
ORIGINAL RESEARCH

Low-cost ultrasonic based object detection and collision avoidance
method for autonomous robots

Jawad N. Yasin1 • Sherif A. S. Mohamed1 • Mohammad-Hashem Haghbayan1 •

Jukka Heikkonen1 • Hannu Tenhunen2 • Juha Plosila1

Received: 1 June 2020 / Accepted: 7 September 2020

� The Author(s) 2020

Abstract This work focuses on the development of an

effective collision avoidance algorithm that detects and

avoids obstacles autonomously in the vicinity of a potential

collision by using a single ultrasonic sensor and controlling

the movement of the vehicle. The objectives are to min-

imise the deviation from the vehicle’s original path and

also the development of an algorithm utilising one of the

cheapest sensors available for very lost cost systems. For

instance, in a scenario where the main ranging sensor

malfunctions, a backup low cost sensor is required for safe

navigation of the vehicle while keeping the deviation to a

minimum. The developed algorithm utilises only one

ultrasonic sensor and approximates the front shape of the

detected object by sweeping the sensor mounted on top of

the unmanned vehicle. In this proposed approach, the

sensor is rotated for shape approximation and edge detec-

tion instead of moving the robot around the encountered

obstacle. It has been tested in various indoor situations

using different shapes of objects, stationary objects, mov-

ing objects, and soft or irregularly shaped objects. The

results show that the algorithm provides satisfactory out-

comes by entirely avoiding obstacles and rerouting the

vehicle with a minimal deviation.

Keywords Collision avoidance � Fault tolerance � Mobile

robots � Ultrasonic � Unmanned vehicles

1 Introduction

An unmanned vehicle can be categorised as a mobile robot

that has no human pilot onboard. This includes, for

instance, Unmanned Aerial Vehicles (UAV), Unmanned

Ground Vehicles (UGV), and Unmanned Surface Vehicles

(USV). Their operation is controlled either manually using

remote controllers or autonomously based on onboard

computers [1].

An Unmanned Aerial Vehicle (UAV), or a drone, is an

aircraft, often a multirotor which is basically a rigid body

with mechanically moveable blades. UAVs are designed

for dangerous and complicated missions as the replace-

ments of manned aircraft. Unmanned Ground Vehicles

(UGV) and Unmanned Surface Vehicles (USV) are coun-

terparts of UAVs moving on the ground and water surface,

respectively. In general, unmanned vehicles have different

types of sensors that enable situational awareness and

autonomous decision making depending on the tasks at

hand [2]. Control can be manual, based on e.g. live video

This work has been supported in part by the Academy of Finland-

funded research project 314048 and Finnish Cultural Foundation.

& Jawad N. Yasin

janaya@utu.fi

Sherif A. S. Mohamed

samoha@utu.fi

Mohammad-Hashem Haghbayan

mohhag@utu.fi

Jukka Heikkonen

jukhei@utu.fi

Hannu Tenhunen

hannu@kth.se

Juha Plosila

juplos@utu.fi

1 Autonomous Systems Laboratory, Department of Future

Technologies, University of Turku, Vesilinnantie 5,

20500 Turku, Finland

2 Department of Industrial and Medical Electronics, KTH

Royal Institute of Technology, Brinellvgen 8,

114 28 Stockholm, Sweden

123

Int. j. inf. tecnol.

https://doi.org/10.1007/s41870-020-00513-w

http://orcid.org/0000-0002-2663-9019
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-020-00513-w&domain=pdf
https://doi.org/10.1007/s41870-020-00513-w

received from a camera mounted on a vehicle (remote

control); autonomous, based on feedback received from a

mounted camera and other types of sensors indicating the

approaching obstacles [3–5]; or something between these

two extremes (a hybrid method, semi-autonomous). Bear-

ing in mind the considerably low risk to human life, as well

as improved durability for longer missions and accessibil-

ity in difficult terrains, the demand for such unmanned

vehicles is increasing rapidly and their path planning in

dynamic environments remains one of the most challeng-

ing issues to solve [6]. Due to their autonomy and ability to

travel far from the base stations or their operators (the

range naturally depends on the type and size of the vehi-

cle), the need for having an onboard mechanism to avoid

collisions with objects and other vehicles is obvious

[7–10].

1.1 Motivation

Consider a swarm of mobile robots such as drones

operating in different layers as shown in Fig. 1, where

drones at Layer 2 act as masters for drones at Layer 1. Any

layer has the ability to perform different tasks depending

on the mission. The drones in a swarm communicate with

each other as well as observe their surroundings. The

organization can be cluster based and comprise multiple

hierarchy levels so that each master drone has several

followers at the next lower layer (forming a cluster), and,

correspondingly, a group of masters at a given layer has a

common leader at the next higher layer. The mission is

typically to monitor and extract information from the tar-

geted environment and to send this information to the base

station for further processing and analysis.

To execute their assignments, drones are equipped with

different types of sensors capable of collecting the required

information [11]. Different drones in a swarm can have

different sets of sensors, depending on the task. At the

same time, all drones should be able to avoid collisions in

real time based on the sensory data [12, 13]. Indeed, a

dense swarm of drones emphasises the need for having an

efficient embedded collision avoidance technique/method-

ology so that the UAVs can individually detect and avoid

each other and other objects/obstacles in their neighbour-

hood [14]. The drones move from the base station to the

target area in a given formation, execute the required

monitoring task, and then return back to the base station.

During the flight, they can encounter both stationary and

moving obstacles and objects that need to be safely and

reliably evaded [15].

In this paper, we develop a sonar-based collision

avoidance algorithm for unmanned vehicles and test it on a

set of stationary objects. We verify our algorithm using a

simple mobile robot (LEGO MINDSTORMS). The algo-

rithm is able to:

– guide the vehicle on how to proceed by calculating the

distance between itself and the detected obstacle,

– control the speed of the vehicle by slowing it down and

bringing its horizontal speed to zero, making it hover

on its position,

– force the vehicle to turn in order to avoid collisions.

1.2 Related work

Various sensors can be utilised in the implementation of

collision avoidance mechanisms for unmanned vehicles

[16]. In this section, we discuss some of the approaches

found in the literature.

The author in [17] proposes a 3D reactive obstacle

avoidance technique. The algorithm detects an obstacle in a

UAV’s path, makes the craft hover on its position, calcu-

lates the best escape route, and then instructs the UAV

accordingly. The method is demonstrated using stereo and

laser-based sensing techniques.

In [18] the author proposed a solution in which the paths

are based on different line colours. A robot having the

ability to distinguish between numerous colours can select

the desired line autonomously to reach the target. This

system is not viable in dynamic environments nor in bad

lighting conditions. Furthermore, the robot is totally

dependent on the visibility of the lines and does not take

into account the presence of an obstacle on the line itself,

lacking dynamic capabilities completely.

In [19] the author proposed to equip the vehicles with

adaptive cruise control along with the collision avoidance

Fig. 1 Swarm of UAVs with

two layers

Int. j. inf. tecnol.

123

system in such a way that collisions are avoided by braking

for vehicles at slower speeds and by steering with vehicles

at higher speeds.

The authors in [20] proposed an Artificial Potential Field

for finding the shortest path between starting and destina-

tion points. A robot is repelled from and attracted towards

the obstacle and target points respectively, due to the

repulsive and attractive forces generated by the respective

points. Based on the repulsive and attractive forces, the

robot calculates the aggregate amount of force. The

drawback of this method is that, for symmetric environ-

ments, it is very sensitive to local minima and therefore

does not necessarily lead to a globally optimised solution

[21].

In [22], forward-looking cameras are used for real-time

obstacle detection and avoidance. The presented fuzzy

control based method is in principle applicable to different

types of unmanned vehicles, in the paper, it experiments on

a small quadrotor UAV. The authors use a camera that is

mounted in front of UAV to avoid collisions via visual

servoing through image processing. In this approach, the

collected data is wirelessly sent to a laptop for further

processing, where obstacles are marked with specific col-

ours, and this information is then employed to guide the

UAV around the obstacles. The algorithm avoids the

obstacles by pushing them to either the left or right side of

the image. A potential problem in this setup is that com-

munication delays between the drone and the controlling

computer can lead to an accident in the case of a close

obstacle or an obstacle moving towards the UAV.

In [23], the authors propose a methodology which uses

two cameras for detecting the obstacles in the range of 30

to 100 meters and up to the speed of about 22kmph. In

order to differentiate between the sea and sky, this

approach relies on the sea-sky line and assumes that the

obstacles are moving in a regular manner. Different filters

are applied to detect the obstacles. A limitation of the

scheme is that it does not take into account rough sea

waves, haphazardly moving obstacles and overcast

situations.

In the method presented in [24], LiDAR (Light Detec-

tion and Ranging) is used, by generating light in the form

of a pulsed laser, to measure the distances to the earth. In

[25], a simulated UAV mounted with a LiDAR sensor is

inspected using a feed-forward based algorithm. The UAV

is mainly controlled by the operator, and the algorithm

estimates the path of the UAV by using the current inputs

from the operator and the future for a predefined period of

time. The algorithm checks for any possible collisions with

objects and diverts the UAV from the original path when

needed by keeping it as close to the operator’s input as

possible.

The authors in [26] used computer vision technique for

the detection of animals and avoiding collision with them.

They used over 2200 images to train their system and

performed tests using video clips of animals on highways.

The algorithm provided satisfactory results with 82.5%

accuracy and detected the animals in order to avoid a

collision. However, their proposed solution is highly

speeding dependent and will not help in preventing colli-

sions at speeds over 35km/h. In fact, at higher speeds, it

may not be able to detect objects at all. Furthermore, the

provided solution will provide bad to worst results espe-

cially in bad weather conditions, in bad or too bright light,

in foggy situations, as well as in shiny surroundings.

The authors in [27] used five US sensors along with a

predefined neural network module in MATLAB to trian-

gulate and detect the precise position and shape of the

objects. The authors used only three different shaped

objects for their testing. Furthermore, the five US sensors

used in their solution are more than required as the precise

location of the detected objects can be found using only

two US sensors and the third dimension (depth) can be

found by adding the third US sensor. Moreover, their

results are satisfactory when the objects are regular shaped,

but for irregular objects, they report that their network is

not able to correctly identify the objects.

Our collision avoidance algorithm, proposed in this

paper, approximates the shape of an object by rotating the

ultrasonic sensor while approaching and passing the object,

avoiding it completely. The rotational movement of the

sensor helps in identifying the exact location and corners

(if in visible range of the sensor) of the detected obstacle

without deviating from original path. Moreover, a fault

tolerance method is deployed for ensuring correct opera-

tion and eliminating any false readings.

1.3 Organisation

The rest of the paper is organised as follows. The equip-

ment used in our work is described in Sect. 2. In Sect. 3,

the development of the proposed algorithm is described.

Experiments on different cases with corresponding results

are presented in Sect. 4. Lastly, Sect. 5 concludes the

paper.

2 Equipment and programming interface

Using a wheeled robot or UGV is very feasible in order to

simulate and study the collision avoidance algorithm in

real-time without jeopardising the equipment and the sur-

roundings. A UGV behaves, namely, precisely in the same

way as a UAV in a 2-D plane. Moreover, UGVs have

benefits such as cost efficiency and the availability of

Int. j. inf. tecnol.

123

equipment. Hence, LEGO MINDSTORMS NXT 2.0 can

be used for designing and testing the algorithm.

The LEGO MINDSTORMS packages, which are widely

available, consists of a programmable intelligent micro-

computer brick NXT 2.0, interactive servo motors, Ultra-

sonic Sensor (US), touch sensor, sound sensor, light sensor,

LEGO building blocks/parts, and an NXT rechargeable

battery. The parts are easy to assemble and it is convenient

to modify the design if required for re-testing. The NXT

brick consists of a 32-bit microprocessor, 4 input ports and

3 output ports, a large matrix display for displaying the

required outputs/messages, and it connects via USB or

Bluetooth links.

The standard software that comes with the package is

NXT-G, which is a graphical programming interface

(LabVIEW) having a drag and drop environment. LeJOS

replaces the firmware on Lego bricks, and LeJOS NXJ is

the programming interface widely used for programming in

the Java language. The LeJOS-based robot Jitter flew

around the International Space Station in December 2001

[28, 29]. Some of other third party programming interfaces

are MATLAB and Simulink, NXTGCC, Robotics. NXT,

Lego NXT, ROBOTC, RoboMind, and ruby-nxt.

In this work, Eclipse is used as the programming

framework to accomplish the tasks. This is a customised/

integrated development environment (IDE) for Java.

Eclipse is the most commonly and widely used tool for

Java IDE that itself a high-level open source language.

3 Proposed approach

There are various methods and techniques available for

object detection and collision avoidance. These methods

and techniques use a wide variety of different sensors such

as radars, laser range finder, sonar sensors, cameras for

detecting surroundings [30, 31]. Depending on the appli-

cation area, a different set of sensors and algorithms will be

used. In this paper, we present a collision avoidance

algorithm for a UGV (a wheeled robot) that utilises an

ultrasonic (US) sensor. A more thorough description of the

algorithm and its investigation is given in [32].

The proposed collision avoidance algorithm works on a

relatively simple model. It works in the xy plane keeping

the z-axis fixed; in other words, the algorithm is respon-

sible for controlling the horizontal speed to avoid collisions

in a 2-D plane keeping the height fixed. The algorithm

performs the following actions when a US sensor shows the

presence of an obstacle:

– Object detection: responsible for alerting the presence

of objects in the vicinity,

– Speed Control and Ddcision: responsible for slowing

down the speed if a UGV is approaching the object and

stop the UGV when the object is within a critical range,

– Locate and edge detection: responsible for scanning the

object in front and determining the edges of the object,

– Fault tolerance: responsible for removing any false

readings,

– Triangulation: responsible for calculating the exact

angles and distances of the object,

– Coordinates determination and decision: search for

alternative routes to avoid the object and re-route the

UGV if needed.

The basic flowchart of the algorithm is shown in Fig. 2.

The operation starts by initialising the US sensor by setting

the maximum detection distance and the minimum and

maximum angles for the rotation of the US sensor. In the

experiment, the values are 170 cm, 45� and 135�, respec-

tively. The algorithm does not restrict the maximum rota-

tion angle; it depends on a UGV, its locomotion type and

the location of US sensors. The US sensor is rotated in

between the given angles and thus enabling continuous

sweep of the surroundings.

Figure 3 shows the field of view of a US sensor. By

default, a US sensor can only detect an object in its field of

Fig. 2 Overall flowchart of object detection and collision avoidance

algorithm

Int. j. inf. tecnol.

123

view. So we need to develop a methodology to find the

exact location of the detected object. The US sensor starts

sweeping between the defined angles and scanning for any

objects in its vicinity. When the minimum angle of 45� is

reached, the sensor actually covers 15� making the cover-

age from 30 60. Object Detection is then initiated to

determine if there are any objects or obstacles in the range.

If there are any objects detected in the range of the US

sensor, the Speed Control module is called and works

sequentially in a loop with the sensor rotation module. This

part of the algorithm is responsible for continuously

slowing down the speed of the UGV as the object gets

closer. The flow chart diagram of the Speed Control

module is shown in Fig. 4. This module works by reading

the range from the US sensor and then going through

multiple conditions accordingly.

Once the detected object enters the critical range of the

US sensor, the UGV is stopped and the Locate and Edge

Detection part of the algorithm is activated (see Fig. 5).

This module locates and determines the exact angles at

which the detected object lays and how far the detected

object continues.

The Locate and Edge Detection block (LaED) is very

important as the US sensor itself cannot locate the exact

angle at which the object lies, since it has a field of view of

30 degrees. Anything within the detecting range of 30

degrees is detected. Thus, LaED is designed to help the US

sensor not only to get the angle of the object along with its

distance but also to detect where the object ends i.e. the

front edges of the object. LaED starts by copying the

object’s distance in a temporary variable and compares it

with the initial detected distance of the object. The US

sensor is rotated degree by degree to the left side and the

new distance reading is compared with the original reading.

If the edge is found, and the left edge flag is raised and the

US sensor is rotated back to the initially angle of detection

and starts rotating to the right side.

If the edge is not found and the physical limitation of

rotation is reached, the edge flag is reset. Similar steps are

taken for the right side edge detection. After this, the Fault

Tolerance block (see Fig. 6) is initiated to cross-check the

detected results and confirm if any of the detected edges

was a false edge.

Upon successful detection of the edges or corners of the

object, the algorithm calls the Fault Tolerance in order to

cross-check any errors in the detected results from the

Locate and Edge Detection module. A false edge can lead

to wrong calculations and slow down the process of redi-

rection. When LaED detects an edge, then this block

crosschecks the result for the next three consecutive iter-

ations (see Fig. 6). If the variables error_check and

edge_count are equal and have been cross-checked three

times consecutively, it means that there is an edge. On the

other hand, if the edge is not found for three consecutive

iterations, the algorithm will reset the edge flag indicating

that the detected edge was a false edge. The flow-chart di-

agram for Fault Tolerance module is given in Fig. 6.

Then the Triangulation module is activated; this module

of the algorithm uses the results from LaED to calculate the

exact angles and distance at which the object lies from the

Fig. 3 Ultrasonic field of view

Fig. 4 Speed control decision flow chart

Int. j. inf. tecnol.

123

US sensor or the UGV (see Figure 7). If the detected edge

of the object is at point P1 and angle 1, as shown in Fig-

ure 7, the distance from the US sensor to P1 is also known,

h1. Then using the right-angled triangle equations, the rest

of the sides of the triangle can be found [33], pp.3-4].

sinh ¼ opposite

hypotenuse
ð1Þ

cosh ¼ adjacent

hypotenuse
ð2Þ

tanh ¼ adjacent

opposite
ð3Þ

The variables and their explanations are given below.

d = the width of the UGV

Fig. 5 Locate and edge detection flow chart

Int. j. inf. tecnol.

123

fs = minimum safe distance allowed from the side of

UGV

h1 and h2 = diagonal detected distance of the object

(edges) on the left and right sides respectively

a1 and a2 = distance of the object on the left and right

side of the UGV respectively, calculated from the centre of

the UGV

o1 and o2 = distance of the object straight ahead of the

UGV

P1 and P2 = Point where the object/edge was detected by

the US sensor

h1 and h2 = angles of the edges

/1 and /2 = linearised angles

Now, we know the angles h1 and h2,

the diagonal distances h1 and h2.

The unknowns are calculated by using the following

equations:

/1 = 180 - h1

a1 = h1cosð/1Þ

o1 = h1sinð/Þ
/2 = h2

a2 = h2cosð/2Þ, and o2 = h2sinð/2Þ

Once the exact coordinates of the object have been

calculated, all possible combinations of the object’s loca-

tion can be analysed and the decision is made accordingly.

In the final step, the decisions are made based on the

coordinates of the detected object. After the exact coordi-

nates, angles, and distance of the object are calculated, it is

decided whether the UGV can continue in its original

course or not. The decision takes into account the dimen-

sions of the UGV as well. If rerouting is needed, it will be

decided in what direction the UGV should be rotated to

Fig. 6 Fault-tolerance flowchart

Fig. 7 Triangulation method used for calculating the exact horizontal

and vertical distance of the edges of the object from the UGV [29]

Fig. 8 Visual description of the test cases: object in front of the UGV

a with only the left edge visible, b with only the right edge visible,c
with both edges in detectable range, d with a V-shape, e with no edges

in the detectable range

Int. j. inf. tecnol.

123

achieve the shortest possible deviation from the original

path.

4 Experimental results

In order to validate the collision avoidance algorithm, a

number of test cases using a UGV in real-time are con-

sidered. These cases cover all possible situations when the

robot approaches an object and the object in front of the

robot has:

1. a visible left edge, but no right edge,

2. a visible right edge, but no left edge,

3. both edges visible,

4. both edges closing in from the sides i.e. a V-shaped

object, and

5. no visible edges.

It is important to note here that in all these cases the objects

are stationary while the robot is moving. These cases are

visualised in Fig. 8.

The robot scans for objects by sweeping the US sensor.

When the object enters the visible range, the Speed Control

block of the algorithm start to slow the robot down. As the

object is close enough to appear in the defined critical

range for safety, the robot stops and the Locate and Edge

Detection block starts to determine the edges and the

location of the detected object.

4.1 Test case 1: edge on the left side visible

Consider a scenario in which the robot approaches an

object that has a visible edge or opening on its left side, but

continues to the right outside the visibility range as shown

in Fig. 8a. The robot should be able to see the nearest

opening to its left side and turn left to avoid the object by a

minimum deviation from its original path.

In Fig. 9, the robot detects the edge at t = 572 ms as

there is a drastic change in the distance to the object, which

is further confirmed by the Fault Tolerance block of the

algorithm. At t = 3884 ms, the physical limitation of the

visibility range of the system is reached and the algorithm

decides that there is no edge on this side. The exact dis-

tance to the object from the UGV is determined. Since the

object’s right edge is within the critical colliding distance

of the UGV, the robot turns left to avoid the object and then

moves forward.

4.2 Test case 2: edge on the right side

In the second test case (see Fig. 8b), the robot approa-

ches an object that has an edge or opening on its right side

but continues to the left outside the visibility range. The

robot should be able to see the nearest opening on its right

side and turn right to avoid the object by a minimum

deviation from its original path.

It is significant to note in this case, as depicted in

Fig. 10, that the value on the right side of the robot

changed suddenly from 17 cm to 28 cm at t = 4464 ms and

then 300 ms later to 36 cm. This is the threshold level for

considering it as an edge. However, on the left side, it can

be noted that the value is 255 when the physical limitation

of the rotation of the US sensor is reached and it cannot be

rotated further in that direction. This is due to the fact that

the algorithm is designed to give value 255 if there is no

edge and the object continues. The robot decides to turn

right using the results of Coordinates Determination and

Decision block’s calculations.

4.3 Test case 3: both edges in visible range

Fig. 9 Test result of case study 1 Fig. 10 Test result of case study 2

Int. j. inf. tecnol.

123

In the third case (see Fig. 8c), the robot approaches an

object where both edges of the object are in the

detectable range of the sensor. The robot should be able to

detect the nearest edge of the object to its left and turn left

to avoid the object by a minimum deviation from its

original path.

Using the results of the blocks Triangulation, as well as

Coordinates Determination and Decision, the algorithm

calculates the exact coordinates for the edges of the object

and decides to turn the robot left. From the test result in

Fig. 11, it is visible that the change in the distance became

significant enough for an edge from t = 140 ms to t = 860

ms.

4.4 Test case 4: V-shaped obstacle

Test Case 4 (see Fig. 8d) describes a test scenario where

the robot approaches a V-shaped obstacle. When the robot

goes deeper into the V-shape and the walls of the obstacle

come closer to its sides, it starts to slow down. The robot

stops and the US sensor starts scanning the obstacle when

the distance to either side of the obstacle is equal to the

allowed minimum safe distance to the side. In this case, the

robot reverses to the point where it can take a turn and find

a better alternate route.

The test result is shown in Fig. 12, where it can be seen

that the distance increases above the threshold level for

detecting an edge, in the centre of the graph. The robot

does, however, not detect it as an edge, because the con-

dition for critical safe distances to the sides is not satisfied.

The condition indicates that the object is in the critical

colliding range to the side of the UGV. Since the side safe

distance condition is not met, the robot decides that it is not

safe to move forward and reverses instead.

4.5 Test case 5: obstacle with no edges in visible

range

In the last case study, shown in Fig. 8e, the robot

approaches an obstacle where none of the edges of the

object is in the detectable range of the sensor. When the

sweeping is completed and none of the edges of the

obstacle is found, the robot turns left to avoid the obstacle

using prioritised turning. In prioritised turning, there are

either no edges in the visible range or both of the edges are

located at exactly the same distance.

From the test outcome in Fig. 13, it is clearly visible that

the distance to the obstacle is almost constant, except at

both ends of the graph where the value of the distance is

255. This indicates that no edges were found at the ends

and that the US sensor could not be rotated further due to

the physical limitations of the hardware design. However,

another significant point to note here is that approximately

at t = 3300 ms a false edge is detected by the US sensor.

Upon detecting this gap, the algorithm initiates the Fault

Tolerance block of the algorithm, which identifies it as a

false edge and ignores it.

Fig. 11 Test result of case study 3

Fig. 12 Test result of case study 4 Fig. 13 Test result of case study 5

Int. j. inf. tecnol.

123

5 Conclusion

In this paper, we developed collision avoidance algorithm,

independent of lighting conditions, using single ultrasonic

sensor for shape estimation and collision avoidance for

autonomous robots. We investigated the behaviour of our

collision avoidance algorithm and tested it in real-time by

using a simple UGV. All the performed experiments were

successful and the UGV rerouted itself to avoid the colli-

sion while keeping the deviation to a minimum. However,

if the detected object moves out of the visible range, the

UGV is brought back to its original travelling speed.

Moreover, the developed fault-tolerance function in this

algorithm improves the outcomes by detecting false alarms

within milliseconds and eliminates the chances of colli-

sions. The proposed algorithm was also investigated with

moving objects/obstacles, especially by walking in the way

of the UGV and by moving objects such as a box, laptop,

mobile phone, and other objects in its way. Consistently,

the UGV detected all the moving objects in its way.

However, this algorithm is studied and proved to be

working well only for the indoor and controlled environ-

ment and its performance outdoors in more uncontrolled

environments still needs to be inspected. Currently, this

algorithm is being extended and tested in a swarm of robots

for its performance and verification, along with its ability

to successfully detect and avoid dynamic obstacles while

keeping the formation.

Acknowledgements This work has been supported in part by the

Academy of Finland-funded research project 314048 and Finnish

Cultural Foundation.

Funding Open access funding provided by University of Turku

(UTU) including Turku University Central Hospital.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Unmanned aerial vehicle (2020). https://en.wikipedia.org/wiki/

Unmanned_aerial_vehicle#Market_trends. Page Version ID:

956436479. Accessed 29 May 2020

2. Zhang W, Zelinsky G, Samaras D (2007) Real-time accurate

object detection using multiple resolutions. In: 2007 IEEE 11th

International Conference on Computer Vision, pp. 1–8

3. Shinde SN, Chorage S (2016) Unmanned ground vehicle. Int J

Adv Eng Manag Sci 2:1659

4. Iqbal J, Pasha SM, Baizid K, Khan AA, Iqbal J (2013) Computer

vision inspired real-time autonomous moving target detection,

tracking and locking. Life Sci J 10(4):3338–3345

5. Rabah M, Rohan A, Talha M, Nam KH, Kim SH (2018)

Autonomous vision-based target detection and safe landing for

uav. Int J Control Autom Syst 16(6):3013–3025

6. Zhuge C (2017) A novel dynamic obstacle avoidance algorithm

based on collision time histogram. Chin J Electron 26:522–529.

https://doi.org/10.1049/cje.2017.01.008

7. Chao H, Cao Y, Chen Y (2007) Autopilots for small fixed-wing

unmanned air vehicles: a survey. In: 2007 International Confer-

ence on Mechatronics and Automation, pp. 3144–3149

8. Yasin JN, Mohamed SAS, Haghbayan M, Heikkonen J, Ten-

hunen H, Plosila J (2020) Unmanned aerial vehicles (uavs):

collision avoidance systems and approaches. IEEE Access

8:105139–105155

9. Vijayavargiya A, Sharma A, Anirudh Kumar A, Kumar A, Yadav

A, Sharma A, Jangid A, Dubey A (2016) Unmanned aerial

vehicle. Impl J Interdiscip Res 2(5):1747–1750

10. Yasin JN, Haghbayan MH, Heikkonen J, Heikkonen H, Plosila J

(2019) Formation maintenance and collision avoidance in a

swarm of drones. Proceedings of the 3rd International Sympo-

sium on Computer Science and Intelligent Control, ISCSIC 2019.

Association for Computing Machinery, New York. https://doi.

org/10.1145/3386164.3386176

11. Khan M, Hassan S, Ahmed SI, Iqbal J (2017) Stereovision-based

real-time obstacle detection scheme for unmanned ground vehicle

with steering wheel drive mechanism. In: 2017 International

Conference on Communication, Computing and Digital Systems

(C-CODE), pp. 380–385

12. Alejo D, Cobano JA, Heredia G, Ollero A (2015) Collision-free

trajectory planning based on maneuver selection-particle swarm

optimization. In: 2015 International Conference on Unmanned

Aircraft Systems (ICUAS), pp. 72–81

13. Yasin JN, Mohamed S, Haghbayan MH, Heikkonen J, Tenhunen

H, Plosila J (2020) Navigation of autonomous swarm of drones

using translational coordinates. Advances on practical applica-

tions of agents and multi-agent Systems. Springer, Berlin

14. Seo J, Kim Y, Kim S, Tsourdos A (2017) Collision avoidance

strategies for unmanned aerial vehicles in formation flight. IEEE

Trans Aerosp Electron Syst 53(6):2718–2734

15. Lin Y, Saripalli S (2015) Collision avoidance for uavs using

reachable sets. In: 2015 International Conference on Unmanned

Aircraft Systems (ICUAS), pp. 226–235

16. Kwag YK, Chung CH (2007) Uav based collision avoidance

radar sensor. In: 2007 IEEE International Geoscience and Remote

Sensing Symposium, pp. 639–642

17. Hrabar S (2011) Reactive obstacle avoidance for rotorcraft uavs.

In: 2011 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 4967–4974

18. Hasan KM, Al-Nahid A, Reza KJ, Khatun S, Basar MR (2013)

Sensor based autonomous color line follower robot with obstacle

avoidance. In: 2013 IEEE Business Engineering and Industrial

Applications Colloquium (BEIAC), pp. 598–603

19. Kanarachos SA (2009) A new method for computing optimal

obstacle avoidance steering manoeuvres of vehicles. Int J Veh

Auton Syst 7(1–2):73–95. https://doi.org/10.1504/IJVAS.2009.

027968

20. Zohaib M, Pasha M, Riaz RA, Javaid N, Ilahi M, Khan RD

(2013) Control strategies for mobile robot with obstacle avoid-

ance. J Basic Appl Sci Res 3(4):1027–1036

Int. j. inf. tecnol.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle#Market_trends
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle#Market_trends
https://doi.org/10.1049/cje.2017.01.008
https://doi.org/10.1145/3386164.3386176
https://doi.org/10.1145/3386164.3386176
https://doi.org/10.1504/IJVAS.2009.027968
https://doi.org/10.1504/IJVAS.2009.027968

21. Oroko J, Nyakoe G (2014) Obstacle avoidance and path planning

schemes for autonomous navigation of a mobile robot: a review.

In: Proceedings of Sustainable Research and Innovation Confer-

ence, pp. 314–318

22. Olivares-Mendez MA, Campoy P, Mellado-Bataller I, Mejias L

(2012) See-and-avoid quadcopter using fuzzy control optimized

by cross-entropy. In: 2012 IEEE International Conference on

Fuzzy Systems, pp. 1–7

23. Wang H, Wei Z, Wang S, Ow CS, Ho KT, Feng B (2011) A

vision-based obstacle detection system for unmanned surface

vehicle. In: 2011 IEEE 5th International Conference on Robotics,

Automation and Mechatronics (RAM), pp. 364–369

24. US Department of Commerce NOAAA (2020) Lidar, national

ocean service. https://oceanservice.noaa.gov/facts/lidar.html.

Library Catalog: oceanservice.noaa.gov. Accessed 29 May 2020

25. Bareiss D, van den Berg J, Leang KK (2015) Stochastic auto-

matic collision avoidance for tele-operated unmanned aerial

vehicles. In: 2015 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), pp. 4818–4825

26. Sharma SU, Shah DJ (2017) A practical animal detection and

collision avoidance system using computer vision technique.

IEEE Access 5:347–358

27. De Simone MC, Rivera ZB, Guida D (2018) Obstacle avoidance

system for unmanned ground vehicles by using ultrasonic sen-

sors. Machines. https://doi.org/10.3390/machines6020018

28. Filming of space robot ‘‘jitter’’ assembled out of legos (2020).

http://www.nasa.gov/mission_pages/station/research/experi

ments/468.html#publications. Accessed 21 Apr 2020

29. leJOS (2020).https://en.wikipedia.org/w/index.php?title=LeJO

S&oldid=956137626. Page Version ID: 956137626. Accessed 21

Apr 2020

30. Meister O, Frietsch N, Ascher C, Trommer GF (2008) Adaptive

path planning for a vtol-uav. In: 2008 IEEE/ION position, loca-

tion and navigation symposium, pp 1252–1259

31. Moses A, Rutherford MJ, Valavanis KP (2011) Radar-based

detection and identification for miniature air vehicles. In: 2011

IEEE international conference on control applications (CCA),

pp 933–940

32. Yasin JN (2017) Collision avoidance algorithm for unmanned

aerial or ground vehicles. Master’s Thesis, bo Akademi

University

33. Trigonometrical ratios in a right-angled triangle (2020) http://www.

mathcentre.ac.uk/resources/uploaded/mc-ty-trigratios-2009-1.pdf.

Accessed 21 Apr 2020

Int. j. inf. tecnol.

123

https://oceanservice.noaa.gov/facts/lidar.html
https://doi.org/10.3390/machines6020018
http://www.nasa.gov/mission_pages/station/research/experiments/468.html#publications
http://www.nasa.gov/mission_pages/station/research/experiments/468.html#publications
https://en.wikipedia.org/w/index.php?title=LeJOS&oldid=956137626
https://en.wikipedia.org/w/index.php?title=LeJOS&oldid=956137626
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-trigratios-2009-1.pdf
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-trigratios-2009-1.pdf

	Low-cost ultrasonic based object detection and collision avoidance method for autonomous robots
	Abstract
	Introduction
	Motivation
	Related work
	Organisation

	Equipment and programming interface
	Proposed approach
	Experimental results
	Test case 1: edge on the left side visible
	Test case 2: edge on the right side
	Test case 3: both edges in visible range
	Test case 4: V-shaped obstacle
	Test case 5: obstacle with no edges in visible range

	Conclusion
	Funding
	References

