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Abstract

In recent years, techniques such as Bayesian inference of phylogeny have become a standard part of the

quantitative linguistic toolkit. While these tools successfully model the tree-like component of a linguistic

dataset, real-world datasets generally include a combination of tree-like and nontree-like signals. Alongside

developing techniques for modeling nontree-like data, an important requirement for future quantitative work

is to build a principled understanding of this structural complexity of linguistic datasets. Some techniques

exist for exploring the general structure of a linguistic dataset, such as NeighborNets, d scores, and Q-resid-

uals; however, these methods are not without limitations or drawbacks. In general, the question of what

kinds of historical structure a linguistic dataset can contain and how these might be detected or measured

remains critically underexplored from an objective, quantitative perspective. In this article, we propose

TIGER values, a metric that estimates the internal consistency of a genetic dataset, as an additional metric

for assessing how tree-like a linguistic dataset is. We use TIGER values to explore simulated language data

ranging from very tree-like to completely unstructured, and also use them to analyze a cognate-coded basic

vocabulary dataset of Uralic languages. As a point of comparison for the TIGER values, we also explore the

same data using d scores, Q-residuals, and NeighborNets. Our results suggest that TIGER values are capable

of both ranking tree-like datasets according to their degree of treelikeness, as well as distinguishing datasets

with tree-like structure from datasets with a nontree-like structure. Consequently, we argue that TIGER values

serve as a useful metric for measuring the historical heterogeneity of datasets. Our results also highlight the

complexities in measuring treelikeness from linguistic data, and how the metrics approach this question

from different perspectives.
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1. Introduction

In recent years, interest in the development and use of

quantitative methods in many linguistic domains,

including historical linguistics, typology, and dialect-

ology, has increased markedly. Among the most promin-

ent quantitative methods are those based on explicit

statistical models adopted from evolutionary biology,

which are used, for instance, for estimating the shapes of

language families from the perspective of lexicon and

typology (e.g. Dunn et al. 2008; Bouckaert et al. 2012;

Honkola et al. 2013; Syrjänen et al. 2013; Chang et al.

2015; Dunn 2015; Greenhill et al. 2020), as well as

exploring closely related language groups (Bowern

2012; Honkola et al. 2019) or intralingual variation

(Proki�c and Nerbonne 2013; Syrjänen et al. 2016;

Honkola et al. 2018). While these evolutionary quanti-

tative methods are quite capable of describing linguistic

variation from a statistical standpoint, they are not by

any means perfect. One key concern with the statistical

approach is whether the models adequately account for

languages having complex and unique histories both ex-

ternally and internally, as well as whether data vary in

quality. This has also been among the factors that have

posed challenges for the field of quantitative historical

linguistics since it first gained prominence in the 1950s

(see e.g. Embleton 1986; McMahon and McMahon

2005).

Complexity in linguistic data is the result of how lan-

guages change across time. In general terms, the bulk of

linguistic features are carried over from one generation

of speakers to the next through language acquisition. In

practice, this resembles the biological process of descent

with modification, as slight changes are introduced to

the linguistic variants along the way. However, language

material is also transferred laterally, both between lan-

guages and within the level of intralingual populations,

through borrowing and diffusion (Jacques and List

2019). In addition to this, continuously changing com-

municative needs of speakers can induce changes to

existing linguistic features, such as e.g. semantic shifting

of existing words and the introduction of new words.

Alongside the aforementioned processes that shape lin-

guistic history, languages undergo a gradual process of

divergence, occurring as dialects become communica-

tively isolated from one another. The divergence event

itself is not necessarily unambiguous; it can be affected

by processes arising from population-level variation,

such as so-called ‘incomplete lineage sorting’ (Jacques

and List 2019). The result is a family of languages with

historically connected features shaped by a rich variety

of processes, some of which carry information that

reflects descent from a common ancestor (vertical inher-

itance), while others reflect a history of diffusion or lan-

guage contact (different kinds of horizontal transfer).

This complexity is also not connected to any particular

portion of language; for instance, they are as apparent in

the lexicon as they are in structural or typological data

(e.g. Dunn et al. 2008). Complexity in linguistic datasets

can also arise from large-scale historical factors that are

not directly linguistic, such as age differences between

language groups, affecting the extent to which languages

within a group have diverged from one another, and lan-

guage extinction events, which can unpredictably affect

the overall distribution of linguistic data. In addition,

data quality and data quantity are also a nontrivial

source for complexity in linguistic data (Wichmann

et al. 2011), affecting, e.g. the amount of undetected

borrowings and coding errors, as well as the overall ro-

bustness of any analysis.

While tree-like descriptions of language history form

the bulk of current quantitative historical linguistic

work, no unanimous opinion among linguists exists on

how realistic the tree-like model is (e.g. Croft 2000;

Gray et al. 2010; François 2014; Kalyan et al. 2019),

due to the complexity of linguistic history and data. As

it is most likely that language families are not globally

homogeneous in terms of how tree-like or nontree-like

they are, treating a linguistic dataset as a homogeneous

package of either horizontal or vertical type of linguistic

history will undoubtedly result in neglecting significant

parts of the actual history. Noteworthily, in biology,

which nowadays shares many quantitative techniques

with linguistics, the question of whether evolutionary

history is dominated by vertical or horizontal transfer of

genetic material has also been actively discussed during

the last decade (Doolittle and Bapteste 2007; Bapteste

et al. 2009). Horizontal genetic transfer complicates in

particular the evolutionary tree models of fungi, prokar-

yotes, and viruses (e.g. Marcet-Houben and Gabaldón

2009). Approaches for handling this complexity have

also been developed, including one which operates by

identifying the parts of the genome that are primarily

the result of vertical processes and those that contain a

primarily horizontal component (Koonin et al. 2009;

Puigbò et al. 2009).

Although the question of whether linguistic change

and also other types of evolution are predominantly

tree-like or not is actively discussed, the toolkit for

quantitatively answering such questions remains rela-

tively small. Within the linguistic field, perhaps the two

most extensive examinations of this matter are Gray

et al. (2010) and Wichmann et al. (2011), both of which
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focus on three techniques with which the treelikeness of

datasets can be measured: NeighborNets, d (delta)

scores, and Q-residuals (see below). Other noteworthy

studies on this include Nelson-Sathi et al. (2010), where

minimal lateral networks were used to visualize incom-

patibilities in a reference tree. Also, in a recent article,

Verkerk (2019) applied a Bayesian technique called the

‘multiple topologies method’ to explore nontree-like lan-

guage history using material from four language

families.

In this article, we explore a new technique for quanti-

tatively assessing treelikeness in linguistic data. This

technique is called ‘Tree Independent Generation of

Evolutionary Rates’ or ‘TIGER’ (Cummins and

McInerney 2011). It produces the so-called TIGER val-

ues, which quantify ‘similarity in the pattern of

character-state distributions’ (Cummins and McInerney

2011). TIGER values were originally developed for the

exclusion of parts of phylogenetic datasets that evolve

too fast to retain a phylogenetic signal. They have also

been used for partitioning of phylogenetic datasets,

which in turn enables the researcher to account for het-

erogeneity better, by e.g. specifying different generalized

time-reversible submodels for different parts of the par-

titioned dataset (see e.g. Kainer and Lanfear 2015; Rota

et al. 2018). However, despite being especially popular

as a proxy for evolutionary rate, we argue that TIGER

values, which are a measure of similarity rather than

time, can also be useful for data exploration in other

ways. Here, we explore whether they could be used to

assess heterogeneity of linguistic data in the form of

treelikeness.

The main focus of this article is to explore the

applicability of TIGER values for linguistic material

using both simulated and real-world data. Simulated

data were used especially for validating TIGER values as

an actually working metric for measuring treelikeness,

as they allow us to mimic datasets created via different

kinds of historical processes, including tree-like and

nontree-like divergence. In addition, simulated data also

allow us to produce datasets with different degrees of

treelikeness by introducing borrowings to an otherwise

tree-like data.

Here, we explore how TIGER values assess four

types of simulated data: tree-like data, tree-like data

with borrowing, data that approximates a dialect chain,

and unstructured data. Following validations with simu-

lated data, we apply TIGER to real-world language data

from UraLex 1.0, a recently released dataset of twenty-

six attested Uralic languages, with cognate coding infor-

mation covering 313 meanings (Syrjänen et al. 2018).

UraLex is an expanded and edited version of the data

used in earlier phylogenetic work on Uralic languages

(Honkola et al. 2013; Syrjänen et al. 2013; Lehtinen

et al. 2014).

We also compare TIGER values with two other met-

rics used to quantify treelikeness in linguistic data—d
scores and Q-residuals—and examine the ability of

TIGER values to differentiate between different kinds of

linguistic data, by comparing the TIGER values of dif-

ferent types of meanings from UraLex. It has been sug-

gested that semantic categories may change at different

rates (see e.g. Pagel et al. 2007; Vejdemo and Hörberg

2016; Greenhill et al. 2017). Pagel et al. (2007), for in-

stance, have suggested that semantic categories change

at different rates, which also suggests that they may

have distinct evolutionary trajectories. Thus, we

assessed whether TIGER values varied between the se-

mantic categories specified by WOLD and (Tadmor

2009), which correspond with various word classes.

Also, meanings from basic vocabulary lists, such as the

Swadesh lists and the Leipzig–Jakarta list, are assumed

to cover meanings with a more tree-like signal than the

remaining ‘nonbasic’ vocabulary meanings in our data.

We thus compared the TIGER values of meanings from

standardized basic vocabulary (i.e. items from

Swadesh100, Swadesh200, and Leipzig–Jakarta lists)

with TIGER values of nonbasic vocabulary meanings

(i.e. items from the WOLD401–500 list, introduced in

Lehtinen et al. 2014). With these sanity checks, we aim

to produce a reliable assessment of TIGER values as a

linguistic metric.

The article is structured as follows: we begin with the

Materials and methods section, where we introduce the

quantitative techniques used for estimating treelikeness

relevant to this article: d scores, NeighborNets, Q-resid-

uals, and TIGER rates. Following this, we describe both

the real-world data, UraLex, as well as the simulated

data used in this study, including how the generative

models used to produce the simulated data work.

The results begin with the validation of TIGER values as

a metric for treelikeness by exploring how they perform

when analyzing four kinds of simulated datasets: tree-

like data, tree-like data with borrowings, dialect chain-

like data, and unstructured data. The same data are

also analyzed with two other metrics of treelikeness,

d scores and Q-residuals, as well as visualized with

NeighborNets. Finally, we explore our real-world data

from UraLex through the lens of TIGER values, explor-

ing how this metric ranks its different meanings, seman-

tic categories that correspond with word classes, as well

as basic vocabulary versus nonbasic vocabulary subsets

of the data. Finally, the main results of the article are

summarized in the discussion section.
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2. Materials and methods

2.1 Existing techniques for measuring
treelikeness

Within the field of linguistics, perhaps the two most ex-

tensive examinations of quantitative methods for assess-

ing whether a dataset contains a tree-like structure are

Gray et al. (2010) and Wichmann et al. (2011). Both

focus on three techniques: NeighborNets, d scores and

Q-residuals. All three techniques are also incorporated

as part of the SplitsTree software package (Huson and

Bryant 2006), a tool that is often used for preliminary

exploratory analyses of basic vocabulary datasets; d

scores and Q-residuals are also available separately, for

instance, as part of the Python package phylogemetric

(Greenhill 2016).

The first technique discussed in Gray et al. (2010)

and Wichmann et al. (2011), the NeighborNet, is a

distance-based phylogenetic network graph (Bryant and

Moulton 2004), which allows one to visually assess how

tree-like a given dataset is (see Fig. 4 for NeighborNets

produced in this article). A pure tree is visualized by

NeighborNet similar to an unrooted tree, while nontree-

like signal changes the shape of the NeighborNet; for a

structured dataset such as one with an underlying tree,

this is displayed as wider, partially merged branches

that form a network of conflicting connections. The

applicability of NeighborNets is critically discussed in,

e.g. Morrison (2010), Wichmann et al. (2011), and

Murawaki (2015). As Wichmann et al. (2011) note, the

main disadvantage of a NeighbourNet is that it is a vis-

ual rather than a quantifiable metric. In addition to vis-

ual interpretation being generally quite subjective,

interpreting NeighborNets for more complex datasets

becomes increasingly challenging due to the large

amount of information within each graph. Challenges

such as these call for additional techniques for quantita-

tively measuring how tree-like dataset is.

Unlike NeighborNets, d scores (Holland et al. 2002)

and Q-residuals (Gray et al. 2010) are metrics designed

for quantifying the degree of treelikeness in a dataset.

Both are based on quartets (groups of four taxa), and es-

timate treelikeness based on deviations from the so-

called four-point condition. Assuming we have four

taxa, or languages in the case of linguistic data (A, B, C,

and D), there are three ways in which they can be div-

ided into two pairs. Each division corresponds to a pair

of distances:

1. (A, B), (C, D); (jABj þ jCDj)
2. (A, C), (B, D); (jACj þ jBDj)
3. (A, D), (B, C); (jADj þ jBCj)

The four-point condition is satisfied if the two largest

of the aforementioned three distances are identical with

each other. In other words, assuming d1, d2, and d3 are

the three distances ordered from longest to shortest, the

four-point condition is satisfied if d1 ¼ d2. In this case,

the four taxa can be represented perfectly as a tree.

Treelikeness of a specific taxon can be estimated by

averaging deviations from the four-point condition

across all the quartets that the taxon in question partici-

pates in, and the treelikeness of an entire dataset can be

estimated by averaging deviations across all the quartets

of that dataset. The d score estimates treelikeness using

the formula d1�d2/d1�d3; the score is 0 if d1�d3 ¼ 0.

The Q-residual estimates treelikeness using the formula

(d1�d2)2, where d1 and d2 are distances normalized so

that the average distance between the taxa is 1.

Both d score and Q-residual use taxon-wise distances

as input, and provide a similar output, with each lan-

guage given a value that falls between 0 and 1, measur-

ing the amount of deviation from the four-point

condition. Values closer to 0 suggest that the data fit a

tree-like structure, and the value increases with the

existence of less tree-like structure. Notably, d scores

and Q-residuals operate at different scales, with d scores

generally being much higher than Q-residuals.

The scores given for individual languages are often

summarized by a mean value over all languages to

obtain a single score for the whole dataset.

d scores and Q-residuals have been compared with

one another by Wichmann et al. (2011) using linguistic

data; their results were in favor of the d score as a metric

over the Q-residual due to Q-residuals being sensitive to

the length of terminal branches of trees, which in turn

makes them correlate with what they call ‘lexical hetero-

geneity’ (estimated from their data using a version of

Levenshtein distance called LDND) and age of language

families. They see no obvious reason why reticulation

should correlate with these factors (Wichmann et al.

2011). In practice, both d scores and Q-residuals are ac-

tively used; e.g. d scores and Q-residuals are both

reported for a recent Bayesian phylogenetic analysis of

the Dravidian language family (Kolipakam et al. 2018).

2.2 Tiger algorithm

Tree-Independent Generation of Evolutionary Rates, or

TIGER (Cummins and McInerney 2011), is a nontree-

based method to estimate similarities in the distribution

of aligned phylogenetic data. The similarity estimates

produced by TIGER (which we refer to as ‘TIGER val-

ues’) were originally used for excluding characters that

change too fast to retain the phylogenetic signal from
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phylogenetic data (Cummins and McInerney 2011).

Since its publication, the original article describing

TIGER has been cited ninety-four times (Web of

Science, October 26 2020) in evolutionary biology lit-

erature, in over thirty different journals. Among the first

biological studies that used TIGER for producing algo-

rithmic partitioning schemes for phylogenetic inference

to allow more fine-tuned phylogenetic analyses were,

e.g. Rota and Wahlberg (2012), Rota et al. (2016), and

Rota et al. (2018). Others have used it to clean up a

phylogenetic dataset by filtering out characters that

evolve fastest (e.g. Burki et al. 2016). While TIGER val-

ues were designed with phylogenetic alignment data

such as nucleotide characters in mind, the algorithm can

in fact be applied to any data that can be represented as

a collection of multistate characters (e.g. as by Prasanna

et al. 2020 to amino acid sites). In this study, we calcu-

late TIGER values for a set of 313 multistate characters

from language data, each of which encode the cognate

relationship of a specific meaning.

To infer TIGER values for a dataset of aligned char-

acters, each aligned character is first partitioned by

grouping together taxa that have identical character

states at that specific location of the alignment (see

Fig. 1a for the general steps of the algorithm). After each

position of the aligned data has been partitioned, ‘parti-

tion agreements’ are calculated for each character pos-

ition. Partition agreements for a specific character

position are calculated by comparing its taxon set parti-

tion with the partitions of every other character pos-

ition; each partition agreement score records how many

of the sets in the compared character position’s partition

are subset of one of the sets in the partition of the char-

acter position whose TIGER value we are calculating.

After each partition agreement has been recorded, a

TIGER value of a character position is calculated as the

arithmetic mean of the partition agreement scores be-

tween that character position and all the other character

positions. The resulting TIGER value is a number rang-

ing between 0 and 1, with values closer to 1 indicative

of more stable or consistent characters. Cummins and

McInerney (2011) provide a detailed mathematical de-

scription of the algorithm.

In the case of linguistic data, each feature in a dataset

partitions the languages into nonoverlapping subsets, on

the basis of which languages share the same value for

that feature. With data denoting historical relatedness,

for example, the words denoting ‘water’ in e.g. Russian

(djla), Czech (voda), Swedish (vatten), English (water),

and German (wasser), are etymologically connected,

and would consequently share the same value or multi-

state character state within a linguistic dataset of

historical connections. The corresponding words in e.g.

Spanish (agua), French (eau), and Italian (acqua) are

also related to one another but not related to their afore-

mentioned Germanic and Slavic counterparts; they

would consequently be given a different value or multi-

state character state. Thus, for the meaning ‘water’, the

languages are partitioned into two sets, S1 ¼ fRussian,

Czech, Swedish, English, Germang and S2 ¼ fSpanish,

French, Italiang. For each feature in this type of dataset,

TIGER values are calculated by comparing that feature’s

partition to the partitions of all other features, and

measuring the agreement between those partitions

(Fig. 1b). Agreement here is understood as the sets in

one partition being subsets of the sets in many other par-

titions. For example, considering now words denoting

‘mountain’, we could partition our Indo-European lan-

guages into three sets based on their etymological re-

latedness: One for Russian (ujha) and Czech (hora),

which is a subset of the set S1 of ‘water’, another for

Swedish and German (both berg), which is also a subset

of S1 of ‘water’, and finally one for English (mountain),

Spanish (monta~na), French (montagne), and Italian

(montagna). This last set here, however, does not reflect

the same hierarchy than what we get with ‘water’, as it

is not a subset of either S1 or S2 of ‘water’; the reason

for this is obviously the English word ‘mountain’, which

does not originate from shared inheritance but rather

through borrowing from Old French. With this in mind,

the ‘mountain’ partition has an agreement score of 2/3

compared with the ‘water’ partition. Notably, the parti-

tion agreement score of ‘water’ compared with ‘moun-

tain’ is not 2/3 but 1/2, as the S1 partition of ‘water’ is

not a subset of any set in ‘mountain’, while the S2 parti-

tion of ‘water’ is a subset of the third set in ‘mountain’

(cf. Fig. 1c). Finally, the actual TIGER values for each

character are calculated as the mean of the partition

agreement scores between that character and every other

character (Fig. 1d).

As a metric, TIGER values are based on inferring the

internal consistency of the characters within a dataset

based on its character states. This makes it notably dis-

tinct from both d scores and Q-residuals, which are both

based on measuring distances between taxa, or in the

case of linguistic data, languages. Thus, the output of a

TIGER analysis does not score each language, as d
scores and Q-residuals do, but rather each multistate

character (e.g. a meaning within a lexical cognate data-

set). Another difference between the three metrics is that

d scores and Q-residuals are minimized by tree-like data

and maximized by nontree-like data, whereas the oppos-

ite is true with TIGER values. To some extent, TIGER

values resemble consistency indices and retention
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indices, both of which measure how well phylogenetic

characters fit a specific tree, as well as per-character

likelihood scores (see figure 9 in Gray et al. 2010),

which determine how well phylogenetic characters fit a

specific model. TIGER’s difference to these is that it

does not score the characters against a specific tree or

model but instead provides an overall measurement of

the amount of hierarchical agreement across the charac-

ters in the dataset.

At least three tools are publicly available that allow

the calculation of TIGER values: the original implemen-

tation by Cummins and McInerney (2011), its work-in-

progress successor, and a Cþþ program called

fast_TIGER (Frandsen et al. 2015). Unfortunately, the

original TIGER tool includes a bug that causes it to mis-

calculate TIGER values, as stated on the tool’s website.

We also had trouble getting its work-in-progress succes-

sor to reliably output TIGER values. The third option,

fast_TIGER, also proved unworkable for our case, as it

only supports data with DNA nucleotide characters,

which only have four character states (A, C, G, and T),

whereas our data consist of cognate set characters,

which require more character states than nucleotide

data. Consequently, for the purposes of this article, we

implemented a separate tool capable of calculating

TIGER values for arbitrary multistate data, based on the

mathematical description of the algorithm given in

Cummins and McInerney (2011). A link to the tool is

provided in the Supporting Material, and at the time of

writing supports concurrent TIGER value calculation

from three formats: FASTA files, CLDF datasets (Forkel

et al. 2018), used in many linguistic phylogenetic data-

sets, and the CSV file format used by the simulated data-

sets. As a sanity check, we calculated TIGER values

for random-generated character dataset resembling

standard nucleotide data, which consists of states A, C,

G, and T, using these different TIGER implementations.

Comparisons of these analyses (see Supporting Material

Table S1) showed that our calculator’s TIGER values

were virtually identical with the results produced by

fast_TIGER, while the original TIGER implementation

(v. 1.02) produced considerably different results, due to

the aforementioned bug.

2.3 Establishing TIGER values as a metric of
treelikeness

The first and foremost purpose of the article is to exam-

ine whether TIGER values can operate as a reliable

proxy for how tree-like a dataset is. In the previous sec-

tion, we described the inner workings of the TIGER

Figure 1. General overview of the TIGER algorithm. See Cummins and McInerney (2011) for a complete mathematical description.
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algorithm and discussed its theoretical validity as an es-

timator of treelikeness. However, in addition to the the-

oretical side, the metric also needs to be justified by

experimental data. This is primarily accomplished using

simulated datasets reflecting different kinds of linguistic

scenarios whose parameters can be controlled. With

this, we can compare how well TIGER values perform

in detecting treelikeness in data, and also how they per-

form when subjected to data that is not based on a tree-

like structure. Following this comparison, we proceed to

comparing TIGER values with other metrics—d scores

and Q-residuals. The simulated tests also provide us

with a point of reference when we analyze UraLex, our

real-world dataset, using TIGER.

The simulated datasets presented in the main part of

this article are set up so that they approximate the gen-

eral size and properties of UraLex. However, we have

also examined how different simulation parameters,

cognate class counts, and language counts, as well as

data gaps affect TIGER values; these are documented in

the Supporting Material (Figs. 1–3, Supplementary

Tables S2 and S3).

2.4 Comparing TIGER values, d scores,
Q-residuals, and NeighborNets

In addition to establishing how TIGER performs as a

metric of treelikeness, our investigation also cross-

compares TIGER values with three existing techniques

designed for measuring how tree-like a dataset is: d

scores, Q-residuals, and NeigborNets. While these tech-

niques provide a good point of comparison for how well

TIGER values perform at detecting a tree-like signal, we

also want to know how well especially d scores and Q-

residuals perform at this task. Consequently, d scores,

Q-residuals, and TIGER values are used to analyze both

the simulated datasets as well as our real-world dataset,

UraLex.

Similarly to what we do when establishing TIGER as

a metric for treelikeness, we explore how each of these

metrics ranks our simulated and real-world data from

most tree-like to least tree-like, which we can compare

with the underlying design of the simulated datasets in

terms of how tree-like they should be. We also test how

successful each metric is in finding the correct ranking of

our simulated datasets from most tree-like to least tree-

like across 100 independently generated simulations

using each of the seven generative models. The results

provide us with insight into how well each metric per-

forms, but also allow us to examine how comparable

these metrics actually are to one another—i.e. whether

they define tree-like and nontree-like in a similar way.

While NeighborNets do not provide a quantitative

assessment of the nature of the data, they serve two im-

portant functions in our investigation. First, they allow

us to see how notable the differences between our simu-

lated datasets are—i.e. whether it is possible to rank the

models with respect to their treelikeness based solely on

visual inspection. Second, NeighborNets also serve as a

valuable means of seeing what ‘nontree-like’ data are for

different simulated datasets.

All of the NeighborNets in this investigation are gen-

erated using SplitsTree4 (Huson and Bryant 2006). d

scores and Q-residuals are calculated with the phyloge-

metric library (Greenhill 2016).

2.5 Language data

The real-world language data come from version 1.0 of

the UraLex basic vocabulary dataset (Syrjänen et al.

2018; De Heer et al. unpublished manuscript). The data-

set covers lexical reflexes (words and expressions) and

historical connections (‘cognate sets’) for 313 meanings.

Most of the meanings (226) come from standardized

basic vocabulary lists: Swadesh100 (Swadesh 1955),

Swadesh200 (Swadesh 1952), and Leipzig–Jakarta

(Tadmor 2009). In a nutshell, basic vocabulary covers

concepts that are relatively stable across time, morpho-

logically simple, and usually resistant to being replaced

by another word via, e.g. borrowing or semantic shift.

This makes them useful for historical inference (see e.g.

Embleton 1986; McMahon and McMahon 2005;

Dellert and Buch 2018). The remaining eighty-seven

meanings are from the WOLD401–500 list of ‘less-basic

vocabulary’ (see Lehtinen et al. 2014), covering mean-

ings that are ranked 401–500 based on the Leipzig–

Jakarta list’s basic vocabulary criteria and consequently

fall outside of standardized basic vocabulary. We used

all twenty-six attested languages as well as all 313 mean-

ings when analyzing this dataset.

We can formulate some expectations on the nature

of UraLex based on previous research. The loanword

content among the lexical reflexes of UraLex has been

explored in De Heer et al. (unpublished manuscript),

where it is noted that there is a considerable number of

loanword reflexes within UraLex—for instance, around

33% in North Saami and 16% in Komi-Zyrian (De

Heer et al. unpublished manuscript). Also, earlier quan-

titative work with UraLex (Syrjänen et al. 2013;

Honkola et al. 2013) has argued that the basic vocabu-

lary portion of the data structures in a strongly tree-like

manner, while the nonbasic vocabulary portion also

contains a nontree-like signal (Lehtinen et al. 2014).

Based on these results, UraLex should generally be
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expected to deviate from a purely tree-like signal to

some extent but not so much as to be entirely nontree-

like.

UraLex is not a dataset with only one lexical reflex

per meaning for a language; it has many cases where sev-

eral lexical reflexes are recorded for the same meaning

within a language, which are each tied to a different cog-

nate set. These are generally found in cases where it has

been difficult to define a single reflex as the representa-

tive reflex for that meaning due to, e.g. use context limi-

tations or lack of information related to frequency of

usage. However, for TIGER values we need to choose

one lexical reflex (and thus, one cognate set) to represent

that meaning for the language in question. In this article,

we use a computational ‘minimizing’ strategy, where the

lexical reflexes are chosen so that the total number of

cognate sets for each meaning is as low as possible. This

kind of strategy favors chronologically deep relation-

ships (old historical connections between many lan-

guages) over more shallow relationships (younger

connections between few languages). The Supporting

Material provides a brief investigation into the effects of

different cognate selection strategies for resolving syno-

nyms on TIGER values, with the conclusion that the im-

pact is generally minimal.

2.6 Simulated language data

When assessing the suitability of TIGER values as a

measurement of tree-like historical signal in language

data, it is important to consider its susceptibility to both

false-negative and false-positive results. In other words,

it must be established that datasets which are known to

contain a tree-like signal are reliably assigned ‘high

scores’ and also that datasets which are known not to

contain tree-like signal are reliably assigned ‘low scores’.

It is also important to consider the sensitivity of TIGER

values. Can they distinguish clearly between small, mod-

erate, and large quantities of nontree-like signal, or do

they offer only a coarse distinction into ‘mostly vertical

history’ and ‘mostly nonvertical history’ categories?

To answer these questions, it is necessary to be able

to create datasets where such details about the underly-

ing history are explicitly known and can be directly con-

trolled. Probabilistic generative models, such as the ones

applied by Murawaki (2015), are an ideal tool for this.

Different models can attempt to capture different kinds

of linguistic dynamics, both tree-like and nontree-like,

and large numbers of datasets can be simulated using

identical model parameters, to establish the most typical

properties of each model. We use generative models to

create seven simulated datasets resembling language

data, each with slightly different properties, and use

them for testing the sensitivity of TIGER values and the

other metrics in distinguishing between these different

types of data, as well as their susceptibility to false nega-

tives or positives. Different models also provide points

of reference against which the TIGER values for the

UraLex dataset can be compared. To facilitate this com-

parison, we generate each simulated dataset with the

same number of languages and meanings as UraLex.

There are altogether four types of simulated data that

are used here: pure tree-like data, tree-like data with

borrowings, dialect chain-like data, and data without

any coherent internal structure. They are described in

greater detail below.

2.6.1 Purely tree-like data.

Simulated data that contain a strong tree-like phylogen-

etic signal were generated by probabilistically evolving

cognacy data on a randomly generated phylogenetic

tree. First, a random tree with the desired number of lan-

guages was grown according to a Yule ‘pure birth’

model, in which the times between binary splitting

events are drawn from an exponential probability distri-

bution with a fixed rate. A unique rate value is drawn

for each meaning from a gamma distribution. For each

meaning, the language at the root of the tree is first

assigned a cognate class. Along each branch of the tree,

a number of cognate replacement events are sampled

from a Poisson distribution, based on the rate value of

the meaning, branch length, and cognate birth rate. If

the number of replacement events is nonzero, a new cog-

nate class is assigned to the branch’s descendent node.

This process continues until each leaf node has received

a cognate class. Any individual cognate class is born

only at a single point on the tree, and replaced cognates

are never recovered. This corresponds to a ‘Dollo’ style

evolutionary process, where once lost traits are not

restored in their original form. This provides a good

match for ‘idealized’ lexical cognate data without bor-

rowings. The cognate birth rate can be tuned to get the

desired range of extant cognate class counts and sizes.

2.6.2 Borrowing simulation.

For datasets generated on a tree as described above, an

amount of nonvertical signal can be introduced with a

coarse approximation of borrowing, including both

deep and shallow borrowing events. This process is par-

ameterized by a ‘borrowing rate’ between 0 and 1. First,

purely vertical data are generated on a tree as described

above. Following this, a second rate value is drawn from

a gamma distribution, representing the borrowing
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susceptibility of a meaning. Then, each node of the

tree—representing the intermediary proto-stages of the

simulated language family—is revisited. At each node

where the node itself or its child nodes do not already

serve as a borrowing source (essentially making their

history ‘fixed’), a Bernoulli random trial is performed to

determine whether a borrowing event takes place or not;

the probability of success for the trial is based on the

borrowing susceptibility of the meaning, borrowing rate

and branch length. In the event of a success, an attempt

is made to randomly choose a borrowing source node

from the same time frame as the borrower. Provided

that a suitable borrowing source node is available, the

cognate class of that borrowing source node overwrites

the cognate class of the borrower node. Following this,

the subtree starting from the borrower node is re-

evolved in the same way as when generating purely ver-

tical data, essentially simulating vertical evolution fol-

lowing each borrowing event. Each node of the tree is

processed similarly from the root to the tips.

By varying the borrowing rate, it is possible to gener-

ate datasets with more or less nonvertical history

imposed on top of the underlying tree-like evolution.

This is essential for determining how sensitive TIGER

values as well as the other metrics are to minute devia-

tions from a tree-like signal. Our investigations include

four simulated tree-like datasets with borrowing at dif-

ferent levels: trees with borrowing rates of 0.05, 0.10,

0.15, and 0.20, corresponding to an expected 5%, 10%,

15%, and 20% of datapoints at most being borrowed.

2.6.3 Dialect chain.

We also generated simulated data designed to loosely re-

semble a dialect chain. This is an important test case, as

the dialect chain data have a much higher degree of in-

ternal structure than entirely unstructured data, but its

predominantly spatial structure is of a notably different

nature than the vertical inheritance structure that pre-

dominates the simulated datasets based on tree-

structures, i.e. the purely tree-like data and the borrow-

ing simulations. The exact process by which such data

are generated is described in detail in the Supporting

Material, which also includes a visual example of a

small dataset (Supporting Material Fig. S5). The essen-

tial property of the resulting dataset is that there exists a

one-dimensional linear ordering of the languages

(approximating e.g. an East-West geographic distribu-

tion of closely related languages, or dialects within a lan-

guage) such that the distribution of each cognate class

along this line is consistent with the class having

appeared at a single location and then spread to adjacent

locations. Parameters of the generative process were set

so that the number of cognate classes and their relative

sizes would resemble the same properties for the UraLex

data.

2.6.4 Unstructured data (‘swamp’).

The unstructured data model, affectionately termed

‘swamp’, generates linguistic data that lack any mean-

ingful internal structure. For example, no two languages

chosen at random are likely to be significantly more or

less similar to one another than any other pair, and two

languages being similar or dissimilar with regard to one

feature says nothing about their likely similarity or dis-

similarity with regard to any other feature. The unstruc-

tured nature of this data model puts it in stark contrast

with both the tree-based data models and the spatially

structured dialect chain data model. Despite being un-

structured similarly, the swamp datasets are generated

so that they otherwise bear a strong surface similarity to

a genuine dataset. Parameters of the generative process,

which is described in detail in the Supporting Material,

were again set so that the number of cognate classes and

their relative sizes would resemble the same properties

for UraLex.

2.6.5 Overview of the simulations.

We produced 100 simulated datasets with the same

number of meanings (313) and languages (26) as

UraLex using each of the seven generative models. This

provides us with 100 independent repetitions for assess-

ing how consistently the three metrics (TIGER values, d

scores, and Q-residuals) rank the datasets in terms of

treelikeness. When comparing TIGER values, d scores,

and Q-residuals in the results, we calculated mean val-

ues across all 100 repetitions. Notably, the tree-based

datasets were set up so that they all used the same 100

randomly generated starting trees, but otherwise gener-

ated their data independently from one another.

2.7 Exploring the heterogeneity of linguistic
categories with TIGER values

While TIGER values generally provide an overall meas-

ure for the degree of treelikeness, we also investigate the

extent to which the individual values, representing a de-

gree of structural consistency across the data, could be

used for characterizing linguistic data in general. We

examine the distribution of TIGER values in UraLex,

determining which meanings are assigned high TIGER

values and which get low TIGER values. We also com-

pare TIGER values against the number of cognate

classes per each meaning.

Journal of Language Evolution, 2021, Vol. 6, No. 2 107

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/6/2/99/6428504 by Turku U

niversity user on 24 January 2022

https://academic.oup.com/jole/article-lookup/doi/10.1093/jole/lzab004#supplementary-data


We further studied how TIGER values vary when

divided according to two kinds of subdivision. The first

kind of subdivision we explored includes WOLD’s five

semantic categories resembling word classes—nouns,

verbs, adjectives, adverbs, and function words. Pagel et

al. (2007) have suggested that semantic categories evolve

at different rates; if this is true, one can hypothesize that

the amount of tree-like signal measured by TIGER val-

ues should likewise vary between the classes. The second

kind of subdivision was between basic vocabulary mean-

ings—i.e. those found on Swadesh200 (Swadesh 1952),

Swadesh100 (Swadesh 1955), and Leipzig–Jakarta

(Tadmor 2009)—and meanings that fall outside of these

lists. In the case of UraLex, these cover eighty-seven

meanings from the WOLD401–500 list (Lehtinen et al.

2014), which includes meanings ranked 401–500

according to the Leipzig–Jakarta basic vocabulary crite-

ria. Although basic vocabulary meanings versus nonba-

sic vocabulary meanings represent a spectrum rather

than a clear-cut dichotomy, our expectation is that basic

vocabulary is more tree-like than nonbasic vocabulary.

In addition to exploring the distributions visually, we

explored the differences between the word class catego-

ries and basic and nonbasic vocabulary also with the

help of analysis of variance (ANOVA).

3. Results

3.1 Tiger values of simulated language data

We begin by considering whether TIGER values can be

used to successfully distinguish between tree-like data

and less tree-like data. For this, we use our seven simu-

lated datasets. Five of the models (‘pure_tree’, ‘borrow-

ing_5’, ‘borrowing_10’, ‘borrowing_15’, and

‘borrowing_20’) are trees with different degrees of bor-

rowing, one model (‘dialect’) approximates a nontree-

like hierarchy found in a dialect chain, and the last

model (‘swamp’) represents nonhierarchical data.

The TIGER value distributions of the five tree-based

models (‘pure_tree’, ‘borrowing_5’, ‘borrowing_10’,

‘borrowing_15’, and ‘borrowing_20’) are ordered in ac-

cordance with their degree of treelikeness, with ‘pure_-

tree’ having the highest mean TIGER value (0.80) and

‘borrowing_20’ the lowest mean TIGER value (0.73).

The violin plots (Fig. 2) show that the values are fairly

concentrated with all of the tree-based datasets.

Furthermore, the two nontree-like datasets (‘dialect’ and

‘swamp’) are lower than any of the tree-like datasets in

terms of their mean TIGER value (0.65 and 0.58, re-

spectively). Based on this, TIGER values conform to two

essential properties of a good metric of tree-like signal:

first, mean TIGER values are maximized by datasets

generated on trees and drop gradually as the amount of

nontree-like signal increases, and second, TIGER values

do not occur by chance in unstructured datasets or data-

sets with nontree-like structure, even when surface

details of those datasets are constrained to closely match

real linguistic datasets. It is worthy of note that the non-

tree-like datasets also stand out from the tree-like data-

sets based on their overall shape; the ‘dialect’ dataset has

a somewhat wider distribution that the other datasets,

whereas the ‘swamp’ dataset has the narrowest TIGER

value distribution.

Comparing the simulated datasets with the UraLex

data, we can see that this dataset shows a broad distri-

bution of TIGER values, similar to the dialect chain

simulation, but with a mean TIGER rate closer to the

tree-like datasets (0.70).

In addition to the tests presented above, we also

examined the sensitivity of TIGER values to datasets

with fewer data points, both in the form of data with a

smaller total number of meanings, and data with the

same number of meanings but with more missing data

points (see Supporting Material). The TIGER values

inferred for all the simulated datasets were quite robust

to datasets with fewer meanings than the 313 used in

the tests above, with little to no effect on the general

ordering of the simulations. Missing data points, on the

other hand, led to an overall increase in the TIGER val-

ues, regardless of the data type; however, the general

ordering of different types of data was retained here as

well. Consequently, TIGER values calculated from a

dataset with extensive gaps may not be directly compar-

able with the rates calculated from a dataset with 100%

coverage, especially if the difference in coverages is con-

siderable. The UraLex dataset, which we explored here,

has fairly high data point coverage (96.2%).

We also explored what effects different parameter-

izations of the generative models, such as having differ-

ent rates of cognate birth or different number of

languages, had on the TIGER values of the simulated

datasets. These are also documented in the Supporting

Material. In general, it indicated that TIGER values gen-

erally performed consistently regardless of language

count or cognate birth parameterization.

3.2 Tiger values compared with d scores,
Q-residuals, and NeighborNets

We next study how the performance of TIGER values

compares with two existing metrics that measure a simi-

lar aspect, d scores and Q-residuals (Fig. 3; Table S6 in

Supporting Material). We also visually examine the
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characteristics of NeighborNets compared with the

three metrics.

Judging by mean TIGER values, mean d scores and

mean Q-residuals from the combined results of 100

rounds of simulation (Fig. 3), all three metrics perform

well in ranking the tree-based datasets from most tree-

like to least tree-like. All metrics yield the expected

ranking: pure tree, 5% borrowing, 10% borrowing,

15% borrowing, and 20% borrowing.

However, when examining the 100 simulated data-

sets from each model separately, rather than averaging

over all datasets, we find that TIGER values are the

most reliable of the metrics in identifying the correct

order from the most tree-like dataset to the least tree-

like dataset (Table 1). For example, when comparing a

dataset produced with 10% borrowing on top of a tree

structure to one produced with 15% borrowing, mean

TIGER values rank the 10% borrowing dataset as more

tree-like than the 15% dataset in 90 of the 100 runs, giv-

ing it an accuracy of 90%, whereas d scores correctly

distinguish these 76% of the time and Q-residuals 74%

of the time.

While all three metrics appear to match each other

quite closely in terms of how their mean values charac-

terize the simulated datasets with some underlying tree

structure, they are less consistent with respect to the

simulated dialect chain and ‘swamp’ datasets (Figs. 2

and 3). Broadly speaking, TIGER values and d scores be-

have similarly over all the simulated datasets. Both rank

the swamp data as having less tree-like structure than

the dialect chain data (or indeed any other dataset), fol-

lowed by the dialect chain dataset as the second least

Figure 2. Violin plots of the TIGER values across seven simulated datasets and UraLex. The datasets based on a tree, from most

tree-like to least tree-like, are: pure_tree, borrowing_05, borrowing_10, borrowing_15, and borrowing_20; dialect represents non-

tree-like data in the form of a simulated dialect chain, and swamp represents unstructured data. The figure incorporates the TIGER

value distributions from all 100 replications of each simulated dataset. The thickness of the plot reflects where the values are con-

centrated. The black bar in the center of the violin shows the first and third quartile, and the white point shows the median value.
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tree-like dataset. In contrast, the highest Q-residual

score (suggesting the least treelikeness) is given not

to the unstructured ‘swamp’ model but rather to the

dialect chain model, whose Q-residual score is much

higher than that of any other dataset. Q-residuals

also rank the real-world UraLex data as being less

tree-like than the swamp data, which contrasts espe-

cially with d scores but also to an extent TIGER

scores. This suggests that there is in fact a qualitative

difference between what Q-residuals measure com-

pared with d scores and TIGER values. We will

return to this observation later.

The NeighborNets (Fig. 4) visibly illustrate how little

visual distinction there exists between a pure tree and

the ones with borrowing, highlighting the usefulness of

nonvisual metrics in estimating how tree-like a dataset

is. Successful ranking of the pure tree and the four trees

with borrowing in the correct order of treelikeness is

Figure 3. Mean TIGER values, d scores and Q-residuals from the seven simulated datasets, followed by the corresponding values

for the UraLex dataset. The lower value is indicative of a less tree-like signal with TIGER values, whereas the opposite is true with d
scores and Q-residuals.

Table 1. How many times a more tree-like generative model was deemed to be more tree-like than an adjacent less tree-

like model across 100 rounds of simulation, based on mean TIGER values, mean d scores and mean Q-residuals. For each

row, the highest (best) result is in bold.

Consistency of different metrics in evaluating treelikeness

More tree-like versus less tree-like TIGER value agreements d score agreements Q-residual agreements

pure_tree versus borrowing_05 93 92 92

borrowing_05 versus borrowing_10 95 87 90

borrowing_10 versus borrowing_15 90 76 74

borrowing_15 versus borrowing_20 91 83 77

borrowing_20 versus dialect 99 87 100

dialect versus swamp 100 100 0
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difficult, if not impossible, by observing the

NeighborNets alone. However, while both the dialect

chain data and the ‘swamp’ data both lack a tree-like

structure, the NeighborNets make it clear that the dia-

lect chain data contain a large degree of nonvertical

structure, leading to a ‘spider web’ appearance, which,

in contrast, is not present in the ‘swamp’ data.

The datasets which display the most visible nonverti-

cal structure in their NeighborNets, the dialect chain

data and UraLex, also show the broadest spread in their

distributions of TIGER values (shown in Fig. 2). At the

same time, the totally unstructured swamp model data

have the narrowest spread. This suggests that the spread

of the TIGER value distribution, at least to a certain

Figure 4. NeighborNets produced from the seven generative models (a–g) (in each case using the first of the 100 replications), and

the UraLex lexical dataset (h). Notably, UraLex—as an uncontrolled dataset shaped by millenia of complex linguistic evolution—is

visually quite distinct from the simulated datasets, each of which reflects specific linguistic scenarios in simplified forms.
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extent, reflects the amount of nonvertical structure with-

in a dataset, while the mean TIGER value tracks the

amount of underlying phylogenetic signal.

3.3 Tiger values of UraLex data

Having established above that TIGER values appear to

perform quite well at distinguishing data with more

tree-like structure from data with less tree-like structure,

we now turn our attention to what TIGER values can

tell us about our real-world dataset, UraLex.

The mean TIGER value across all meanings in the

UraLex dataset is 0.70 (Figs. 2 and 3). This is lower than

the mean value for datasets generated according to a

purely vertical evolutionary process, which should be

expected for a real-world dataset which has been pro-

duced from the interaction of multiple, complicated his-

torical processes. From the perspective of the simulated

datasets, mean TIGER values would rank UraLex be-

tween a tree-like dataset with 20% borrowing rate and a

dialect chain dataset; at the same time, its TIGER value

distribution is quite broad, indicative of either properties

similar to the dialect chain model or some other nontree-

like model, or different degrees of borrowing in different

parts of the data (Figs 2, 3, and 4h). Comparing the way

TIGER rates characterize the dataset with the other met-

rics, mean d scores position UraLex between the pure

tree dataset and the 5% borrowing dataset (Figs 2 and

3), essentially establishing the dataset as a highly tree-

like data. In contrast, mean Q-residuals position UraLex

between the swamp dataset and the dialect chain data-

set, establishing it as a highly nontree-like data.

UraLex’s NeighborNet shows that this data have

more visible reticulation than any of the tree-like simu-

lated datasets, but not nearly as much as the dialect data-

set. Q-residuals appear to reflect the degree of

reticulation visualized by NeighborNets most promin-

ently of the three metrics. Notably, unlike the dialect

chain dataset’s NeighborNet, which is considerably

reticulated across the board with little visible internal

hierarchy, UraLex’s NeighborNet retains a mostly tree-

like structure, with prominent reticulation concentrated

at specific points, such as the Finnic and Saamic

branches, which are both historically and geographically

close to each other and also have an extensive history of

language contact to the extent that they are linguistically

considered to be dialect chains. There is also reticulation

near the center of the UraLex NeighborNet, potentially

reflecting a rapidly occurring early divergence (see e.g.

Lehtinen et al. 2014). In addition to the visible similar-

ities in their NeighbourNets with respect to the amount

of reticulation, Fig. 2 indicates that the dialect chain and

UraLex datasets show the broadest interquartile ranges

of TIGER values out of all the datasets, suggesting a

broad range of TIGER values within these datasets. This

wide spread in the TIGER values is potentially charac-

teristic of datasets with dialect-like nonvertical structure.

Taken together, the observations of UraLex could be

interpreted as suggesting two kinds of structure simul-

taneously: a nonvertical historical structure on top of a

tree-like backbone of vertical inheritance. d scores regis-

ter a prominent tree-like structure, while in contrast, the

Q-residuals appear to register a prominent nonvertical

structure, whereas TIGER values apparently propose a

middle-ground between the two.

3.4 Tiger value distribution across meanings in
UraLex data

A unique property of TIGER values, compared with

alternatives like d scores or Q-residuals, is that they pro-

vide a measurement for each character in the dataset,

e.g. for each meaning when working with basic vocabu-

lary data such as UraLex. Consequently, in addition to

measuring how tree-like a dataset is as a whole, TIGER

values could potentially serve a purpose in examining

the linguistic internals of a dataset, such as the suscepti-

bility of different meanings to nonvertical transmission.

UraLex data show TIGER values ranging from 0.54

to 1.00, with a mean value of 0.70 (Fig. 5; Table S5 in

Supporting Material). The meanings that rank highest in

terms of TIGER value are those with only one recorded

cognate set: ‘eye’, ‘I’, ‘name’, ‘two’, and ‘we’. Features

such as these always get a TIGER value of 1.0 since

every possible partition consists of subsets of the solitary

set in their partition, which contains all twenty-six lan-

guages (see TIGER algorithm description). Notably,

while these are undoubtedly the most unambiguous

characters in the data, one may argue that they are also

not the most ‘tree-like’ characters in the sense that they

do not suggest any kind of a nested structure. The next

five meanings in TIGER value order are ‘five’, ‘four’,

‘hand’, ‘three’, and ‘not’; each of these meanings have

two recorded cognate sets. The five meanings with the

lowest TIGER value, ‘float’, ‘twist’, ‘narrow’, ‘soon’,

and ‘shake’, have a much higher number of recorded

cognate sets in UraLex (between sixteen and seventeen).

Meanings with lower TIGER values also tend to have

more cognate sets (Fig. 6); however, cognate set counts

do not represent a one-to-one match with TIGER values,

which are based on estimating the internal consistency

of subsets in the data.

We now investigate how some constituent parts of

the UraLex dataset are characterized by TIGER values,
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by examining what the basic vocabulary portion and the

nonbasic vocabulary portion of UraLex look like from

the perspective of TIGER values, and whether one can

be distinguished from the other based on TIGER values.

In addition to examining standardized basic vocabulary

meanings, we also explore on a general level whether se-

mantic and functional differences between meanings

surface through mean TIGER values, by dividing the

UraLex dataset’s meanings into WOLD’s five semantic

categories, which correspond with word classes: nouns,

verbs, adjectives, adverbs, and function words (Fig. 7).

The interquartile ranges of the TIGER values of the

basic vocabulary and the nonbasic vocabulary portions

of UraLex overlap considerably, suggesting that TIGER

values alone do not make an unambiguous distinction

between these two categories. However, the basic vo-

cabulary portion of UraLex has a higher mean TIGER

value than the nonbasic portion (0.72 for basic vocabu-

lary versus 0.67 for nonbasic vocabulary), suggesting a

more tree-like signal for the basic vocabulary portion, as

indeed should be the case if basic vocabulary is to in-

clude more stable meanings. This observation was con-

firmed using an ANOVA analysis of log-transformed

TIGER values indicated significant differences between

basic and nonbasic vocabulary (see Supporting

Material). However, we can note that the overall distri-

bution of the basic vocabulary portion is also somewhat

wider than that of the nonbasic vocabulary portion.

Figure 6. Scatterplot comparing TIGER values of UraLex meanings with their cognate set counts. Cognate sets have been counted

after applying the ‘minimizing’ strategy i.e. selecting representative forms of each meaning such that the total number of cognate

sets for each meaning is as low as possible. While cognate set counts and TIGER values do not match each other perfectly, they do

have a strong negative correlation both when comparing the TIGER rates with UraLex’s cognate set counts after applying the mini-

mizing strategy (Pearson’s coefficient: �0.90, P<0.0001), as well as when comparing them with UraLex’s total number of cognate

sets (Pearson’s coefficient: �0.84, P< 0.0001).

Figure 5. Histogram showing the TIGER value distribution of

the meanings recorded in the UraLex basic vocabulary dataset

(n¼ 313). The TIGER values for each individual meaning can be

found in Table 5 in Supporting Material.
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Mean TIGER values would rank the five semantic

classes from most tree-like to least tree-like in the fol-

lowing order: function words (0.745), nouns (0.718),

verbs (0.684), adjectives (0.675), and adverbs (0.622;

Fig. 7). Median TIGER values, on the other hand, would

rank them as follows: nouns (0.714), function words

(0.707), adjectives (0.671), verbs (0.669), and adverbs

(0.621). As the numbers show, differences between

classes are small, and there is considerable overlap in the

range of TIGER values across the categories (Fig. 7).

Consequently, these rankings can only be considered

broad trends, and there are, e.g. some adjectives with

TIGER values higher than some nouns. It should also be

noted that UraLex includes only two adverbs, far less

than any other semantic class. Function words (N¼ 37)

have the highest mean TIGER values, but also the widest

distribution. ANOVA analyses of semantic classes

(excluding the underrepresented adverb class) showed

nearly significant differences only between the TIGER

values of nouns and verbs, and nouns and adjectives (see

Supporting Material). In general, however, the semantic

classes do not appear to be easily distinguished from one

another on the basis of their TIGER values, indicating

that none of the semantic classes appears to be consider-

ably more ‘tree-like’ than the others.

4. Discussion

Based on our results, we argue that TIGER values can

be used to estimate the degree of tree-like signal in lan-

guage data. In fact, despite TIGER values being original-

ly developed for another purpose, our results suggest

Figure 7. TIGER value distributions of UraLex basic vocabulary dataset when its meanings are subdivided into WOLD’s five seman-

tic categories corresponding with word classes: adjectives (n¼ 49), adverbs (n¼ 2), function words (n¼37), nouns (n¼ 125), and

verbs (n¼ 100), and into basic vocabulary meanings from Swadesh200, Swadesh100 and Leipzig–Jakarta (n¼226) and nonbasic

vocabulary meanings from the WOLD401–500 list not belonging to any of the aforementioned lists (n¼ 87). See Fig. 2 for more ex-

planation on interpreting the plot.
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that they represent a notable improvement over the

existing toolset for this task, which includes d scores and

Q-residuals. While all three metrics correctly ranked dif-

ferent data sets evolved on a phylogenetic tree from

most tree-like to least tree-like when using mean values

calculated over several data sets, a consideration of per-

formance on individual datasets makes it clear that,

overall, TIGER values outperform the alternatives.

Beyond their improved performance, TIGER values

have the additional benefit of providing information for

each individual feature of a dataset. This means that

TIGER values can also be used to explore the historical

heterogeneity of linguistic datasets—or, indeed, of any

datasets which may have been shaped by complicated

cultural evolutionary processes, as TIGER values are

easily computed for arbitrary multistate data.

While TIGER values can outperform d scores and Q-

residuals, it should be considered an alternative rather

than a complete replacement for these metrics. Because

TIGER values are calculated from multistate character

data, they are incompatible with certain kinds of linguis-

tic datasets, in particular those consisting of distance-

based data. In these cases, d scores and Q-residuals

should be applied. d scores and Q-residuals are also

more straightforward to use than TIGER values for esti-

mating the degree of reticulation of individual lan-

guages, as they are calculated across taxa rather than

across aligned characters.

The effectiveness of TIGER values for the task of

measuring tree-like structure can perhaps be attributed

to the fact that, conceptually, their definition captures

the essential nature of ‘tree-like’ structure quite well.

The initial split in a binary phylogenetic tree partitions

the languages of that tree into two sets. The subsequent

splits in turn partition each of those two sets into two

more, and so on. Because of this, a structure of consist-

ently nested subsets (clades) is the defining characteristic

of evolution on a tree; linguistic data which has evolved

strictly via vertical inheritance on a tree will necessarily

have this kind of structure, which only TIGER values

directly measure.

We also did supplementary tests of how robust

TIGER values were to variations in the underlying na-

ture of the data by varying the simulation parameters

and testing different language family sizes, as well as

checking how data gaps affect the results (see

Supplementary Material). These tests suggested that

TIGER values were generally quite robust and influ-

enced primarily by the underlying structure of the ana-

lyzed data. Notably though, the tests suggested that data

gaps increase TIGER values across the board. They also

showed more complex change dynamics for the TIGER

values of larger language families than smaller ones.

This is not generally surprising, as a larger language

family is structurally more complex than a small one.

Regarding the use of TIGER values as a metric for

linguistic heterogeneity, the TIGER values of various

meanings in the UraLex dataset were generally distrib-

uted as one might expect based on linguistic knowledge

and the nature of the UraLex dataset; in general, there

exists an inverse relationship between cognate class

count and TIGER value (see Fig. 6), but it is certainly

not the case that simple cognate class counts provide the

same kind of information as TIGER values while being

simpler to compute. For instance, the meanings ‘nine’

and ‘charcoal’ both have eight cognate classes in

UraLex, but ‘nine’ has a TIGER value of 0.76 while

‘charcoal’ has a TIGER value of 0.60. These differences

occur because TIGER values are based on how a mean-

ing’s cognate classes are distributed across languages,

which is information that cognate class counts do not

encode.

We also examined how ad hoc subsets of linguistic

data, rather than individual meanings or the complete

dataset, were characterized by TIGER values, by subdi-

viding the UraLex data in two different ways. The first

of these was a division of the data into meanings from

standardized basic vocabulary lists (Swadesh200,

Swadesh100, or Leipzig–Jakarta) and nonbasic vocabu-

lary meanings (WOLD401–500). The second was a div-

ision into five semantic categories corresponding with

word classes: nouns, verbs, adjectives, adverbs, and

function words. While the TIGER value distributions of

basic and nonbasic vocabularies showed considerable

overlap, the nonbasic vocabulary had a lower mean

TIGER value of the two, suggesting a less tree-like sig-

nal. This suggests that TIGER values would behave as

expected when comparing datasets with more and less

stable meanings.

Semantic categories are less clearly distinguishable

with TIGER values; their ranking from highest (most

stable or tree-like) to lowest (least stable or tree-like) is

different for mean and median TIGER values. With

means, the order would be: function words, nouns,

verbs, adjectives, and adverbs. With medians, the order

would be: nouns, function words, adjectives, verbs, and

adverbs. As a point of comparison, Pagel et al. (2007)

suggested in their exploration of Indo-European rates of

lexical evolution, the following order for word classes,

from slowest to fastest: numbers, pronouns, special

adverbs, nouns, verbs, adjectives, prepositions, and con-

junctions. Notably, many of Pagel’s categories, such as

numbers, pronouns, prepositions, and conjunctions,

could be classified as function words (Vejdemo and
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Hörberg 2016), which behave differently than content

words in terms of stability and borrowing-susceptibility

(Vejdemo and Hörberg 2016; Thomason and Kaufman

1988). With this in mind, the rates of change suggested

by Pagel et al. (2007) become somewhat more similar to

our observations, with e.g. a broad distribution of

TIGER values for function words versus both slow and

fast function words in the results of Pagel et al. (2007),

as well as nouns being more stable than verbs. However,

TIGER values suggest no clear differences in treelikeness

of the semantic categories. We should also point out

that Pagel et al.’s inferred rates are chronological rates,

specified as the number of changes per 104 years. A simi-

lar metric would be, for instance, the median rates of

change inferred in Greenhill et al. (2017). In contrast,

TIGER values, despite often regarded simply as a com-

putationally inexpensive proxy for evolutionary rate,

measure the internal consistency of a dataset, and are

also not tied to an absolute time frame.

Perhaps, the most unexpected aspect of our results

was how differently the three investigated metrics define

tree-like data. Q-residuals ranked the nontree-based dia-

lect chain dataset and the real-life UraLex dataset as

being less tree-like than the totally unstructured dataset

produced by the swamp simulation, while TIGER values

and d scores ranked UraLex as being more tree-like than

both the unstructured data and the dialect chain data.

Notably, both the dialect chain dataset and the UraLex

dataset showed more webiness (evidence of nonvertical

structure) in their NeighborNets, suggesting a possible

explanation for this ranking. With this in mind, Q-resid-

uals are apparently only an indirect measure of treelike-

ness; rather than being sensitive to the presence of tree-

like structure in data (i.e. consistent nesting of subsets),

they are sensitive to the absence of (at least some kinds

of) nonvertical structure, and are thus maximized with

datasets characterized by horizontal connections. This

explains why the dialect chain data, which by design

contains rich internal structure of a nontree-like variety,

looks very different from all other datasets through the

lens of Q-residuals. It also explains why the unstructured

swamp dataset scores surprisingly well despite lacking

any tree-like structure; by virtue of lacking any structure

at all, it also lacks the specific kind of nonvertical struc-

ture which manifests as webiness in NeighborNets.

Despite the conceptual differences between TIGER

values, d scores and Q-residuals, all three are nonethe-

less valuable tools for exploring the structure of linguis-

tic datasets. Our observations above regarding the

inconsistent response of these three metrics to our data-

sets demonstrates an important and under-appreciated

fact: language data should not be conceptualized as

lying on a one-dimensional axis with tree-like data on

one end and nontree-like data on the other. The results

for our dialect chain and swamp models demonstrate

that there is more than one way for data to be nontree-

like, and that different metrics respond differently to dif-

ferent kinds of nontree-like structure. Furthermore, the

responses of different metrics to the UraLex data, com-

bined with that dataset’s NeighborNet visualization,

make it clear that a single dataset can contain multiple

different kinds of structure simultaneously.

According to TIGER values, UraLex data fall near to

simulated data with 20% borrowings (Fig. 3). As it hap-

pens, the actual amount of loan word present in the lan-

guages across the entire UraLex dataset is between 17

and 24% (De Heer et al. unpublished manuscript). The

actual amount of borrowings was reflected neither in

the d score, which ranked UraLex between purely tree-

like simulated data and simulated data with 5% borrow-

ings, nor in Q-residuals, which scored UraLex closer to

a nontree-like dataset than a tree-like one. Previous

quantitative work on this data suggested that the basic

vocabulary portion of the Uralic phylogeny is reason-

ably well resolved (high confidence values of branching

events), suggesting a higher degree of treelikeness than

what the results of the Q-residual analyses suggest

(Syrjänen et al. 2013; Honkola et al. 2013; Lehtinen et

al. 2014). However, assessing the treelikeness of differ-

ent language families in light of TIGER values, as well

as comparing the relationship of TIGER values and

resolvedness of the phylogenetic trees are beyond the

scope of the present article.

These observations only scratch the surface of a prin-

cipled quantitative consideration of the structure of lin-

guistic data. Our dialect chain model generates data

which contains an internal structure which is not tree-

like, but there is no reason to assume that this is the only

kind of nonvertical structure which might exist in lan-

guage. We believe future research should aim at combin-

ing insight from traditional historical linguistics with

statistical tools for identifying latent structure in data to

map out a taxonomy of structures arising from different

historical processes, both vertical and nonvertical.

Metrics like TIGER values and Q-residuals might end

up being part of a larger toolkit of computationally in-

expensive metrics (when compared with e.g. Bayesian

inference of phylogeny), each one being most sensitive

to a single kind of structure. The combined results of

such a toolkit would then suggest an appropriate com-

putationally intensive analysis for that specific dataset,

such as Bayesian phylogenetics for clearly tree-like data,

or even a collection of analyses suitable for different

components of a dataset. This would hopefully lead to a
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better understanding of the varied historical processes

which have collectively shaped linguistic history.

Supplementary data

Supplementary data is available at JOLEVO online.
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Phylogenetic Forest and the Quest for the Elusive Tree of

Life’, Cold Spring Harbor Symposia on Quantitative Biology,

74: 205–13.

Lehtinen, J., Honkola, T., Korhonen, K., Syrjänen, K. et al.

(2014) ‘Behind Family Trees: Secondary Connections in

Uralic Language Networks’, Language Dynamics and

Change, 4/2: 189–221.

Marcet-Houben, M. and Gabaldón, T. (2009) ‘The Tree versus

the Forest: The Fungal Tree of Life and the Topological

Diversity within the Yeast Phylome’, PLoS ONE, 4/2: e4357.

McMahon, A. and McMahon, R. (2005). Language

Classification by Numbers. Oxford, UK: Oxford Linguistics;

New York, NY: Oxford University Press.

Morrison, D. A. (2010) ‘Using Data-Display Networks for

Exploratory Data Analysis in Phylogenetic Studies’,

Molecular Biology and Evolution, 27/5: 1044–57.

Murawaki, Y. (2015) ‘Spatial Structure of Evolutionary Models

of Dialects in Contact’, PLos One, 10/7: e0134335.

Nelson-Sathi, S., List, J.-M., Geisler, H., Fangerau, H. et al.

(2010) ‘Networks Uncover Hidden Lexical Borrowing in

Indo-European Language Evolution’, Proceedings of the

Royal Society B: Biological Sciences, 278/1713: 1794–803.

Pagel, M., Atkinson, Q. D., and Meade, A. (2007) ‘Frequency of

Word-Use Predicts Rates of Lexical Evolution throughout

Indo-European History’, Nature, 449/7163: 717–20.

Prasanna, A. N., Gerber, D., Kijpornyongpan, T., Aime, M. C.

et al. (2020) ‘Model Choice, Missing Data, and Taxon

Sampling Impact Phylogenomic Inference of Deep

Basidiomycota Relationships’, Systematic Biology, 69/1:

17–37.

Proki�c, J. and Nerbonne, J. (2013). ‘Analyzing Dialects

Biologically’. In: Fangerau Heiner, Geisler Hans, Halling

Thorsten and Martin William (eds.) Classification and

Evolution in Biology, Linguistics and the History of Science.

Concepts, Methods, Visualization, pp. 147–61. Stuttgart:

Franz Steiner Verlag.
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