗(α) (Theorem 4.1), and to present some 
numerical examples (Example 2.1).

2. Results on the classes G (α) and G∗ (α)

It can be easily seen that functions in G(α) are not necessarily univalent in Δ if α > 1, as shown by the 
following example.

Example 2.1. Consider the function f : Δ → C defined by f(z) = 1
3(z − 1)3 + 1

3 , z ∈ Δ. It is easy to see 
that the function f belongs to the class A and it is locally univalent. Since

Re
(

1 + zf ′′ (z)
f ′ (z)

)
= Re

(
1 + 2z

z − 1

)
< 2 = 1 + 2

2 , z ∈ Δ,

it follows that f ∈ G (2).
It is easy to see that z1 = 1 + 0.5e3πi/4, z2 = 1 + 0.5e3πi/4+2πi/3 ∈ Δ and f(z1) = f(z2), which shows 

that f is not univalent in Δ. It follows that for α ≥ 2 the class G (α) does not consist entirely of univalent 
functions. It is an open question whether G (α) ⊂ U for α ∈ (1, 2) (see Theorem 2.2 for a partial result on 
this problem).

We begin by investigating the connection between the class G (α) (for various α > 0) and the classical 
subclasses of (normalized) univalent functions consisting of starlike and convex functions, denoted by S, 
respectively by K.

It is known (see for example [2], p. 52) that if the Taylor coefficients of a normalized analytic function 
f (z) = z +

∑∞
n=2 anz

n ∈ A satisfy the inequality

∞∑
n |an| ≤ 1, (2.1)
n=2
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then f ∈ S, and if

∞∑
n=2

n2 |an| ≤ 1, (2.2)

then f ∈ K. We will denote by S∗ and K∗ the subclasses of S, respectively K, consisting of functions which 
satisfy (2.1), respectively (2.2) above.

Similarly, one can find sufficient conditions on the Taylor coefficients of the function which guarantee 
that it belongs to the class G (α). One such sufficient condition is given by the following.

Lemma 2.1 ([4], Theorem 4). Suppose that f(z) = z + a2z
2 + a3z

3 + · · · , z ∈ Δ, satisfies

∞∑
n=2

n (2(n− 1) − α) |an| ≤ α, (2.3)

for some 0 < α ≤ 1. Then f ∈ G(α).

As a particular example, consider the following.

Example 2.2. Let f ∈ A be given by

f(z) = z +
∞∑

n=2

αeiθ

n2(n− 1)[2(n− 1) − α]z
n, z ∈ Δ,

for some 0 < α ≤ 1 and θ ∈ R. The coefficient inequality (2.3) becomes

∞∑
n=2

n[2(n− 1) − α]|an| = α
∞∑

n=2

1
n(n− 1) = α

and by Lemma 2.1 it follows that f ∈ G(α).

For α > 0, we define G∗ (α) to be the class consisting of normalized analytic functions in the unit disk 
for which the corresponding Taylor coefficients satisfy the inequality (2.3) above. By Lemma 2.1 above it 
follows that G∗ (α) ⊂ G (α) whenever α ∈ (0, 1], hence by the previous results it follows G∗ (α) consists only 
of univalent functions, for any α ∈ (0, 1].

We will first we establish some connections between the classes G (α) and S, respectively between G (α)
and K.

Theorem 2.1. a) Consider f ∈ A locally univalent and let F (z) =
∫ z

0
1

f ′(w)dw. Then F ∈ A, and moreover 
f ∈ K iff F ∈ G (2).

b) Consider f ∈ A, f (z) �= 0 for z ∈ Δ − {0}, and let F (z) =
∫ z

0
w

f(w)dw. Then F ∈ A, and moreover 
f ∈ S iff F ∈ G (2).

Proof. a) First note that since f ∈ A and f is locally univalent, F is an analytic function in Δ. It is 
immediate from the definition that F (0) = 0 and F ′ (0) = 1

f ′(0) = 1, so F ∈ A, and F is also locally 
univalent.

Next, note that from the definition we have F ′ (z) f ′ (z) = 1 for all z ∈ Δ. Differentiating we obtain 
F ′′ (z) f ′ (z) + F ′ (z) f ′′ (z) = 0 for z ∈ Δ, and dividing by F ′ (z) f ′ (z) = 1 we conclude
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F ′′ (z)
F ′ (z)

= −f ′′ (z)
f ′ (z)

, z ∈ Δ. (2.4)

Recalling the well-known characterization of convex functions f ∈ A (see for example [2], Theorem 2.2.3)

f ∈ K ⇐⇒ Re
(

1 + zf ′′ (z)
f ′ (z)

)
> 0, z ∈ Δ (2.5)

and using the above, we obtain

F ∈ G (2) ⇐⇒ Re
(

1 + zF ′′ (z)
F ′ (z)

)
< 2, z ∈ Δ

⇐⇒ Re
(

1 − zf ′′(z)
f ′(z)

)
< 2, z ∈ Δ

⇐⇒ Re
(

1 + zf ′′ (z)
f ′ (z)

)
> 0, z ∈ Δ

⇐⇒ f ∈ K,

concluding the proof of the first claim.
b) Under the given hypotheses on f , it is not difficult to check that F ∈ A and is locally univalent. From 

the definition of F we obtain

F ′ (z) f (z) = z, z ∈ Δ

and differentiating again we have F ′′ (z) f (z) + F ′ (z) f ′ (z) = 1, z ∈ Δ. Dividing the last two relation we 
arrive at

z
F ′′ (z)
F ′ (z) + z

f ′ (z)
f (z) = 1, z ∈ Δ.

Using the above and the characterization of starlike functions (see for example [2], Theorem 2.2.2), we 
obtain

F ∈ G (2) ⇐⇒ Re
(

1 + zF ′′(z)
F ′ (z)

)
< 2, z ∈ Δ

⇐⇒ Re
(

2 − z
f ′ (z)
f (z)

)
< 2, z ∈ Δ

⇐⇒ Re
(
zf ′ (z)
f (z)

)
> 0, z ∈ Δ

⇐⇒ f ∈ S,

concluding the proof. �
Remark 2.1. Note that in part a) of the above lemma, the construction is symmetric in terms of f and F , 
i.e. we have the symmetric relation f ′ (z)F ′ (z) = 1 for all z ∈ Δ. Using this observation, and interchanging 
the roles of f and F , the same proof shows that we also have the equivalence F ∈ K iff f ∈ G (2).

In [5], Ozaki proved that the functions in the class G (1) are univalent. However, this result does not hold 
in general for the class G(α) if α > 1, as Example 2.1 shows it. This raises the question about the radius of 
injectivity of the class G (α) for α > 1, with an answer provided by the following.
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Theorem 2.2. For 1 ≤ α < 4.952, the radius of injectivity of the class G (α) is at least 1
α . That is, any 

function f ∈ G (α) with 1 ≤ α < 4.952 is univalent in the disk 
{
z ∈ C : |z| < 1

α

}
.

Proof. Recall Ahlfors’s univalence criterion (see [1], or Theorem 3.3.2 in [2]): if f ∈ A and there exists a 
constant c ∈ C with |c| ≤ 1, c �= −1, such that

∣∣∣∣∣zf
′′ (z)

f ′ (z) + c
|z|2

1 − |z|2

∣∣∣∣∣ ≤ 1
1 − |z|2

, z ∈ Δ, (2.6)

then f is univalent in Δ.
Recall that if p : Δ → C has positive real part and p (0) = 1, then we have the estimate (see for example 

[2], p. 31)
∣∣∣∣∣p (z) − 1 + |z|2

1 − |z|2

∣∣∣∣∣ ≤ 2 |z|
1 − |z|2

, z ∈ Δ. (2.7)

If f ∈ G (α), then p (z) = 1 − 2zf ′′(z)
αf ′(z) has positive real part and satisfies p (0) = 1, so the above estimate 

gives ∣∣∣∣∣zf
′′ (z)

αf ′ (z) + |z|2

1 − |z|2

∣∣∣∣∣ ≤ |z|
1 − |z|2

, z ∈ Δ. (2.8)

Consider F (z) = αf
(
z
α

)
, z ∈ Δ. It is easy to see that F ∈ A and

1
α

f ′′ ( z
α

)
f ′

(
z
α

) = F ′′ (z)
F ′ (z) , z ∈ Δ.

From (2.8) we obtain
∣∣∣∣∣
z
αf

′′ ( z
α

)
αf ′

(
z
α

) + |z/α|2

1 − |z/α|2

∣∣∣∣∣ ≤ |z/α|
1 − |z/α|2

, z ∈ Δ,

or equivalent ∣∣∣∣∣zF
′′ (z)

F ′ (z) +
1
α |z|2

1 − |z/α|2

∣∣∣∣∣ ≤ |z|
1 − |z/α|2

, z ∈ Δ.

Using the above and the triangle inequality, we get∣∣∣∣∣zF
′′ (z)

F ′ (z) + 3 − α

2 · |z|2

1 − |z|2

∣∣∣∣∣ ≤ |z|
1 − |z/α|2

+

∣∣∣∣∣−3 − α

2 · |z|2

1 − |z|2
+

1
α |z|2

1 − |z/α|2

∣∣∣∣∣ (2.9)

= |z|
1 − |z/α|2

+ |z|2
(α− 1)

∣∣3|z|2 + α(2 − α)
∣∣

2α2
(
1 − |z|2

)(
1 − |z/α|2

)

= 1
1 − |z|2

2α2 |z|
(
1 − |z|2

)
+ (α− 1) |z|2

∣∣3|z|2 + α(2 − α)
∣∣

2α2
(
1 − |z/α|2

)
≤ 1

2 .
1 − |z|
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To justify the last inequality, we have left to show that for any t ∈ [0, 1) and α ∈ [1, 4.952] we have

2α2t
(
1 − t2

)
+ (α− 1)t2

∣∣3t2 + α(2 − α)
∣∣

2 (α2 − t2) ≤ 1,

or equivalent

−2α2t3 + 2t2 + 2α2t− 2α2 ≤ (α− 1)t2
(
3t2 + α(2 − α)

)
≤ 2α2t3 − 2t2 − 2α2t + 2α2. (2.10)

The right inequality above is equivalent to

(α− t)
(
3(α− 1)t3 + α(α− 3)t2 + 2(1 − α)t + 2α

)
≥ 0,

which reduces to showing that g (α, t) = 3(α− 1)t3 + α(α− 3)t2 + 2(1 − α)t + 2α ≥ 0. We note that

∂g

∂α
(α, t) = 3t3 + (2α− 3)t2 − 2t + 2 = (1 + t)(3t2 − 4t + 2) + 2(α− 1)t2 ≥ 0,

hence g (α, t) is an increasing function of α ≥ 1 for any t ∈ [0, 1] arbitrarily fixed. It follows that g (α, t) ≥
g (1, t) = 2 − 2t2 ≥ 0, for any α ≥ 1 and t ∈ [0, 1], thus proving the right inequality in (2.10).

Proceeding similarly, the left inequality in (2.10) is equivalent to

(α + t)
(
3(α− 1)t3 + α(3 − α)t2 − 2(1 + α)t + 2α

)
≥ 0,

and reduces to showing that h (α, t) = 3(α− 1)t3 + α(3 − α)t2 − 2(1 + α)t + 2α ≥ 0.

We note that ∂
2h

∂α2 (α, t) = −2t2 ≤ 0, hence h (α, t) is a concave function of α ≥ 1 for any t ∈ [0, 1]
arbitrarily fixed. It follows that for α ∈ [1, 4.952] and t ∈ [0, 1] we have

h (α, t) ≥ min {h (1, t) , h (4.952, t)} . (2.11)

We have h (1, t) = 2 (t− 1)2 ≥ 0 and h (4.952, t) = 2
15625 (77375 − 93000t − 75518t2 + 92625t3). Simple 

calculus shows that the cubic defining h (4.952, t) attains its minimum on the interval [0, 1] at t0 = 2(37759 +√
7886335831)/277875 ≈ 0.9109, and

h (4.952, t0) = 22414744979838922 − 252362746592
√

7886335831
3619430419921875 ≈ 0.00101 > 0.

Combining the above with (2.11) we obtain that h (α, t) ≥ min{0, h (4.952, t0)} > 0 for any t ∈ [0, 1] and 
α ∈ [1, 4.952], which concludes the proof of the claim (2.10).

Using Ahlfors’s criterion (with c = 3−α
2 ∈ (−1, 1] for α ∈ [1, 4.952]), from (2.9) we deduce that F (z)

is univalent in the unit disk Δ. In turn, since F (z) = αf
(
z
α

)
, this shows that f is univalent in the 

disk 
{
z ∈ C : |z| < 1

α

}
, and therefore the radius of injectivity of the class G(α) is at least 1/α, for any 

α ∈ [1, 4.952], thus concluding the proof. �
Remark 2.2. Note that in the particular case α = 1, the above theorem shows that the radius of univalence of 
the class G(1) is at least (and therefore equal to) 1, i.e. the class G(1) consists entirely of univalent functions, 
and thus we obtain as a particular case of our theorem the result proved by Ozaki ([5]). We do not know 
whether the lower bound 1

α in the previous theorem actually coincides with the radius of univalence of the 
class G(α) for α ∈ (1, 4.952].
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The following result shows that the subclass G∗ (α) ⊂ G (α) interpolates between the subclasses S∗ and 
K∗ of starlike, respectively convex functions.

Proposition 2.1. G∗ (α) ⊂ S∗ for any α ∈ (0, 1], and G∗ (α) ⊂ K∗ for any α ∈ (0, 23 ]. Moreover, the result is 
sharp in the sense that G∗ (α) �⊂ S∗ for α > 1 and G∗ (α) �⊂ K∗ for α > 2

3 .

Proof. Note that for α ∈ (0, 1] we have

n ≤ n[2(n− 1) − α],

for any n ≥ 1 + 1+α
2 , in particular for n ≥ 2. If f (z) = z +

∑∞
n=2 anz

n ∈ G∗ (α), we have

∞∑
n=2

n |an| ≤
∞∑

n=2
n [2 (n− 1) − α] |an| ≤ α ≤ 1

and therefore f ∈ S∗.
Similarly, if α ∈ (0, 23 ] we have

n2 ≤ n (2(n− 1) − α) ,

for any n ≥ 2 + α, in particular for n ≥ 3.
If f (z) = z +

∑∞
n=2 anz

n ∈ G∗ (α), we have

∞∑
n=2

n2 |an| ≤ 4 |a2| +
∞∑

n=3
n [2 (n− 1) − α] |an|

≤ 4 |a2| + α− 2 (2 − α) |a2|

≤ α (1 + 2 |a2|)

≤ α

(
1 + α

2 − α

)

= 2α
2 − α

≤ 1,

which shows that f (z) ∈ K∗ for α ∈
(
0, 2

3
]
, concluding the first part of the proof.

From (2.3) it is not difficult to see that the class G∗ (α) is monotone increasing with respect to α > 0. In 
order to prove the last assertion of the lemma it suffices therefore to consider the case α ∈ (1, 2).

Consider the function f (z) = z + βz2 with β > 0, and note that f (z) ∈ G∗ (α) iff β ≤ α
2(2−α) ∈

( 1
2 ,∞

)
for α ∈ (1, 2).

For fixed α ∈ (1, 2), considering β = α
2(2−α) we have f (z) ∈ G∗ (α), but f (z) /∈ S∗ since β = α

2(2−α) > 1
2

for any α ∈ (1, 2). This shows that G∗ (α) �⊂ S∗ for any α > 1.
Similarly, for any α ∈

( 2
3 , 2

)
, considering β = α

2(2−α) we have f (z) ∈ G∗ (α) but f (z) /∈ K∗ since 

β = α
2(2−α) > 1

4 for any α ∈
( 2

3 , 2
)
. This shows that G∗ (α) �⊂ K∗ for any α > 1, concluding the proof. �

3. Approximation by functions in the subclass G∗ (α) ⊂ G (α)

As a measure of (non)univalency of a function f ∈ A, in [6,7] the authors considered
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dist(f,U) = inf
g∈U

⎛
⎝∫∫

Δ

|f(x + iy) − g(x + iy)|2dxdy

⎞
⎠

1
2

, (3.1)

with similar definitions for the subclasses K, S, K∗, and S∗. In the same spirit, we consider the following.

Definition 3.1. For f ∈ A we define

dist(f,G(α)) = inf
g∈G(α)

⎛
⎝∫∫

Δ

|f(x + iy) − g(x + iy)|2dxdy

⎞
⎠

1
2

, (3.2)

with a similar definition for dist(f, G∗(α)).

Although dist(·, G(α)) is not a norm in A (see Theorem 3.1), dist(f, G(α)) is a measure showing how 
“far” is the function f from the class G(α), and the same is true for dist(f, G∗(α)).

We will use the following result from [6], which shows that the L2 norm of an analytic function f : Δ → C

can be expressed in term of the coefficients of the Taylor series of f , as follows.

Lemma 3.1. ([6]) If f : Δ → C is analytic in Δ and has series expansion f(z) = a0 + a1z + a2z
2 + · · · , 

z ∈ Δ, then

∫∫
Δ

|f(x + iy)|2dxdy = π

∞∑
n=0

|an|2
n + 1 . (3.3)

The class G(α) can be characterized in terms of dist(·, G) as follows (a similar characterization can be 
given for the class G∗(α)).

Theorem 3.1. For f ∈ A, dist(f, G(α)) = 0 if and only if f ∈ G(α).

Proof. The proof being similar to the proof of the characterization of the class K [7, Theorem 3] (with 
the inequality (2.5) which characterizes the class K replaced by the inequality (1.2) which characterizes the 
class G(α)), we will just briefly sketch the argument and refer the reader to [7].

If dist(f, G(α)) = 0, we can find a sequence (fn)n≥1 ⊂ G(α) which converges to f uniformly on compact 
subsets of Δ. Since fn are locally univalent (hence f ′ �= 0 in Δ) and using Hurwitz’s theorem, we conclude 
that f is also locally univalent in Δ. Since fn ∈ G(α), passing to the limit with n → ∞ in the inequality 
(1.2) which characterizes this class, we conclude that f also satisfies this inequality, thus f ∈ G(α). The 
converse implication being obvious, this concludes the proof. �

In order to find the best approximation of an analytic function f ∈ A in the subclass G∗(α) ⊂ G(α), 
motivated by Definition 3.1, Lemma 3.1, and an argument embedded in the proof of Theorem 4.1, we were 
led to consider the problem of finding

inf
∞∑

n=2

(xn − an)2

n + 1 , (3.4)

where (an)n≥2 is a given sequence of non-negative real numbers, and the infimum is taken over all non-
negative sequences (xn)n≥2 of real numbers satisfying
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∞∑
n=2

n

α
[2(n− 1) − α]xn ≤ 1. (3.5)

We first note that the solution of the above problem is trivial if

∞∑
n=2

n

α
[2(n− 1) − α]an ≤ 1

(the above infimum is 0, attained for xn = an, n ≥ 2). We will therefore consider the following additional 
hypothesis on the sequence (an)n≥2

∞∑
n=2

n

α
[2(n− 1) − α]an > 1. (3.6)

The above problem is a particular case of a semi-infinite quadratic programming problem (see for example 
[3]), with corresponding Lagrangian given by

L =
∞∑

n=2

(xn − an)2

n + 1 + μ

( ∞∑
n=2

n

α
[2(n− 1) − α]xn − 1

)
. (3.7)

The solution of the quadratic problem (3.4)–(3.5) is given by the Karush–Kuhn–Tucker conditions (see 
[3] or [6,7], and assume for the moment that the same conditions can be used for an infinite instead of a 
finite number of variables, as detailed in Remark 3.1 below), which in this case become:

∂L

∂xn
= 2xn − an

n + 1 + μ
(n
α

[2(n− 1) − α]
)
≥ 0, n ≥ 2, (3.8)

∂L

∂μ
=

∞∑
n=2

n

α
[2(n− 1) − α]xn − 1 ≤ 0, (3.9)

xn
∂L

∂xn
= xn

[
2xn − an

n + 1 + μ
(n
α

[2(n− 1) − α]
)]

= 0, n ≥ 2, (3.10)

μ
∂L

∂μ
= μ

( ∞∑
n=2

n

α
[2(n− 1) − α]xn − 1

)
= 0, (3.11)

xn ≥ 0, n ≥ 2, (3.12)

μ ≥ 0. (3.13)

The equation (3.11) shows that either μ = 0 or 
∑∞

n=2
n
α [2(n − 1) − α]xn = 1. However, the hypothesis 

(3.6) shows that we cannot have μ = 0. This is so for otherwise from (3.10) we obtain xn = 0 or xn = an, 
and since (3.8) shows that xn ≥ an, we conclude that xn = an for all n ≥ 2. In turn, this shows that

∞∑
n=2

n

α
[2(n− 1) − α]xn =

∞∑
n=2

n

α
[2(n− 1) − α]an > 1,

contradicting (3.9).
We have therefore μ > 0, and we can rewrite the system (3.8)–(3.13) as follows:

2xn − an + μ
(n [2(n− 1) − α]

)
≥ 0, n ≥ 2, (3.14)
n + 1 α
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xn

[
2xn − an

n + 1 + μ
(n
α

[2(n− 1) − α]
)]

= 0, n ≥ 2, (3.15)

∞∑
n=2

n

α
[2(n− 1) − α]xn = 1, (3.16)

xn ≥ 0, n ≥ 2, (3.17)

μ > 0. (3.18)

The equation (3.15) shows that either xn = 0 or

xn = an + μn(n + 1)
(
α− 2(n− 1)

2α

)

and we will denote by I be the set of indices n ≥ 2 for which the latter equality holds (therefore xn = 0 for 
n ∈ Ic = {2, 3, . . .} − I). Assuming the additional hypothesis α ∈ (0, 2), from (3.14) and (3.17) we obtain

μ ≥ 2αan
n(n + 1)[2(n− 1) − α] , n ∈ Ic, (3.19)

respectively

μ ≤ 2αan
n(n + 1)[2(n− 1) − α] , n ∈ I. (3.20)

Note that if we also impose the additional hypothesis

lim
n→∞

an
n3 = 0, (3.21)

the last inequality cannot hold for infinitely many indices n (i.e. I must be finite). This is so for otherwise 
we can pass to the limit in (3.20) along a sequence of indices in I converging to ∞ and conclude μ ≤ 0, 
thus contradicting (3.18). From (3.16) we now obtain

1 =
∞∑

n=2

n

α
[2(n− 1) − α]xn

=
∑
n∈I

n

α
[2(n− 1) − α]

(
an + μn(n + 1)

(
α− 2(n− 1)

2α

))

=
∑
n∈I

n

α
[2(n− 1) − α]an − μ

2α2

∑
n∈I

n2(n + 1)[2(n− 1) − α]2

and therefore

μ =
2α2 (∑

n∈I
n
α [2(n− 1) − α]an − 1

)∑
n∈I n2(n + 1)[2(n− 1) − α]2 > 0. (3.22)

In order to find the solution of the problem (3.4) – (3.5), it remains to find the set of indices I (the last 
equality gives then the value

xn = an + μn(n + 1)
(
α− 2(n− 1)

2α

)
,

for n ∈ I and xn = 0 for n ∈ Ic). To do this, recall that μ given by (3.22) must satisfy (3.19) and (3.20).
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The choice of the set I depends on whether the all the terms of the sequence (an)n≥2 are positive or not, 
so we introduce the set of indices P = {n ≥ 2 : an > 0}, and distinguish the following cases.

Case 1: P = {2, 3, . . .}.
The hypothesis (3.21) shows that

(
2αan

n(n + 1)[2(n− 1) − α]

)
n≥2

,

is a sequence of positive numbers converging to 0, so we can choose a permutation (in)n≥2 of the indices in 
P such that

αn = 2αain
in(in + 1)[2(in − 1) − α] , n ≥ 2,

is a non-increasing sequence (to see this, note that each interval in the partition [1, ∞) ∪
(
∪m≥1[ 1

m+1 ,
1
m )

)
=

(0, ∞) contains only a finite number of terms of the original sequence).
Since

∞∑
n=2

in
α

[2(in − 1) − α]ain =
∞∑

n=2

n

α
[2(n− 1) − α]an > 1,

there exists an integer n0 ≥ 2 such that

n0∑
n=2

in
α

[2(in − 1) − α]ain > 1

and assume that n0 ≥ 2 is the smallest index with this property. Setting

μn =
2α2 (∑n

m=2
im
α [2(im − 1) − α]aim − 1

)∑n
m=2 i

2
m(im + 1)[2(im − 1) − α]2

, n ≥ 2,

first note that we must have 0 < μn0 ≤ αn0 . This is so for if n0 = 2, then

μ2 =
2α2 ( i2

α [2(i2 − 1) − α]ai2 − 1
)

i22(i2 + 1)[2(i2 − 1) − α]2 ≤ 2αai2
i2(i2 + 1)[2(i2 − 1) − α] = α2,

so the claim holds in this case. If n0 > 2, by the choice of n0 we have

μn0−1 =
2α2

(∑n0−1
n=2

in
α [2(in − 1) − α]ain − 1

)
∑n0−1

n=0 i2n(in + 1)[2(in − 1) − α]2
≤ 0 <

2αain0

in0(in0 + 1)[2(in0 − 1) − α] = αn0

and using the observation that ab ≤ c
d with b, d > 0 implies a+c

b+d ≤ c
d , we obtain

μn0 =
2α2

(∑n0−1
n=2

in
α [2(in − 1) − α]ain − 1

)
+ 2αin0 [2(in0 − 1] − α]ain0∑n0−1

n=0 i2n(in + 1)[2(in − 1) − α]2 + i2n0
(in0 + 1)[2(in0 − 1) − α]2

≤ αn0 ,

concluding the proof of the claim.
We distinguish now the following subcases.
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Case 1a): μn0 ≥ αn0+1.
Since the sequence (αn)n≥2 is non-increasing, we have

μn0 ≤ αn0 ≤ αn, n ∈ {2, 3, . . . , n0},

and

μn0 ≥ αn0+1 ≥ αn, n ∈ {n0 + 1, n0 + 2, ...},

so we can chose I = {i2, i3, . . . , in0}, and thus μ = μn0 satisfies (3.19)–(3.20), giving the solution in this 
case.

Case 1b): μn0 < αn0+1.
In this case, using again the above observation we have

μn0 ≤ μn0+1 ≤ αn0+1

and either μn0+1 ≥ αn0+2 or μn0+1 < αn0+2.
If μn0+1 ≥ αn0+2, proceeding as in Case 1a) above, we can choose I = {i2, i3, ..., in0+1}, and thus 

μ = μn0+1 satisfies (3.19)–(3.20), giving the solution in this case.
If μn0+1 < αn0+2, we obtain:

μn0 ≤ μn0+1 ≤ μn0+2 ≤ αn0+2

and proceeding inductively, either

0 < μn0 ≤ μn0+1 ≤ μn0+2 ≤ ... ≤ μn0+k < αn0+k, k ≥ 0, (3.23)

or we can find an integer k ≥ 2 for which

αn0+k+1 ≤ μn0+k ≤ αn0+k. (3.24)

Since by construction the sequence (αn)n≥2 converges to 0, the inequalities in (3.23) cannot hold for 
every k ≥ 0, and therefore the first possibility above is ruled out. It follows that we can always find an 
integer k for which (3.24) holds, and proceeding as in Case 1a) above we can choose I = {i2, i3, ..., in0+k}, 
and thus μ = μn0+k satisfies (3.19)–(3.20), giving the solution in this case.

Case 2: P = {n ≥ 2 : an > 0} � {2, 3, . . .}.
We distinguish the following subcases.
Case 2a): the set P is infinite.
Since an = 0 for n ∈ {2, 3, . . .} − P, we have

∑
n∈P

n

α
[2(n− 1) − α]an =

∞∑
n=2

n

α
[2(n− 1) − α]an > 1

(additional hypothesis (3.6)). We can therefore apply the argument in Case 1 above to the sequence (an)n∈P
of positive numbers and obtain a solution (i.e. a choice of the set of indices I ⊂ P, as indicated above) of 
the problem

inf
∑ (xn − an)2

n + 1 ,

n∈P
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where the infimum is taken over all non-negative sequences (xn)n∈P with

∑
n∈P

n

α
[2(n− 1) − α]xn ≤ 1.

It is not difficult to see that the solution of the above minimization problem is also a solution of the original 
minimization problem (3.4)–(3.5) (for n ∈ {2, 3, . . .} − P ⊂ Ic we have xn = an = 0).

Case 2b): the set P is finite.
The hypothesis (3.6) shows that P cannot be empty, so |P| = p for some p ≥ 1. If (in)n=2,...,p+1 is a 

permutation of the indices in P such that

αn = 2αain
in(in + 1)[2(in − 1) − α] , (n = 2, . . . , p + 1),

is a non-increasing sequence, proceeding as in Case 1 above, either we can find an integer k ≥ 0 such that 
the index set I = {i2, . . . , in0+k} gives the solution, or else

0 < μn0 ≤ μn0+1 ≤ . . . ≤ μp+1 ≤ αp+1.

In the latter case we can chose I = {i2, i3, ..., ip+1} and note that μ = μp+1 satisfies the necessary 
conditions (3.19)–(3.20), so the index set I gives the solution of the minimization problem (3.4)–(3.5) in 
this last case.

The above analysis can be summarized in the following result.

Theorem 3.2. If 0 < α < 2 and (an)n≥2 is a sequence of non-negative real numbers satisfying

∞∑
n=2

n

α
[2(n− 1) − α]an > 1 and lim

n→∞
an
n3 = 0, (3.25)

there exists an integer N ≥ 2 such that the minimum of the quadratic problem (3.4)–(3.5) is given by

∑
n∈Ic

a2
n

n + 1 +
(∑

n∈I n[2(n− 1) − α]an − α
)2∑

n∈I n2(n + 1)[2(n− 1) − α]2 ,

attained for the sequence (xn)n≥2 defined by

xn =
{

an − μNn(n + 1) 2(n−1)−α
2α , n ∈ I,

0, n ∈ Ic,

where

μN =
2α2 (∑

n∈I
n
α [2(n− 1) − α]an − 1

)∑
n∈I n2(n + 1)[2(n− 1) − α]2 ,

I = {i2, i3, . . . , iN} and (in)n=2,3,...,|P|+1 is a is a permutation of the indices in P = {n ≥ 2 : an > 0} such 
that

αn = 2αain
in(in + 1)[2(in − 1) − α] , (n = 2, 3, . . . , |P| + 1),

is a non-increasing sequence.
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Moreover, we can take N = min{n ≥ 2 : αn+1 ≤ μn ≤ αn}, where

μn =
2α2 (∑n

m=2
im
α [2(im − 1) − α]aim − 1

)∑n
m=2 i

2
m(im + 1)[2(im − 1) − α]2

, (n = 2, 3, . . . , |P | + 1).

Remark 3.1. To complete the proof of the above theorem, we have left to justify that we can use the Karush–
Kuhn–Tucker conditions for the quadratic programming problem (3.4)–(3.5), with an infinite (instead of a 
finite) number of variables. The reasoning being similar to [7, Remark 3], we will just briefly outline it.

The idea is to observe that for any integer m ≥ 2 we have

inf
∞∑

n=2

(xn − an)2

n + 1 ≥ inf
m∑

n=2

(xn − an)2

n + 1 , (3.26)

where both infima are taken over all non-negative sequences (xn)n≥2 of real numbers with 
∑∞

n=2
n
α [2(n −

1) − α]an ≤ 1. Since xm+1, xm+2, . . . do not appear in the objective function in the second infimum 
above, the second infimum is the same when taken over all finite truncated sequences (xn)n=2,...,m with ∑m

n=2
n
α [2(n − 1) −α]an ≤ 1. Solving the Karush–Kuhn–Tucker conditions for this finite-dimensional prob-

lem (the calculations are identical as in the proof above) and using the notation of Theorem 3.2, it follows 
that for m ≥ max{in, . . . , iN} the second infimum in (3.26) is attained for the sequence x2, . . . , xm given 
by

xn =
{

an − μNn(n + 1)2(n−1)−α
2α , n ∈ I,

0, n ∈ Ic
m = {2, . . . ,m} − I.

Combining with (3.26), we obtain

inf
∞∑

n=2

(xn − an)2

n + 1 ≥
∑

n∈Ic
m

a2
n

n + 1 +
(∑

n∈I n[2(n− 1) − α]an − α
)2∑

n∈I n
2(n + 1)[2(n− 1) − α]2

and passing to the limit with m → ∞ we obtain

inf
∞∑

n=2

(xn − an)2

n + 1 ≥ lim
m→∞

∑
n∈Ic

m

a2
n

n + 1 +
(∑

n∈I n[2(n− 1) − α]an − α
)2∑

n∈I n2(n + 1)[2(n− 1) − α]2

=
∑
n∈Ic

a2
n

n + 1 +
(∑

n∈I n[2(n− 1) − α]an − α
)2∑

n∈I n2(n + 1)[2(n− 1) − α]2 ,

which is just the value of the objective function 
∑∞

n=2
(xn−an)2

n+1 for the sequence (xn)n≥2 defined in Theo-
rem 3.2. It follows that the infimum of the quadratic problem (3.4)–(3.5) is attained for the sequence in the 
statement of Theorem 3.2, completing the argument used in the proof.

4. Applications

As an application of Theorem 3.2, we will determine the best approximation of a normed analytic function 
in the subclass G∗(α), that is, we will find

dist(f,G∗(α)) = inf
g∈G∗(α)

⎛
⎝∫

|f(x + iy) − g(x + iy)|2dxdy

⎞
⎠

1
2

,

Δ
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for a given function f ∈ A, and we will determine the extremal function g ∈ G∗(α) for which the minimum 
is attained. The result is the following.

Theorem 4.1. Assume that f(z) = z +
∑∞

n=2 anz
n ∈ A and 0 < α < 2. If

∞∑
n=2

n

α
[2(n− 1) − α]|an| ≤ 1,

then dist(f, G∗(α)) = 0 (attained for g = f ∈ G∗(α) ⊂ G(α)) and if

∞∑
n=2

n

α
[2(n− 1) − α]|an| > 1 and lim

n→∞
|an|
n3 = 0,

then we have

dist(f,G∗(α)) =
(
π
∑
n∈Ic

|an|2
n + 1 + π

(∑
n∈I n[2(n− 1) − α]|an| − α

)2∑
n∈I n

2(n + 1)[2(n− 1) − α]2

) 1
2

, (4.1)

where I = {i2, ..., iN} is given by Theorem 3.2 with an replaced by |an|.
Moreover, the minimum value of dist(f, G∗(α)) above is attained for the function g(z) = z+

∑∞
n=2 bnz

n ∈
G∗(α), where

bn =
{(

|an| − μNn(n + 1)2(n−1)−α
2α

)
ei arg an , n ∈ I,

0, n ∈ Ic,
(4.2)

where μN = 2α2
∑

n∈I
n
α [2(n−1)−α]|an|−1∑

n∈I n2(n+1)[2(n−1)−α]2 .

Proof. The claim is obvious in the first case, so assume that 
∑∞

n=2
n
α [2(n −1) −α]|an| > 1. Using Lemma 3.1

and the triangle inequality we obtain

dist(f,G∗(α)) =
(
π inf

∞∑
n=2

|an − bn|2
n + 1

) 1
2

≥
(
π inf

∞∑
n=2

(|an| − |bn|)2
n + 1

) 1
2

=
(
π inf

∞∑
n=2

(|an| − xn|)2
n + 1

) 1
2

,

where the second and the third infimum are taken over all sequences (bn)n≥2 of complex numbers satisfying ∑∞
n=2

n
α [2(n − 1) −α]|bn| ≤ 1, and the last infimum is taken over all non-negative sequences (xn)n≥2 of real 

numbers satisfying 
∑∞

n=2
n
α [2(n − 1) − α]xn ≤ 1.

Applying Theorem 3.2 with |an| instead of an, we obtain that the last infimum above is attained for the 
sequence (xn)n≥2 given by

xn =
{

|an| − μNn(n + 1) 2(n−1)−α
2α , n ∈ I,

0, n ∈ Ic.

Observing that the triangle inequality |an − bn| ≥ ||an| − |bn|| becomes an equality if arg an = arg bn, it 
follows that
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dist(f,G∗(α)) =
(
π inf

∞∑
n=1

|an − bn|2
n + 1

) 1
2

,

is attained for the sequence (bn)n≥2 of complex numbers with bn = xne
i arg an , n ≥ 2 (note that if an = 0, 

from the proof of Theorem 3.2 we have n ∈ Ic, so xn = 0 and therefore bn = xne
i arg an = 0 is unambiguously 

defined).
Since bn = 0 for n ∈ Ic and |bn| = xn ≥ 0 for n ∈ I, we obtain

∞∑
n=2

n

α
[2(n− 1) − α]|bn| =

∑
n∈I

n

α
[2(n− 1) − α]

[
|an| − μNn(n + 1)2(n− 1) − α

2α

]

=
∑
n∈I

n

α
[2(n− 1) − α]|an| −

1
2α2μN

∑
n∈I

n2(n + 1)(2(n− 1) − α)2

= 1,

which shows that g(z) = z +
∑∞

n=2 bnz
n ∈ G∗(α) and

⎛
⎝∫

Δ

|f(x + iy) − g(x + iy)|2dxdy

⎞
⎠

1
2

=
(
π

∞∑
n=2

|an − bn|2
n + 1

) 1
2

=
(
π

∞∑
n=2

(|an| − |bn|)2
n + 1

) 1
2

=
(
π

∑
n∈Ic

|an|2
n + 1 + π

(∑
n∈I n[2(n− 1) − α]|an| − α

)2∑
n∈I n2(n + 1)[2(n− 1) − α]2

) 1
2

= dist(f,G∗(α)),

as needed, concluding the proof. �
As applications of the previous theorem, we have the following.

Example 4.1. Consider the function fβ,γ : Δ → C defined by fβ,γ (z) = z + βz2 + γz3, where β, γ ∈ C. 
Applying Theorem 4.1 and Theorem 3.2 for an arbitrarily fixed α ∈ (0, 2), we obtain the following.

If 2(2 − α)|β| + 3(4 − α)|γ| ≤ α, then fβ,γ ∈ G∗(α) and dist(fβ,γ , G∗(α)) = 0.
Assuming now 2(2 − α)|β| + 3(4 − α)|γ| > α, we distinguish the following cases.

a) If γ = 0 (hence β �= 0), in the notation of Theorem 3.2, we have P = {2}, i2 = 2, N = 2, I = {i2} = {2}, 
and dist(fβ,0, G∗(α)) =

√
π
3

(
|β| − α

2(2−α)

)
is attained for the function gα,β,0 ∈ G∗(α) defined by

gα,β,0(z) = z + α

2(2 − α)e
i arg βz2, z ∈ Δ.

Fig. 1 shows a comparison of the images of the unit disk under the function f1,0 and of its various 
approximations gα,1,0. Note that by Proposition 2.1 we have that g2/3,1,0 ∈ K∗ is a convex function, 
g1,1,0 ∈ S∗ is a starlike function, and g7/6,1,0 is in not univalent.

b) If β = 0 (hence γ �= 0), we have P = {3}, i2 = 3, N = 2, I = {i2} = {3}, and dist(f0,γ , G∗(α)) =
√
π
(
|γ| − α

)
is attained for the function gα,0,γ ∈ G∗(α) defined by
2 3(4−α)
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Fig. 1. In order from left to right: the image of the unit disk under f1,0, g2/3,1,0, g1,1,0, and g7/6,1,0.

gα,0,γ(z) = z + α

3(4 − α)e
i arg γz3, z ∈ Δ.

c) If β, γ �= 0, then P = {2, 3} and we distinguish the following subcases.
i) If 2 (4 − α) |β| ≥ (2 − α) |γ| + α(4−α)

2−α , then i2 = 2 and i3 = 3, N = 2, I = {i2} = {2} and 

dist(fβ,γ , G∗(α)) =
√

π
3

(
|β| − α

2(2−α)

)2
+ π

4 |γ|2 is attained for the function gα,β,γ ∈ G∗(α) defined 

by

gα,β,γ(z) = z + α

2(2 − α)e
i arg βz2, z ∈ Δ.

ii) If (2 − α) |γ| + α(4−α)
2−α > 2 (4 − α) |β| ≥ (2 − α) |γ|, then i2 = 2 and i3 = 3, N = 3, I = {i2, i3} =

{2, 3}. The minimal distance dist(fβ,γ , G∗(α)) and the extremal function gα,β,γ (z) = z+b2z
2+b3z

3 ∈
G∗(α) are given by (4.1), respectively by (4.2).

iii) If (2 − α) |γ| ≥ 2 (4 − α) |β| + α(2−α)
3(4−α) , then i2 = 3 and i3 = 2, N = 2, I = {i2} = {3} and 

dist(fβ,γ , G∗(α)) =
√

π
3 |β|2 + π

4

(
|γ| − α

3(4−α)

)2
is attained for the function gα,β,γ ∈ G∗(α) defined 

by

gα,β,γ(z) = z + α

3(4 − α)e
i arg γz3, z ∈ Δ.

iv) If 2 (4 − α) |β|+ α(2−α)
3(4−α) > (2 − α) |γ| > 2 (4 − α) |β|, i2 = 3 and i3 = 2, N = 3, I = {i2, i3} = {2, 3}. 

The minimal distance dist(fβ,γ , G∗(α)) and the extremal function gα,β,γ (z) = z+b2z
2+b3z

3 ∈ G∗(α)
are given by (4.1), respectively by (4.2).
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