
Spicing Up Open Source Development
with a Touch of Crowdsourcing

Terhi Kilamo∗, Jurka Rahikkala†, and Tommi Mikkonen∗
∗ Department of Pervasive Computing, Tampere University of Technology

Korkeakoulunkatu 10, FI-33720 Tampere, Finland
Email: terhi.kilamo@tut.fi, tommi.mikkonen@tut.fi

†Vaadin ltd.
Ruukinkatu 2-4, FI-20540 Turku, Finland

Email: jurka@vaadin.com

Abstract—Leveraging the work and innovation of third party
developers has risen as a viable business model for software
companies. Most obviously, open source software has become
an opportune ecosystem for creating innovative products with
minimum number of paid developers. Then, having a company
core where most of the development is done in-house by devel-
opers employed by the company can lead to a situation where
the community contributions are not smoothly integrated into
the code base of the open source product. Similarly, during
the last decade, the use of the specialized workforce available
online – so-called crowdsourcing – has received a lot of attention.
While tapping into the unknown group of experts differs from
the open source community-driven approach, they share certain
similarities as well. In this paper, we present results of an initial
study on how adopting and utilizing elements from crowdsourcing
can help to boost community contributions in company lead
development of an open source software product. We further
discuss how such activity can be supported by an in-house
development model where all contributions whether done by the
developers of the company or community participants enter a
common, automated integration pipeline.

Keywords—Open source software, crowdsourcing, software
ecosystems

I. INTRODUCTION

A key lesson learned from the expansive thinking of the
1990s is that it is no longer practical for every company
to produce and own every aspect of its business [1]. While
many – if not all – companies rely on software and even
produce it, not all of it is an integral part of their business
output. Instead, leveraging the work and innovation of third
party developers can be a part of a viable business model
even for software intensive companies themselves. In a similar
fashion, software ecosystems [2] where businesses work as
a unit, co-operating and competing together to produce new
innovations and products, and to satisfy their customers’ needs,
have emerged as a way to make business today.

In such contexts, open source systems have demonstrated
the strength of the community-driven development model [1].
Slogans such as ”given enough eyeballs, all bugs are shal-
low” (http://en.wikipedia.org/wiki/Linus’s Law) and ”scratch
your own itch” (http://en.wikipedia.org/wiki/The Cathedral
and the Bazaar) have shaped how software companies work,
making open source software development a viable business
model and giving a voice for developers participating in the
development.

Unfortunately, balancing between company and volunteer
participation is difficult. In particular when the company
behind a piece of software is relying on employees forming
the core of the company, business interests and the corporate
way of working easily take over the control. This results in
complications when integrating community contributions into
development actions that have been planned with business
interests in mind. This in turn is frustrating for volunteers, who
can create bug reports, included in a joint bug database, but
cannot still easily contribute fixes to those bugs all the way
up to the product source code, if screening the community
contributions requires time-consuming manual work inside
the company. Overlooking the proposed fixes then prevents
the community from scratching its own itch, and leads to
unsatisfactory inclusion of community contributions to the
upstream code base. In addition, it can lead to the community
contributions coming to a halt.

Crowdsourcing [3] is one modern way to tap into the
group of volunteers accessible over the Internet. In 2006
Howe defined crowdsourcing as ”the act of a company or
institution taking a function once performed by employees
and outsourcing it to an undefined (and generally large)
network of people in the form of an open call” [4]. While
Howe further in his blog goes into defining the so-called
”Soundbyte Version” of crowdsourcing as ”the application of
Open Source principles to fields outside of software” [5] there
are in fact subtle differences when comparing Open Source
and crowdsourcing. Crowdsourcing is more about outsourcing
company specific tasks to an unknown, heterogenous online
workforce who self-select to perform such tasks to the benefit
of the company. OSS in turn is based in commons-based peer-
production [6] and the notion of openness. The community
in open source is similarly self-selecting but in addition they
have more significant amount of control on what gets done
[3]. In addition, their contributions are open and available to
the benefit of the entire community.

In this paper, we propose a solution where approaches
commonplace in crowdsourcing are included into an Open
Source project with a company core to motivate more code
contributions from the community. To foster such activity,
the in-house development model has been partially revisited
to reduce manual work needed for accepting contributions.
The changes culminate in continuous integration and test
automation, which allows frequent builds, with small changes



between them, and in minimizing program code handovers
during the build process, which enables developers to run tests
independently.

This study, a single case study in a software intensive
company with an Open Source product, aims to answer how
crowdsourcing can answer to a company-led Open Source
project’s need for timely delivery of specific contributions.
In particular, in this paper we seek to investigate, how the
selected approach handles the challenges of crowdsourcing [7],
such as task allocation, communication, scheduling, quality
management, IPR, and motivation and what were the benefits
gained in this case constext.

The rest of this paper is structured as follows. In Section II,
we discuss the basic principles of open source development and
crowdsourcing. In Section III, we introduce the context of this
study, Vaadin, which is an open source company developing
a Java-based framework for web applications. There, we also
provide insight to the experiment the company has executed
to simplify the inclusion of community contributions to the
main code base and draw contributions in the form of an
open call. In Section IV, the research approach is discussed.
In Section V, we introduce our main results, and in Section
VI, we provide an extended discussion regarding the outcome.
Finally, towards the end of the paper, in Section VII, we draw
some final conclusions.

II. BACKGROUND

The rapid change in the field of software development has
revolutionized the way software is composed. Traditionally,
software has been composed module by module, which have
been integrated into complete systems manually; today, nu-
merous software organizations operate so that whenever new
features are introduced, they are immediately automatically
incorporated into the final system using techniques referred
to as Continuous Integration [8], [9], Continuous Deployment,
and as the most latest trend DevOps [10], where software
developers and operators responsible for the information sys-
tems collaborate in close communication. The promise is that
the tighter cooperation offers rapid continuous development
and thus benefits such as a faster time to market, timely
addressment of user needs, shortened lead times and a better
quality of new releases.

This change from manual to automatic integration, com-
pilation, testing, and deployment of software introduces also
changes the fashion software can be developed. In contrast
to the traditional model, where manual work was needed for
integration, the new model allows rapid introduction of new
features, which can be automatically tested. If tests show
that the change is desirable, the resulting system can be
immediately deployed and taken to use, which in the traditional
model was usually cumbersome and error-prone. Moreover,
as manual work is minimized, massive parallel development
becomes a viable option. To benefit from this option, Open
Source Software and crowdsourcing introduce two plausible
models for inclusion of features and fixes from third party
developers. While the two share some commonalities and are
often mixed, there are certain unique characteristics for both of
these approaches. In the following, we introduce open source
software and crowdsourcing in more detail to clarify what we
mean with these terms in this paper.

A. Open Source Software

Open source software (OSS1) incorporates aspects from
open access to the source code and the ability to develop it
further to a complete business model. One of the most dis-
tinctive aspects of OSS is its software development approach
– community driven development.

Communities enable open collaboration of keen partici-
pants who are distributed all over the globe still maintaining
the power to develop high-quality products [11]. This claim
emerges from the two often cited fortes of open source [12]:
self-motivation and high product quality. First, Raymond’s
”scratching your own itch” indicates the inherent motivation
for a developer to focus on things that are close to their own
heart. Second, Linus’ ”given enough eyeballs, all bugs are
shallow” law, indicates that open access to the source code
together with a plentitude of users and use contexts make a
lot of the possible shortcomings in the code apparent. The third
benefit of the open source development model is Raymond’s
”release early, release often”. Rapid release cycles provide all
users a quick access to the latest improvements. Moreover,
taking into account also the often omitted ”and listen to your
customers” open source makes it possible to address specific
customer needs while allowing the entire community to benefit
from the results.

Open source software has traditionally been visualized with
an onion model [13], where the developers with most influence
to the code are at the core of the onion and the users and
other less code-centric roles are on the outer rims. In OSS
business contexts the onion tends to take a shape where most
of the development is done by the company whose business
depends on the OSS product. A company core onion tends to
shape according to Figure 1, which is drawn based on the case
company discussed in more detail in Subsection III-A.

B. Crowdsourcing

Defined by Jeff Howe in his Wired article in 2006 [4], the
concept of crowdsourcing is relatively new. While crowdsourc-
ing can be – and has been [14]–[17] – used in many domains
the concepts of microwork and micro-tasking is heavily as-
sociated with it. A micro-task is a small, repetitive task that
requires little cognitive effort. One of the best-known general
crowdsourcing platforms, Amazon’s Mechanical Turk [18], is
built on the concept of microtasking. A typical microtask
can be word recognition, image processing or similar task
that is easy for a human to complete. Remuneration for a
single task is also typically minute. Still, there are successful
examples crowdsourcing of exceedingly complex tasks as well,
including cases such as the development of a mobile phone or
participation in innovation processes [19], [20].

The benefits of crowdsourcing include cost-efficiency,
faster development, innovation and improved quality of work
[21]–[23]. While in the context of software engineering, recent
study shows that these are not rendered by crowdsourcing
[7] research also shows that there is promise in combining

1The authors acknowledge the philosophical differences between the terms
Free Software and Open Source Software. In this paper, the focus is in the
development model with a business model perspective. Thus Open Source
Software is used throughout the paper.



Fig. 1. Company-core Community Structure. Most of the heavy lifting is
done by company employed developers and the community contributes bug
reports and fixes that rise out of their use contexts – issues that can be hard
to detect through internal testing.

crowdsourcing and software development methods [22], [24],
[25].

Based on the above, while the concepts of Open Source
Software and crowdsourcing are definitely related, the differ-
ences between them are many. These include policy regarding
intellectual property rights, access to the outcome of the work,
promise on rewarding contributions, and so on. However, there
is no fundamental reason why crowdsourcing could not be
used in connection with open source software, when the above
issues are treated in a suitable fashion.

C. Motivation to Participate

The reasons people participate in online communities vary.
In general, motivational aspects are divided into intrinsic
and extrinsic elements. In open source development the rea-
sons for participating are typically assumed to be largely
intrinsic; developers are volunteering to development activities
to scratching their own itch [12], [26], [27]. Still extrinsic
elements such as remuneration exist. In crowdsourcing the
motivation is often similar but more towards the extrinsic [28],
[29]; participants are motivated by a rewarding system, for
instance small monetary reward for an accepted contribution.

In practice, when considering real projects and companies,
it is common that there is some gray area between the two
extremes. For instance, on one hand a developer can be paid
for participating in the activities of an open source community
by a company that uses the outcome of the community’s work
in its business, and on the other hand individuals can for
example choose to participate in crowdsourcing activities that
promote their favourite games to make them more attractive
for themselves. Consequently, the difference between open
source development and crowdsourcing sometimes lies only
in the eye of the beholder and in fundamental motivation for

Fig. 2. Vaadin Runtime Architecture [31]

participation, not in the contribution itself nor the licensing
model that is used to govern the contributions.

III. RESEARCH CONTEXT

We present here the results of a case study on a Finnish
software intensive company to use crowdsourcing to draw
contributions from external developers – an internal pilot
study done in the company. The case company Vaadin ltd.
(http://www.vaadin.com) has been developing their main Open
Source product, the Vaadin Framework, and its predecessors
since 2000. Their customer base is global ranging across
various industries who build applications of their own on top
the framework. Vaadin’s business model is to offer a set of
services from planning and implementation to sub-contracting
to complement the OSS product.

A. Vaadin Framework

Vaadin, Vaadin ltd’s OSS product which shares the name
of the company, is a Java framework for building rich internet
applications. Vaadin is licensed under a liberal Apache 2 [30]
license. What sets Vaadin apart from other approaches such as
Javascript libraries and browser-plugin based solutions is that it
supports two programming models: server-side and client-side
(see Figure 2 for the runtime architecture). The framework also
comes with a large collection of user interface components on
both sides.

Vaadin has an active community of over 100.000 members.
What is noteworthy of the community is that Vaadin users
are also developers themselves using Vaadin to produce their
own products and services. In addition to the framework



Fig. 3. Amount of bugs in Vaadin over the time period Jan-Aug 2014

community, Vaadin has an active add-on developer community
in the Vaadin Directory [32] where there currently are 470
add-ons publicly available, which are mostly implemented
by outside contributors to add more features to the existing
core framework. While there are some actively contributing
developers in the community, the development has been quite
focused on in-house activities. In addition to bug reporting,
a significant community contribution is typically discussion
and helping other community members with their problems.
Contributing code has been rather cumbersome for third party
developers and thus there haven’t been many coming in despite
the promise of an engaged community.

An unfortunate rise in the number of bugs reported for the
Vaadin Framework has been recognized. The company had
four developers dedicated to working on bug fixes yet the
number of bugs kept growing. This trend is illustrated in Figure
3. In addition, fixing one bug was rather costly to the company,
estimated 750e per bug. As the product is open source and as
such already has an engaged community, the company started
looking for ways to encourage community contribution in
fixing known bugs. To do this, an idea grew to add approaches
known from crowdsourcing in order to create a faster, more
fluent way to get bug fixes from the community. Additionally
the approach aimed at adding motivational aspects to making
contributions while reducing the cost per fixed bug at the same
time.

Taking stock of the situation led Vaadin further to the con-
clusion that the in-house processes were not supportive enough
to allow the company to accept bug fixes from the outside
developer community. Vaadin has an active community. Thus,
there is clear potential of gaining high-quality contributions
from them. Still, the company-led processes need to be efficient
enough to incorporate community contributions fluently. The
decision was made to focus on automated testing, integration
and deployment in order to help also community contributions
to get through more efficiently and faster.

Vaadin decided to experiment with spicing up the devel-
opment model with an open call to contribute in order to
motivate third party developers to contribute – a crowdsourcing
approach was included. An open call to the community and

Fig. 4. Vaadin Open Call to Bug Fixers

a remunerations plan for contributions was set. Despite the
remuneration for contribution the aim was that the improved
processes would lead to more cost efficient bug fixing scheme
overall.

B. Experiment: Vaadin Papercuts

To try out the crowd approach, an experiment entitled
Vaadin Papercuts2 was run in the last quarter of 2014. A
call (see Figure 4) with a monetary reward per squished
bug was issued. The idea was to tap into the community
already working with Vaadin and motivate them with the
crowdsourcing approach through an open call to focus on
tasks that had significant value to the company without at
the same time moving away from the OSS community-driven
development model.

The contributors were to select the issues to work on from
the entire bug base of the framework. In addition contributors
would be paid 150 squish reward per bug fixed. Additional
motivators mentioned were the opportunity to showcase devel-
opment skills through the fixes and the opportunity to improve
the framework where the fix would have relevance to the
developers themselves.

The call in this pilot experiment was company internal with
an intention to take the experiences to a full call to third party
developers. However, the contributors were expected to act as
any community member would and self-select the bugs to fix
from their own viewpoints and make the contributions as their
own activity outside working hours.

For quality assurance in addition to the automated testing,
reviewing the contributions needed attention. Vaadin dedicated
a team working in DevOps mode for the bug fixes. This so-
called Master Team is responsible for all code integration to
the code base whether internal or external as a contribution.

IV. RESEARCH APPROACH

The case study context is a company internal crowdsourc-
ing experiment that investigates the suitability of a crowdsourc-

2The name refers to a simple UI/UX bug http://en.wikipedia.org/wiki/Paper
cut bug. Currently the contributions are given under a new name – Bounty.



ing call together with their new continuous integration pipeline
to combine community contributions to the company’s main
product. Our study falls under the customer perspective of
crowdsourcing software engineering as proposed by Stol and
Fitzgerald [33].

A. Method

The study conducted is a descriptive and exploratory single
case study research [34]. Case study research is a suitable
approach for the domain of software engineering research in
general [35] as the real world issues as a whole are complex
and non-deterministic and the boundaries between the studied
phenomenon and its context are not clearly separable.

Here, the case study investigates the introduction of a new
approach for handling code contributions to the main code
branch of Vaadin. Especially the addition of crowdsourcing
in conjunction to the contribution handling is at focus. The
research questions we aim at answering are the following:

RQ1: What were the benefits gained in combining
crowdsourcing flavors to open source software devel-
opment?

RQ2: How the selected approach handles the chal-
lenges of crowdsourcing?

To gain insight on the suitability of the approach as a
whole, a company internal experiment [36] was run. The case
study context and the data collected from it are introduced
next.

B. Data Collection and Limitations

Data for the study was collected through six open-ended,
semi-structured interviews held at the company’s premises. All
interviewees were employed by Vaadin: two were interviewed
in their role in the company, one represented both the Master
Team and had acted as a contributor and three interviewee’s
were contributors to the pilot. The interviews of the company
representatives covered background information on the role
of OSS product and the internal processes, a description of
the new approach and the aims for the pilot. The contributors
were asked about their overall experience and motivation. In
addition they were given the opportunity to give feedback on
the crowdsourcing pilot. One researcher conducted the inter-
views, which were recorded. The researcher also wrote down
the interviewees answers as notes. In addition to interview data,
the company provided data on the bug amounts and costs.
Vaadin’s openly available community information and blogs
were also used as supportive data.

The obvious limitation to the study is that it is a single
case study and at an initial stage supported only by the internal
case. While this means more validation as the process becomes
more mature is needed, we believe the case presented here
does provide valuable insight onto the idea and illustrates the
benefits of the DevOps process as well as the promise of
adding crowdsourcing flavours to company lead OSS.

All the interviewees were employed by Vaadin although
some of them were interviewed in the role of a volunteer
contributor. While the participants were Vaadin insiders they
here had the same interest to the product that we can take any

active third party developer to have. Thus their experiences
with the case can be considered realistic. Still, naturally some
of the motivation to participate in the first place comes from the
daily work. We will get more detailed results on the difference
as more outsider data comes available.

V. RESULTS

The result of the case pilot was roughly 40 contributions
in one month. The cost of the bugs fixed was 8000 e in total
for the patches which lead to a drop in the cost per fixed bug
by 40% to 450 euros instead of the 750 euros which was the
initial bug fixing cost per bug.

A. Master Team

A new team responsible for the new contribution flow
was established in September 2014 working in the spirit
of DevOps. The tickets are available in Vaadin Trac (http:
//dev.vaadin.com). All patches to tickets are handled in the
same way through the concept of a Master Team which enables
handling outside contributions – a significant improvement
to the earlier process that lagged in the ability to include
third party contributions fluently. For outside developers the
company uses a contributor license agreement to manage the
IPR. Inside the company, the Master Team is responsible for
verifying incoming tickets, reviewing the contributions and is
joinable by anybody in the company. Each patch needs to be
incorporated with a set of tests that verify the patch. The flow
of a ticket is shown in Figure 5. With the introduction of the
Master Team, Vaadin has also moved to rapid two-week release
cycles.

In the review process, anybody can contribute, but only the
Master Team can accept contributions. Patches can be given
+2 to -2 review points where +2 is reserved for the company
core. +2 indicates that provided the tests pass, the patch can
be included into the master branch. The basic rule is that at
least two people need to be satisfied with the patch for it to
pass.

Based on the interviews with the master team the speed
of the team varies on the contribution. A ticket marked ”In
Progress” can iterate over development and review several
times. The automated tests provide the first feedback and due
to the continuous process that is available within hours. Once
the tests pass, the Master Team gets notification on it and can
start the review process. If the tests fail the situation can be
tricky for a third party developer as there is no support process
in place for that. The time span for one patch flowing through
the process is typically days but due to a limited amount of
eyeballs on the code, can extend to weeks.

Fig. 5. The flow of a Ticket in the new bug fixing process [37]



The price of the bug was set to an lump sum regardless
of the ticket as the work needed for estimating the tickets
would require unnecessary effort. The amount per bug may
seem smallish. Despite this, the interviewee working daily with
the contributions reported there are a lot of tickets where the
amount of work is in par with the offered compensation. The
remuneration offered can be seen as a motivating compensation
for such tickets. The amount was also seen as motivating to
keep contributing after getting the first fix through.

B. Contribution Experiences

One out of the four interviewed contributors had completed
their first bug fix, one 7-8, and the others reported to have
contributed 20-30 small fixes. The bugs to fix were chosen
based on the required effort and familiarity. If the developer
had met the bug in their daily work or the buggy component
was well-known to them, they were inclined to fix the bug
as well. The contributors also looked for ”easy-fix” bugs, i.e.
tickets that were easy to understand and not too complex
or effort heavy. If there was a lot coding, refactoring or
the workload turned out to be more significant than initially
estimated, the developers reported to have dropped the fix. A
typical timely effort per bug was a couple of hours of work.

Reasons to participate were both internal and external in
motivation. Two mentioned that they are coding any way on
their free time and the opportunity to get a bit of money
out of the effort helped to gear participation. Not getting
enough coding into the workday was also mentioned as a
motivator. Remuneration was also acknowledged as an initial
motivator that then resulted in much more fixed bugs as the
work turned out to be fun and fruitful. The possibility to
be included as one of the core contributors to the product
ranked with the contributor who had completed the first patch.
When asked directly about the role of the remuneration, all
interviewed developers stated that it did motivate to contribute.
The monetary reward was also an added motivator that pushed
earlier thoughts to contribute into action. The reward was
considered sufficient to the effort. Without the reward three
of the contributors doubted they would have participated on
their own, one saw it plausible if a nice workshop or similar
were to take place. One saw it unlikely yet plausible. The
reward was seen as important but not necessarily required to
be monetary by one.

The biggest obstacle seen was the review process. It was
also seen as an integral point in the process. There were
several iterations of rework to the patches that each could raise
different issues in the contributed patch. Getting back to the
code after a while was hard. The first contribution was seen as
the most laborious, going through the entire process once made
the next patches more fluent to get through. One developer had
received feedback faster than others maybe due to the nature
of the patches they had contributed.

VI. DISCUSSION

Based on the experiences gained so far, the approach shows
promise. There was a rise in bug fixing activity as developers
already involved with the project got engaged with fixing bugs.
More bugs fixed improves the overall quality of the product
and the two-week release cycle makes the fixes available to
all fast.

The overall cost of the remuneration is seen reasonable and
the price per bug is actually decreased as several small bugs got
fixed through the approach. The size of the remuneration gears
the contributions to tickets that can be fixed with reasonable
effort in regard to the compensation. It also seems that the
money acted as a motivator to start contributing and once
started the contributors felt they wanted to keep contributing
in the future.

Typical concerns in crowdsourcing software development
include quality assurance, knowledge and intellectual property,
and motivation and remuneration. While the initiated approach
seems to tackle these, there are still points to address and
develop further. The biggest bottleneck is still the human
eyes. Quality assurance requires people to look through the
contributions even though testing is an automated process. The
lags in reviews are due to insufficient number of Master Team’s
hours dedicated for reviewing contributions. This lag can be
frustrating especially to an outside developer as revisiting
code after a while can be challenging and is reported by the
participants as demotivating. The long review period can also
create the need for further iterations as the main branch evolves
as well.

Research on motivation to participate in OSS shows that
remuneration is not rating that high with the community.
However, learning more and the possibility to show expertise
do act as motivators and that is also something incorporated
into the call for contributions. Considering the fact, the soft-
ware development requires specialized skills, the need for
remuneration goes beyond microwork. This is also supported
in [7]. Here, monetary reward played a key role in both the
type of contribution made and in getting people engaged.
Consequently, instead of plain monetary reward, it would
be interesting to conduct another study where remuneration
mechanisms geared towards community appreciation would be
used as the motivating factor. In particular, this would include
the present developer community as a whole.

In our case study, the crowd consisted of Vaadin employees.
Consequently, although a goal was to make the participant act
as a real crowd, there are numerous aspects that are overlooked
or at very least play a smaller role than in a more open
experiment. Company internals have a lot of prior knowledge
on the product and the development processes. They can
get started with development more easily and evaluate the
bugs differently. There is also greater affinity to helping the
product. Having prior knwoledge came up in the interviews
as an addition support that helped the developers keep going.
They also had knowledge of coding conventions and quality
requirements. In particular, when allowing contributions in
global scale, there will be a need for added special screening
for e.g. intellectual property rights related issues, taking into
account factors such as cultural differences, and even legal
aspects such as the procedure for establishing a monetary
transaction for paying a reward, including for instance taxation.
Therefore, scaling the approach of this particular study to truly
open, community-supported development work still requires
some considerations. For the company, getting patches is
valued. The size of the bug fixed is considered irrelevant.

Since all the contributions were treated equally, there are
numerous opportunities for cherry-picking. The most obvious
way to perform this is to seek for easy and simple bug fixes



and to focus on those. This was clearly evident in the case
data. The developers chose bugs that they estimated worth
the monetary compensation in effort. However, while one can
label such activity harmful, similar options are available in
many other settings as well. Consequently, we do not consider
this a major problem, in particular as monetary reward was
small. This also reflects the underlying view of the company
– treating all contributions similarly means that no estimates
are needed. Estimating the effort needed for implementing
different features would be a tedious task, and in any case
developers could identify designs where the effort would
deviate from the estimates. From a purely quality perspective,
getting any bug fixed is valuable to the overall quality of the
product.

VII. CONCLUSIONS

Different ways of leveraging activities carried outside com-
panies play an important role in various software companies.
Practices such as open source software and crowdsourcing
have gained wide interest, as they promise rapid advances
in development capabilities with small monetary investment.
In this paper, we have been examining how an open source
software company could introduce crowdsourcing in its pro-
cesses. As a concrete outcome, we addressed the fashion
contributions have been rewarded and how the necessary
technical infrastructure within the company was improved to
support the increasing number of contributions. Previously, the
lack of such infrastructure has introduced a major obstacle
for accepting new contributions, whereas now, the ability to
scale practices related to contributions makes their acceptance
feasible.

The next steps are to go live with the approach with the
full community, not with a selected set of friendly and trusted
developers only. The plan to go live is the following. First, the
company issues a call for contributions to university students
in a number of partner universities. Based on lessons learned
from this stage and the domestic pilots process, improvements
can be made in the contribution process. The next step is to
go live domestically in Finland, and finally take the approach
to the global scale.

ACKNOWLEDGMENT

The authors wish to thank all the interviewees for their
input, time and effort.

This work is a part of the Digile Need for Speed project
(http://www.n4s.fi/en), which is partly funded by the Finnish
Funding Agency for Innovation Tekes (http://www.tekes.fi/en/
tekes).

REFERENCES

[1] R. Goldman and R. P. Gabriel, Innovation happens elsewhere: open
source as business strategy. Morgan Kaufmann, 2005.

[2] D. G. Messerschmitt and C. Szyperski, “Software ecosystem: under-
standing an indispensable technology and industry,” MIT Press Books,
vol. 1, 2005.

[3] D. C. Brabham, Crowdsourcing. MIT Press Essential Knowledge,
2013.

[4] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6,
pp. 1–4, 2006.

[5] ——. (2015, Feb.) Crowdsourcing: A Definition. [Online]. Available:
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing a.html

[6] Y. Benkler, “Coase’s penguin, or, linux and” the nature of the firm”,”
Yale Law Journal, pp. 369–446, 2002.

[7] K.-J. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: a case
study of crowdsourcing software development,” in Proceedings of the
36th International Conference on Software Engineering. ACM, 2014,
pp. 187–198.

[8] D. Ståhl and J. Bosch, “Modeling continuous integration practice
differences in industry software development,” Journal of Systems and
Software, vol. 87, pp. 48–59, 2014.

[9] M. Fowler, “Continuous integration,” http://martinfowler.com/bliki/
ContinuousDelivery.html, retrieved: November 2014.

[10] P. Debois, “Devops: A software revolution in the making,” The Journal
of Information Technology Management, vol. 24, no. 8, pp. 3–5, 2001.

[11] M. Aberdour, “Achieving quality in open-source software,” Software,
IEEE, vol. 24, no. 1, pp. 58–64, 2007.

[12] E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology
& Policy, vol. 12, no. 3, pp. 23–49, 1999.

[13] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution patterns of open-source software systems and communities,”
in Proceedings of the international workshop on Principles of software
evolution. ACM, 2002, pp. 76–85.

[14] (2015, Feb.) Threadless art community. [Online]. Available: https:
//www.threadless.com

[15] (2015, Feb.) Open street map. [Online]. Available: http://www.
openstreetmap.org

[16] (2015, Feb.) iStockphoto. [Online]. Available: http://www.istockphoto.
com

[17] (2015, Feb.) The Noun Project. [Online]. Available: http:
//thenounproject.com

[18] (2015, Feb.) Amazon mechanical turk. [Online]. Available: https:
//www.mturk.com/mturk/welcome

[19] (2015, Feb.) Jolla Community. [Online]. Available: https://together.
jolla.com/

[20] (2015, Feb.) Innocentive. [Online]. Available: http://www.innocentive.
com

[21] T. D. LaToza, W. B. Towne, A. Van Der Hoek, and J. D. Herbsleb,
“Crowd development,” in Cooperative and Human Aspects of Software
Engineering (CHASE), 2013 6th International Workshop on. IEEE,
2013, pp. 85–88.

[22] K. Lakhani, D. A. Garvin, and E. Lonstein, “Topcoder (a): Developing
software through crowdsourcing,” Harvard Business School General
Management Unit Case, no. 610-032, 2010.

[23] E. Schenk and C. Guittard, “Crowdsourcing: What can be outsourced
to the crowd, and why,” in Workshop on Open Source Innovation,
Strasbourg, France, 2009.

[24] T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der Hoek, “Mi-
crotask programming: Building software with a crowd,” in Proceedings
of the 27th annual ACM symposium on User interface software and
technology. ACM, 2014, pp. 43–54.

[25] F. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: can the crowd
solve the oracle problem?” in Software Testing, Verification and Vali-
dation (ICST), 2013 IEEE Sixth International Conference on. IEEE,
2013, pp. 342–351.

[26] K. Lakhani and R. G. Wolf, “Why hackers do what they do: Under-
standing motivation and effort in free/open source software projects,”
2003.

[27] J. Bitzer, W. Schrettl, and P. J. Schröder, “Intrinsic motivation in open
source software development,” Journal of Comparative Economics,
vol. 35, no. 1, pp. 160–169, 2007.

[28] M. J. Antikainen and H. K. Vaataja, “Rewarding in open innovation
communities–how to motivate members,” International Journal of En-
trepreneurship and Innovation Management, vol. 11, no. 4, pp. 440–456,
2010.

[29] N. Kaufmann, T. Schulze, and D. Veit, “More than fun and money.
worker motivation in crowdsourcing-a study on mechanical turk.” in
AMCIS, vol. 11, 2011, pp. 1–11.



[30] (2015, Feb.) Apache 2.0 licence. [Online]. Available: http://www.
apache.org/licenses/LICENSE-2.0

[31] M. Grönroos. (2015, Feb.) The Book of Vaadin. [Online]. Available:
https://vaadin.com/book

[32] (2015, Feb.) Vaadin Directory. [Online]. Available: https://vaadin.com/
directory

[33] K.-J. Stol and B. Fitzgerald, “Researching crowdsourcing software
development: perspectives and concerns,” in Proceedings of the 1st
International Workshop on CrowdSourcing in Software Engineering.
ACM, 2014, pp. 7–10.

[34] R. K. Yin, Case study research: Design and methods. Sage publica-
tions, 2014.

[35] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[36] V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in
software engineering,” Software Engineering, IEEE Transactions on,
no. 7, pp. 733–743, 1986.

[37] (2015, Feb.) Fixing bugs in Vaadin. [Online]. Available: https:
//vaadin.com/blog/-/blogs/fixing-bugs-at-vaadin


