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Abstract

We study Nivat’s conjecture on algebraic subshifts and prove that in some
of them every low complexity configuration is periodic. This is the case in
the Ledrappier subshift (the 3-dot system) and, more generally, in all two-
dimensional algebraic subshifts over Fp defined by a polynomial without line
polynomial factors in more than one direction. We also find an algebraic
subshift that is defined by a product of two line polynomials that has this
property (the 4-dot system) and another one that does not.

1 Introduction and preliminaries
The European Association for Theoretical Computer Science, EATCS, celebrated
its 25th anniversary at ICALP 1997 in Bologna. The keynote address was given
by Maurice Nivat. His talk – titled “Towards a History of Automata: Why Were
They Introduced? What Are They Good for?” – suggested the following intriguing
problem that has become known as Nivat’s conjecture: If an infinite two-dimensional
grid has been colored in such a way that, for some n,m ∈ N, the number of distinct
n×m patterns is at most nm, is the coloring necessarily periodic in some direction?
The conjecture has attracted wide interest, but it has turned out to be difficult and
remains still unsolved today.

A number of partial results and related observations have been made. Periodicity
has been established if the number of n×m patterns is at most αnm for progressively
larger and larger constants α < 1: First for α = 1/144 in [5], then for α = 1/16
in [11], and finally for the best known constant α = 1/2 in [3]. It is also known
that having at most 2n patterns of size 2× n and having at most 3n patterns of
size 3 × n imply periodicity [12, 4]. In [7] we introduced an algebraic approach
that leads to the following asymptotic result: A non-periodic coloring of the grid
can only have finitely many pairs (n,m) such that the number of distinct n×m
patterns is at most nm. Of course Nivat’s conjecture claims that there are no such
pairs.

In this paper we continue with our algebraic approach and prove that Nivat’s
conjecture holds on colorings that come from certain algebraically defined sets,
including the Ledrappier subshift [9]. In fact we prove a stronger statement that in
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these sets periodicity is implied if for any shape – not necessarily a rectangle – the
number of patterns of that shape is at most the size of the shape. Even more: if a
coloring has any non-trivial annihilator over Z (terms explained below) then it is
periodic.

To make the statement precise we recall some terminology. For a finite alphabet
A, colorings c ∈ AZ2 of the two-dimensional grid by elements of A are called (two-
dimensional) configurations. Typically we use notation cn for the color c(n) ∈ A of
cell n ∈ Z2. Basic operations on AZ2 are translations: for any t ∈ Z2 the translation
τt : AZ2 −→ AZ2 by t is defined by τt(c)n = cn−t, for all c ∈ AZ2 and all n ∈ Z2.
We call a configuration c periodic if τt(c) = c for some non-zero t ∈ Z2, and we call
t a vector of periodicity. If there are two linearly independent vectors of periodicity
then c is two-periodic. In this case it is easy to see that there are horizontal and
vertical vectors of periodicity (k, 0) and (0, k) for some k 6= 0, and consequently
a vector of periodicity in every rational direction. We call c one-periodic if it is
periodic but not two-periodic.

Colorings p ∈ AD of a finite shape D ⊂ Zd are called D-patterns, or simply
patterns. The set of D-patterns that appear in a configuration c is denoted by
P (c,D), that is,

P (c,D) = {τt(c)|D | t ∈ Z2 }.
We say that c has low complexity with respect to shape D if |P (c,D)| ≤ |D|, and
we call c a low complexity configuration if it has low complexity with respect to
some finite D. Otherwise c is a high complexity configuration. Low complexity
configurations come up naturally in practical setups, e.g. in crystallography particles
may attach to each other only in very limited ways. Moreover, there are interesting
mathematical problems associated to them, including the famous Nivat’s conjecture
discussed above:
Conjecture (Maurice Nivat 1997). Let c ∈ AZ2 be a two-dimensional configuration.
If c has low complexity with respect to some rectangle D = {1, . . . , n} × {1, . . . ,m}
then c is periodic.
The analogous claim in dimensions higher than two fails, as does an analogous claim
in two dimensions for many other shapes than rectangles [1].

To study the conjecture algebraically we replace the colors by integers, or
elements of some other integral domain R, and express the configuration c as a
formal power series c(X,Y ) over two variables X and Y in which the coefficient of
monomial XiY j is ci,j , for all i, j ∈ Z. Note that the exponents of the variables
range from −∞ to +∞. In the following also polynomials may have negative powers
of variables so all polynomials considered are actually Laurent polynomials. Let
us denote by R[X±1, Y ±1] and R[[X±1, Y ±1]] the sets of such polynomials and
power series, respectively, with coefficients in domain R. We call a power series
c ∈ R[[X±1, Y ±1]] finitary if its coefficients take only finitely many different values.
Since we color the grid using finitely many colors, configurations are identified with
finitary power series.

Multiplying configuration c ∈ R[[X±1, Y ±1]] by a monomial corresponds to
translating it, and the periodicity of the configuration by vector t = (n,m) is then
equivalent to (XnY m − 1)c = 0, the zero power series. More generally, we say that
polynomial f ∈ R[X±1, Y ±1] annihilates power series c if the formal product fc is
the zero power series. The set of polynomials that annihilates a power series is a
polynomial ideal, and is denoted by

AnnR(c) = {f ∈ R[X±1, Y ±1] | fc = 0}.
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We observed in [7] that, in the case R = Z, if a configuration has low complexity
with respect to some shape then it is annihilated by some non-zero polynomial
f 6= 0. The proof works unchanged for an arbitrary field R.

Lemma 1 ([7]). Let R be a field or R = Z. Let c ∈ R[[X±1, Y ±1]] be a low
complexity configuration. Then AnnR(c) contains a non-zero polynomial.

One of the main results of [7] states that, in the case R = Z, if a configuration c
is annihilated by a non-zero polynomial then it has annihilators of particularly nice
form:

Theorem 2 ([7]). Let c ∈ Z[[X±1, Y ±1]] be a configuration (a finitary power series)
annihilated by some non-zero polynomial.
Then there exists non-zero (i1, j1), . . . , (im, jm) ∈ Z2 such that

(Xi1Y j1 − 1) · · · (XimY jm − 1) ∈ AnnZ(c).

Unlike Lemma 1 this theorem does not generalize to all cases when R is a field.
For a polynomial f =

∑
ai,jX

iY j , we call supp(f) = {(i, j) | ai,j 6= 0} its
support. A line polynomial is a polynomial with its terms aligned all on the same
line: f is a line polynomial in direction u ∈ Z2 \ {0} if and only if supp(f) contains
at least two elements and for some n ∈ Z2 we have supp(f) ⊆ {n + ru | r ∈ Q}.
Note that the annihilator provided by Theorem 2 is a product of line polynomials.
A central feature of line polynomials is that any configuration that is annihilated
by a line polynomial is periodic in the direction of the line polynomial [7].

If R is a finite field and if f ∈ R[X±1, Y ±1] is a non-zero polynomial then we
define the set

Xf = {c ∈ R[[X±1, Y ±1]] | fc = 0}

of all configurations that f annihilates and call it the algebraic subshift defined by f .
It is a subshift of finite type (SFT, see [10] for the symbolic dynamics terminology).
We have that c ∈ Xf ⇐⇒ f ∈ AnnR(c)⇐⇒ fc = 0.

By Lemma 1 all low complexity configurations belong to algebraic subshifts when
the symbols are renamed as elements of a finite field. It is thus enough to consider
Nivat’s conjecture on elements of algebraic subshifts: if the conjecture is false then
there is a counter example configuration that belongs to an algebraic subshift. This
is the approach taken in this work. We consider various algebraic subshifts and
see whether low complexity implies periodicity in these subshifts. When this is the
case we say that the subshift has the generalized Nivat property. We prove that an
algebraic subshift Xf has the generalized Nivat property if the defining polynomial
f does not have line polynomial factors in two different directions.

The paper is organized as follows. In Section 2 we consider as a particular
example the well known Ledrappier subshift, also known as the 3-dot system, and
prove that any low complexity configuration in the Ledrappier subshift is periodic.
In Section 3 we generalize this result to all algebraic subshifts where the defining
polynomial does not have line polynomial factors in more than one direction. This
includes, for example, the space-time diagrams of all additive cellular automata
over finite fields. In Section 4 we consider the 4-dot system defined by polynomial
(1 +X)(1 + Y ) over F2 and prove that it also has the generalized Nivat property
although the defining polynomial has horizontal and vertical line polynomial factors,
while the analogous system defined by (1 +X2)(1 + Y 2) does not have the property.
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2 The Ledrappier Subshift
The Ledrappier subshift, or the 3-dot system, consists of the configurations over the
binary alphabet F2 that are annihilated by the polynomial 1+X+Y ∈ F2[X±1, Y ±1].

Definition 1 ([9]). The Ledrappier subshift L is the algebraic subshift XfL
over

F2 defined by the annihilator fL = 1 +X + Y .

In this work we relate the generalized Nivat property to the number of line
polynomial factors of the defining annihilator. It turns out that fL has none.

A visual way of seeing if a polynomial has a line polynomial factor is to look
at the shape of the convex hull of its support: the convex hull has parallel sides
in the directions of its line polynomial factors. To be more precise, we need some
definitions of discrete geometry. The closed half plane in a direction v ∈ Z2 \ {0} is
the set Hv = {x ∈ Z2| x ·v ≥ 0}, and the open half plane Hv is defined analogously
to contain those x ∈ Z2 that satisfy x · v > 0. The boundary of the half plane
is Hv \Hv. We say that a finite set D ⊆ Z2 has an outer edge perpendicular to
v ∈ Z2 \ {0} if there is x ∈ D such that D ⊆ x + Hv and there are at least two
elements of D on the boundary x + (Hv \Hv). See Fig. 1 for an illustration.

Figure 1: The set of black cells has an outer edge perpendicular to vector v.

Lemma 3. Let g, h be non-zero polynomials such that supp(g) has an outer edge
perpendicular to v. Then also supp(gh) has an outer edge perpendicular to v.

Proof. Let vector u ∈ Z2 \ {0} be perpendicular to v. By the hypotheses of the
lemma there are x ∈ Z2 and a line polynomial α in the direction u such that
supp(g) ⊆ x +Hv and supp(g−α) ⊆ x +Hv. Here α contains the terms of g along
the boundary of the half plane x +Hv. Analogously, for any non-zero polynomial
h there exists y ∈ Z2 and polynomial β 6= 0 that is either a monomial or a line
polynomial in the direction u such that supp(h) ⊆ y+Hv and supp(h−β) ⊆ y+Hv.
But then supp(gh) ⊆ x + y +Hv and supp(gh− αβ) ⊆ x + y +Hv. Because αβ
is a line polynomial in the direction u, this proves that the support of gh has an
outer edge perpendicular to v.

Corollary 4. If f 6= 0 has a line polynomial factor in the direction u then supp(f)
has outer edges perpendicular to v and −v, where v is a vector perpendicular to u.

Proof. A line polynomial g in the direction u has outer edges perpendicular to v
and −v. The claim then follows directly from Lemma 3.
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Because the convex hull of supp(fL) is a triangle, it does not have parallel outer
edges and therefore no line polynomial factors.

Corollary 5. Polynomial fL = 1 +X + Y has no line polynomial factors.

Remark. In fact, it is very easy to see that fL is an irreducible polynomial, which
directly implies Corollary 5.

Now we can prove that the Ledrappier subshift has the generalized Nivat property.

Theorem 6. Any low complexity c ∈ XfL
is periodic.

Proof. In this proof we are going to need annihilators of c over F2 and over Z.
We interpret c as a configuration over Z using the renaming F2 −→ Z that maps
0F2 7→ 0Z and 1F2 7→ 1Z. We write AnnZ(c) for the annihilator ideal of the
configuration over Z obtained after this renaming. We are going to prove the
following stronger statement: if AnnZ(c) contains a non-zero polynomial then c is
periodic. The result then follows from Lemma 1.

Let c ∈ L be non-periodic. We first prove that AnnF2(c) is the principal ideal
generated by fL, that is, for every g ∈ AnnF2(c) there exists α ∈ F2[X±1, Y ±1] such
that g = αfL. First, let g ∈ AnnF2(c) be a proper polynomial which means that all
exponents of variables are non-negative. Because X = 1 + Y + fL we can eliminate
variable X: there exists a polynomial α(X,Y ) and a polynomial β(Y ) in variable
Y only such that g = α(X,Y )fL + β(Y ). Because both fL and g are annihilators
of c, β(Y ) ∈ AnnF2(c) as well.

If β 6= 0 then it is either a single monomial (in which case c = 0) or a line
polynomial annihilator of c. Any configuration with a line polynomial annihilator
is periodic in the direction of the polynomial. We conclude that β = 0 so that
g = αfL, as claimed.

Consider then arbitrary g ∈ AnnF2(c) with possibly some negative exponents.
Because g = XiY jg′ for some i, j ∈ Z and a proper polynomial g′ ∈ AnnF2(c), we
conclude that also in this case g is a multiple of fL, and therefore we have that
AnnF2(c) is the principal ideal generated by fL.

Now it remains to show that AnnZ(c), the set of annihilators over Z, is trivial.
Suppose by contrary that there is a non-zero annihilator in AnnZ(c). By Theorem 2
there exists non-zero (i1, j1), . . . , (im, jm) ∈ Z2 such that (Xi1Y j1−1) · · · (XimY jm−
1) ∈ AnnZ(c). By performing computations modulo two instead, we have that
(Xi1Y j1 − 1) · · · (XimY jm − 1) ∈ AnnF2(c). But then this polynomial, which only
has line polynomial factors, is a multiple of fL. All factors of line polynomials are
line polynomials in the same direction (or monomials) so that all irreducible factors
of fL are line polynomials, contradicting Corollary 5. Here we used the fact that
every polynomial can be factored uniquely into its irreducible factors [2].

3 Annihilators with Few Line Polynomial Factors
One of the key element in the proof of Theorem 6 is the fact that we can find an
annihilator with one variable eliminated from it. It turns out that this is something
we can do with other annihilators than fL, and to do so we will use some parts
of elimination theory, so-called resultants. Everything needed to understand this
paper will be introduced but for more, Cox’s book [2] is a good introduction.
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3.1 Resultant
Usually resultant are defined for proper polynomials, so in order to stick with usual
definitions we define them likewise. We will still use them for talking about Laurent
polynomials, which is not a problem since from a Laurent polynomial annihilator
we can always obtain a proper one by multiplying it by a suitable monomial.

Let R be a field, e.g. R = Fp for a prime p, and let K = R[Y ] be the ring of
polynomials with one variable Y . Then K[X] = R[X,Y ] is the ring of polynomials
with two variables over R. Resultant can be defined for polynomials with more than
two variables, but two is all we need here. Resultant can be defined formally as a
determinant of some matrix with coefficients in K, but for our purpose, all we need
to know is that for any f, g ∈ R[X,Y ], there exists a polynomial ResX(f, g) ∈ R[Y ]
in variable Y only with the following two properties:

Property 1. The polynomials f and g have a common factor in R[X,Y ] if and
only if ResX(f, g) = 0.

Property 2. There exist α, β ∈ R[X,Y ] such that

αf + βg = ResX(f, g).

The second property exactly states that we can find a linear combination of f
and g that eliminates variable X.

Lemma 7. Let c be a power series over a field R. If c is annihilated by two non-zero
polynomials f and g with no common factors then c is two-periodic.

Proof. Using Property 2, let α, β ∈ R[X,Y ] be such that

αf + βg = ResX(f, g).

Because f and g are both annihilators of c so is ResX(f, g). Because f and g
have no common factors, Property 1 tells us that ResX(f, g) 6= 0. We found an
annihilator which is a line polynomial or a monomial (only with variable Y ) so c
must be periodic along Y .

Symmetrically, there also exist γ, δ ∈ R[X,Y ] such that

γf + δg = ResY (f, g).

Again, ResY (f, g) 6= 0, so c is also periodic along X.

Remark. In [8] we analyzed the structure of annihilator ideals of configurations
over Z, and an analogous result for the case of Z follow from those considerations.
We included here the simple proof above for the sake of completeness, and in order
to cover also the case of arbitrary coefficient fields.

3.2 Main Result
Now we can easily generalize Theorem 6. We consider an algebraic subshift Xf

over a finite field Fp defined by an annihilator f ∈ Fp[X±1, Y ±1]. A configuration
c ∈ Fp[[X±1, Y ±1]] will also be interpreted as a configuration over Z by mapping
the symbols by aFp 7→ aZ for all a ∈ {0, 1, . . . , p − 1}. Then, as in the proof of
Theorem 6, we can define both AnnFp(c) and AnnZ(c), and use the fact that any
g ∈ AnnZ(c) is also in AnnFp

(c) when its coefficients are reduced modulo p.
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Theorem 8. Let c ∈ Xf for a polynomial f ∈ Fp[X±1, Y ±1], and suppose that
AnnZ(c) contains a non-zero polynomial.

• If f has no line polynomial factors then c is two-periodic.

• If all line polynomial factors of f are in the same direction then c is periodic
in this direction.

Proof. By Theorem 2 there exists non-zero (i1, j1), . . . , (im, jm) ∈ Z2 such that
(Xi1Y j1 − 1) · · · (XimY jm − 1) ∈ AnnZ(c). By performing computations modulo p
instead, we have that g(X,Y ) = (Xi1Y j1 − 1) · · · (XimY jm − 1) ∈ AnnFp

(c).
If f has no line polynomial factors then f and g do not have any common factors.

By Lemma 7 then c is two-periodic. This proves the first claim.
Suppose then that all line polynomial factors of f are in the same direction.

Let h be the greatest common divisor of f and g so that we can write f = f ′h
and g = g′h where f ′ and g′ do not have common factors. Note that h is a line
polynomial: as a factor of g h is a product of line polynomials, and as a factor of f
these line polynomials are all in the same direction.

Because c′ = hc is annihilated by both f ′ and g′ it follows from Lemma 7 that
c′ is two-periodic. In particular, there is a line polynomial h′ in the direction of
h that annihilates c′. We have hh′ ∈ AnnFp

(c) so that c is annihilated by the line
polynomial hh′ and is therefore periodic in this direction.

Using Lemma 1 we now immediately get that algebraic subshifts defined by
an annihilator with at most one line polynomial factor have the generalized Nivat
property.

Corollary 9. Let c ∈ Xf for a polynomial f ∈ Fp[X±1, Y ±1] whose line polynomial
factors are all in the same direction. If c has low complexity then it is periodic.

Remark. Elements of the Ledrappier subshift are exactly the space-time diagrams
of the one-dimensional XOR cellular automaton. More generally, the algebraic
subshiftXf defined by a polynomial of the form f(X,Y ) = Y−g(X) ∈ Fp[X±1, Y ±1]
consists exactly of the space-time diagrams of the one-dimensional additive cellular
automaton over Fp whose local rule is given by g(X). See Section 9 of [6] for a short
discussion about additive cellular automata. If g(X) has at least two terms then the
support of f has triangular shape and therefore f has no line polynomial factors. If
g(X) has one term then f itself is a line polynomial. In any case, Theorem 8 and
Corollary 9 hold for the space-time diagrams of all one-dimensional additive cellular
automata over field Fp.

4 Square Annihilators
After Corollary 9, it is natural to take a look at configurations annihilated by
polynomials with line polynomial factors in more directions. It turns out that already
products of two line polynomials include examples with and without the generalized
Nivat property. We first prove that the 4-dot system defined by (1 +X)(1 +Y ) over
F2 has the generalized Nivat property and then we show that the system defined by
(1 +X2)(1 + Y 2) does not.
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4.1 The 4-dot system
Definition 2. The 4-dot system S is the algebraic subshift XfS

over F2 defined by
the annihilator fS = 1 +X + Y +XY = (1 +X)(1 + Y ).

Theorem 10. Every low complexity c ∈ XfS
is periodic.

Proof. Similarly as before, we are going to prove the more general statement that
if c has a non-trivial annihilator p0 over Z then it is periodic.

We first observe that c = h+ v for h, v ∈ F2[[X±1, Y ±1]] that are (1, 0)-periodic
and (0, 1)-periodic, respectively. Indeed, we can take hi,j = c0,j and vi,j = ci,0 +c0,0,
for all i, j ∈ Z. Because (1 + Xi)(1 + Y j) is a multiple of (1 + X)(1 + Y ) over
F2, polynomial (1 + Xi)(1 + Y j) annihilates c, for all i, j ∈ Z. This means that
ci,j = c0,j + ci,0 + c0,0 = hi,j + vi,j .

Using the periodicity of h and v we can write h = 1(X)s(Y ) and v = t(X)1(Y ),
with 1(X) =

∑
i∈ZX

i and s, t two formal series depending only one one variable.
Let us define another binary configuration d by

d(X,Y ) = t(X)s(Y ).

In other words, d is the configuration that has ones where both h and v have ones:

di,j =
{

1 if hi,j = vi,j = 1
0 otherwise

.

Interpreted in Z, we have
c = h+ v − 2d.

This is the case since the two sides are identical modulo two and both sides only
contain values 0 and 1.

Consider next the polynomial

p = p0(X − 1)(Y − 1)

over F2. Because p0 annihilates c, and X − 1 and Y − 1 annihilate h and v,
respectively, we have that pc = ph = pv = 0. Therefore pd = 0 as well, which can
be written as

p(X,Y )t(X)s(Y ) = 0,

emphasizing the variable dependencies of the polynomials. We have the following
two cases:

Case 1: Suppose that p(X,Y )t(X) = 0. In p(X,Y ) we collect together terms with
the same power of variable Y , obtaining

p(X,Y ) =
∑
j∈Z

Y jpj(X)

where at least some pj(X) is a non-zero polynomial. We have∑
j∈Z

Y jpj(X)t(X) = 0.

This is an identity of formal power series so that pj(X)t(X) = 0 for all j ∈ Z. But
then also pj(X)v = pj(X)t(X)u(Y ) = 0, so that v is annihilated by a non-zero
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horizontal line polynomial (or a non-zero monomial) pj(X). We conclude that v is
horizontally periodic. But then also c = h+ v is horizontally periodic as a sum of
two horizontally periodic configurations.

Case 2: Suppose that p(X,Y )t(X) 6= 0. Now we collect in p(X,Y )t(X) together
variables with the same power of variable X, obtaining

p(X,Y )t(X) =
∑
i∈Z

Xiqi(Y ),

where at least some qi(Y ) is a non-zero polynomial. Note that all qi(Y ) are
polynomials because powers of the variable Y only come from the polynomial
p(X,Y ). Because

0 = p(X,Y )d(X,Y ) = p(X,Y )t(X)s(Y ) =
∑
i∈Z

Xiqi(Y )s(Y ),

we have that qi(Y )s(Y ) = 0 for all i ∈ Z. Analogously to case 1 above, this implies
that h is vertically periodic, and therefore also c is vertically periodic.

4.2 An algebraic subshift without the generalized Nivat prop-
erty

For some polynomials with two line polynomial factors, the associated subshift
does not have the generalized Nivat property. This is typically the case when the
annihilating polynomial allows the use of sublattices.

Theorem 11. There exists a configuration c over F2 annihilated by fT = (1 +
X2)(1 + Y 2) which is not periodic but has low complexity.

Proof. Let us take c = h+ v, with

hi,j =
{

1 if j = 0 and i even
0 otherwise

and vi,j =
{

1 if i = 1 and j even
0 otherwise

.

Visually, c is the superposition of a horizontal and a vertical line on two disjoint
sublattices, see Fig. 2. Clearly h is one-periodic with periodicity vector (2, 0) and v
is one-periodic with periodicity vector (0, 2). Their sum c is not periodic.

The periodicity of h and v directly implies that fT annihilates c: h being (2, 0)-
periodic (1 +X2)h = 0 and, analogously, v being (0, 2)-periodic (1 +Y 2)v = 0. This
means that fT c = (1 +X2)(1 + Y 2)h+ (1 +X2)(1 + Y 2)v = 0.

The last thing we have to check is that c has low complexity, i.e, there is a shape
D such that Pc(D) ≤ |D|. It is sufficient to take D to be the scattered 3x3 square,
as shown in Fig. 3. Patterns of shape D in c will only contain values from one of
the four sublattices, depending on the parity of its position. If D is superimposed
with sublattices 3 or 4, the pattern is blank. With sublattice 1, it can only contain
values from h, so it can have four different values: blank, and the horizontal line
crossing at the top, the middle or the bottom. If it is on sublattice 2, then it has
values from v, and here again there are four different possibilities. Counting the
blank shape only once, we obtain Pc(D) = 1 + 3 + 3 = 7 < 9 = |D|.
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Figure 2: Sublattices of c and shape D superimposed. The horizontal line is from h
and the vertical one from v.

Figure 3: The shape D of low complexity.

5 Conclusions
To prove Nivat’s conjecture it is enough to consider configurations of two-dimensional
algebraic subshifts over Fp. We prove that simplest subshifts do not contain a
counter example to the conjecture, and they even have the stronger property that
any configuration that has low complexity with respect to any finite shape is periodic.
It remains open to characterize which algebraic subshifts have this generalized Nivat
property. It remains also an interesting algorithmic problem to decide for a set of
at most |D| allowed patterns of shape D, for some finite D ⊆ Z2, whether there
is a configuration all of whose D-patterns are among the allowed patterns. We
do not know if this emptyness problem of low complexity subshifts of finite type
is decidable in general, but if the given patterns come from one of the algebraic
subshifts studied in this work then the emptyness problem is decidable by a standard
argument because any configuration with these patterns must be periodic. We also
ask whether the generalized Nivat property may fail for other reasons than having
the support of the defining polynomial in a proper sublattice of Z2.
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